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Abstract – This paper suggests that evolutionary models of 
network infrastructure in a market economy can be derived from 
the underlying selfish behavior of users and providers of network 
services in the same way as non-equilibrium thermodynamics is 
derived from the underlying statistical physics of interacting 
particles.  This approach may be useful for overcoming 
restrictions of existing models failing to account for the effect of 
the details of user/provider selfish behavior on the infrastructure 
evolutionary path.  Network security considerations may be a 
part of this user/provider behavior.  Our main assumption is 
that “almost perfect competition” keeps the system close to 
the “social optimum”.   
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I. INTRODUCTION  

In a market economy network evolution is driven by 
technological constraints and self-interests of the 
participants. Each user generates demand in attempt to 
maximize its net utility, which is the difference between the 
utility of obtaining service and the service price while each 
service provider attempts to maximize its profit, which is 
the difference between its revenue and expenses.  We 
model a network by a capacitated graph with links/nodes 
owned by different providers.  The key feature of our 
model is that providers not only can expand/reduce 
network capacity within the infrastructure represented by 
the network graph, but also have the option to modify the 
network infrastructure by adding/eliminating network 
links.  While capacity expansion within a fixed 
infrastructure can be done at the marginal cost of the 
resources, growing network infrastructure by adding 
links/nodes requires initial and typically significant 
investment, e.g., for putting fiber underground.   

This initial investment typically destroys convexity 
and causes a multiplicity of Nash equilibrium 
infrastructures in the natural game-theoretic formalization 
of the selfish user/provider behavior, making interpretation 
of this game-theoretic model difficult.  This difficulty has 
led to using game-theoretic models of selfish user/provider 
behavior only for fixed network infrastructure when the 
corresponding game typically has a unique Nash 
equilibrium in demand, pricing, investments, and 
capacities.  Separate modeling of infrastructure growth 
typically relies on phenomenological random graph models 
[1]-[3].   

However, accounting for the effect of user/provider 
economic incentives on the network infrastructure 
evolution may be essential.  For example, the result of 

selfish investment in the network security [4] can be 
affected if network users and providers have an option of 
disconnecting from providers who create or propagating 
security risk.  Another example is selfish investment in the 
bandwidth within existing infrastructure.  The inefficiency 
of the competitive equilibrium in the bandwidth pricings 
and offerings [5] may be a result of inefficient network 
infrastructure, which prevents provider competition.  In 
both examples provider ability to modify infrastructure 
may significantly affect the emerging network 
infrastructure. 
 This paper suggests that infrastructure evolutionary 
models can be derived from the underlying game-theoretic 
model of selfish user/provider behavior in the same way as 
non-equilibrium thermodynamics is derived from the 
underlying statistical physics of interacting particles.  We 
assume time scale separation between “fast” convergence to 
user/provider equilibrium for a given network infrastructure 
and “slow” infrastructure evolution modeled by a Markov 
process. We consider the situation of almost perfect 
competition in which a large number of providers compete 
for demand generated by the same users [6].  Based on 
results from economics [6], as well as results for some 
particular networks [7]-[9], we conjecture that selfish 
user/provider behavior maximizes the aggregate user utility 
subject to provider profitability.  

Exploiting similarities between utility maximization 
and entropy maximization in a closed physical system with 
fixed energy [10], we propose to model the infrastructure 
evolution by a time-reversible Markov process.  The 
proposed model includes a possibility of selfish investment 
in network security and is open to various generalizations.  
The paper is organized as follows.  Section II discusses 
user/provider competitive and socially optimal equilibria.  
Section III proposes network infrastructure models 
consistent with the underlying selfish user/provider 
interactions.  Finally, Section IV briefly summarizes and 
outlines directions of future research. 
 

II. NETWORK ECONOMIC MODEL    

This Section describes economics driving user/provider 
strategic interactions.  Subsection A describes the network 
model.  Subsection B describes the bandwidth 
supply/demand model.   
 
A. Network  

We model the network by a directed capacitated graph 
with set of nodes N  and set of links 
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}\,:{ nNkNnLL nk ∈∈=  where links nkLl ∈  directly 
connect node n  to node k .  The network infrastructure is 
determined by network graph ),( LNg =  and ownership of 
network elements.  Let }dim{ nknk Ls =  be the number of 

links directly connecting node n  to node k , and nkC  be the 
aggregate capacity of these links.   

Limited link capacities impose constraints on the feasible 
end-to-end throughputs ),( knx  from nodes Nn ∈  to nodes 

nNk \∈  
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rkn xx ),( ,                                              (1) 
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where nkY  is the aggregate rate through links nkLl ∈ , vector 

),( Rrxx r ∈=  characterizes end-to-end flow rates on all 

feasible routes U kn nkRR
,

= , and the set of feasible routes 

from node Nn ∈  to node nNk \∈  is nkR .   

For simplicity of exposition we assume that all links 

nkLl ∈  directly connecting node n  to node k  are identical 

with respect to their capacities: nknkl sCc =  and carried 

load: nknkl sYy = .  In our economic model these 
assumptions are justifiable when the cost of providing 
bandwidth c , is the same )(cnkφ , for all links nkLl ∈ .  In 
this case bandwidth providers are inclined to charge the same 
price for bandwidth nkp  on all links nkLl ∈  and users are 

indifferent to using links nkLl ∈  [8]-[9].  Generalization to a 
case when the cost of providing bandwidth on different links 

nkLl ∈  may be different is straightforward. 

We assume that bandwidth costs )(cnkφ  are non-
decreasing in 0≥c .  Communication bandwidth costs 

nNkNncnk \,);( ∈∈φ  are concave in 0≥c , e.g.,  

        nNkNncbac nknknk \,,)( ∈∈+=φ                     (3) 

where 0≥nka  characterizes the fixed cost, e.g., cost of 

putting the fiber underground and  0≥nkb  characterizes the 
marginal capacity cost.   

Our model can be easily generalized to incorporate 
constraints imposed by limited node processing capacity 

nnC , Nn ∈ .  It is natural to assume that costs of the 

processing bandwidths NnCnn ∈),(φ  are convex in 0≥C  
due to technological constraints.  For example, considered in 
[11] is the case of hard processing bandwidth constraints 

*CCnn ≤  corresponding to processing cost 0)( =Cnnφ  if 
*CC ≤ , and ∞=)(Cnnφ  if *CC > .  In this paper we 

uniformly refer to network nodes and links as network 
elements.   
 
B. Bandwidth Users and Providers 

We model the effect of investment in the network security 
by assuming that traffic of rate x  traversing network element 
l  faces security risk )(qxhl , where ),( Llqq l ∈=  is the 
vector of levels of investment in the security of network 
elements l  is.  We assume functions )(qhl  to be decreasing 
in all vector q  components due to positive externalities, i.e., 
improving security of a network element not only improves 
this element security; but also is beneficial for the security of 
the entire network [4]. 

Assuming that the owner of a network element l  
charges users price lp  for a unit of this element's 
bandwidth, the profit generated by network element l  is 
              )()(

:
lll

rlr
rlll cxqpf φ−−= ∑

∈

                              (4) 

Generally, there are S  service providers, with service 
provider Ss ∈  owning network elements sMl ∈ . Each 

network element is owned by some provider: LM
Ss s ≡

∈U .  

Each provider Ss ∈  attempts to maximize its aggregate profit  
                             ∑

∈

=
sMl

ls fF                                               (5) 

We assume that each user is uniquely identified by the 
origin-destination pair nNkNnkn \,),,( ∈∈ .  Let 

)(xunk  be user ),( kn ’s utility of obtaining end-to-end 
bandwidth x  from node n  to node k .  Utility functions 

)(xunk  are assumed to be monotonously increasing and 
concave in 0≥x  at least in the case of file transfers.  For 
example, weighted ),( wα - fair bandwidth allocation [12] is 
based on user utilities 
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where 0, >wα  are some parameters.  In a particular case of 
proportional fairness, when 1=α , parameters nkww =  can 
be interpreted as user ),( kn ’s willingness to pay for end-to-
end bandwidth x  from node n  to node k .   

User ),( kn  net utility is its gross utility of having end-to-
end bandwidth minus expenses and expected losses due to 
security risks: 

   [ ]∑ ∑∑
∈ ∈∈

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nknk Rr rl
lnklr

Rr
rnknk qhpxxuU )(η          (7) 



 3

where parameter 0≥nkη  quantifies user ),( kn ’s sensitivity 
to the security risk.  Each user ),( kn  attempts to maximize 
its net utility (7) over the vector of flow rates ),( str Rrx ∈ , 

given security risks ),( Llhh l ∈=  and prices 

),( Llpp l ∈= . 
 

III. USER/PROVIDER EQUILIBRIA   

This Section introduces notions of user/provider 
equilibria.   Subsection A describes user/provider best 
responses.  Subsection B discusses multiplicity of the 
competitive (Nash) equilibria of the user/provider game.  
Subsection C conjectures that under perfect competition 
these competitive equilibria approach the social optimum. 
 
A. User/Provider Best Responses 

It is easy to see that user net utility (7) maximization 
results in minimum cost routing where the adjusted cost of 
a route is the sum of the adjusted costs of network elements 
comprising the route 
                    ∑

∈

=
rl

lr dd )()( ηη                                           (8) 

and network element l  adjusted cost is 
                  )()( qhpd lll ηη −=                                        (9) 
Assuming sufficient capacity, the entire user ),( kn  
aggregate demand  
            [ ]xdxux nknkxnk

*

0

*
)( )(maxarg −=

≥
                           (10) 

is sent over minimum cost routes 
},:{ **

nknkrnk RrddrR ∈== , where 

                     )(min*
nkrRrnk dd

nk

η
∈

=                                        (11) 

Users are indifferent between feasible routes of minimum cost.  
If there is a single minimum cost route: **

nknk rR = , the entire 
user ),( kn  demand is carried on this route: 
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In the particular case of user utilities (6): 
),()( nknknk wxuxu α= , user ),( kn  aggregate demand is 

                   ( ) st

nknknk dwx α1**
)( =                                       (13) 

Further we assume that users always generate the best 
response demand, and thus element l  generates profit 
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Expression (14) implies that the optimal provider responses 
ensure tightness of the capacity constraints (2).  Indeed, 
providers have incentive to eliminate any spare capacity to 
reduce expenses while in a case of insufficient capacity the 
provider can increase its revenue by raising the price.  

 
B. Competitive  Equilibria 

Consider a non-cooperative game of providers Ss ∈  
attempting to maximize their profits  
                  ∑

∈

=
sMl

ls qpfqpF ),(),( **                                 (15) 

over pricing lp , and investment in security lq  of their assets 

sMl ∈ , where ),(* qpfl  are given by (14).  Typically, this 
game has multiple Nash equilibria corresponding to different 
network infrastructures defined by a combination of network 
topology and ownership of network elements.  These Nash 
equilibria are associated with attractors of the following 
evolutionary/learning provider adjustments [13]: 

slsllsl MlppqFpqpqFq ∈∂∂=∂∂= ),(,),( ** &&    (16) 

Note that since best user response (8)-(12) ),(* pqxx =  is 
discontinuous in a case of equal minimum cost multipath 
routing, the differential equations (16) may have 
discontinuous right-hand sides.  It can be shown that in this 
case system (16) should be understood as a differential 
inclusion [14] describing sliding modes along the 
discontinuity hyperplanes.   

Bertrand's model of user/provider equilibria [9], [15] 
assumes that in "fast" time users/providers achieve 
equilibrium over user demands ),( Rrxx r ∈= , 
bandwidth pricing )( lpp =  and investment in security 

)( lqq =  subject to the capacity constraints (2) for fixed 

capacities )( lcc = .  On a "slow" time scale bandwidth 
pricing and investment in security become functions of the 
network element capacities: )(* cpp =  and )(* cqql = .  

Nash equilibrium capacities *cc =  are associated with 
attractors of the following bandwidth adjustments [9]: 
     SsMlccpcqFc slsl ∈∈∂∂= ,)](),([ ***&             (17) 
 Figure 1 demonstrates multiplicity of provider equilibria 
achieved by adjustment process (17) on an example of two 
providers competing for the same demand [9].   

 
Fig. 1.  Capacity adjustments by two competing providers. 

1C

2C
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Three equilibria are possible: one equilibrium with both 
providers supplying bandwidth and two equilibria with only 
one provider supplying bandwidth and another provider driven 
out of business.   
 
C. Perfect Competition: Social Optimum 

In competitive equilibrium providers ensure profitability 
by charging users a competitive price which is higher than the 
marginal bandwidth price.   It is known from economics [6] 
that as the number of providers competing for the same 
demand increases, the competitive prices drop approaching the 
corresponding marginal prices.  This increase in competition 
squeezes the provider profit margins but increases user net 
utilities as shown in Figures 2 and 3 respectively for N  
parallel links competing for demand generated by the same 
users [8]-[9].   

Fig. 2.  Provider profit vs. number of competing providers N  

  

 

Fig. 3.  User net utility vs. number of competing providers N  

 
One may expect that in the limit of perfect competition 

with a large number of providers competing for the same users 
the competitive equilibria will approach a social optima which 
maximizes the aggregate user utility  

                        ),,(max
),,(
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subject to provider profitability 
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Note that for bandwidth cost function (3) constraints (20) take 
the following form: 
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It is easy to see that due to the assumed concavity of the 
communication bandwidth costs nNkNncnk \,);( ∈∈φ , 

at a social optimum (18)-(20) no more than one link nkll =  
connects node Nn ∈ to node nNk \∈ .  This observation 
allows us to assume in (18)-(20) that at most one link nkll =  
connects a node Nn ∈ to a node nNk \∈ .  However, it 
poses a fundamental question since the social optimization 
(18)-(20) views system performance from the user perspective, 
assuming that providers only recover their expenses without 
making any profit, and this may occur only close to perfect 
competition with a large number of providers competing for 
demand generated by the same users [6].  The rest of this 
Subsection qualitatively demonstrates that low barriers to 
entering the market are necessary for this situation to occur and 
for the optimization problem (18)-(20) to approximate the 
competitive equilibria. 

Consider N  providers competing for the same demand 
generated by a user with utility function xwxu log)( =  
disregarding network security )0( =η .  Each provider 
charges the user a competitive price xpN  for bandwidth x , 
while the provider’s own expense for supplying this bandwidth 
is bxa + .  Since the user’s individual optimization results in 
demand Npwx =  equally divided among all N  providers, 

the provider profitability condition NxbaNxpN +>  

takes the form )1)(( NpbawN −< .  Since bpN ↑  as 

∞↑N  (see [9]), the profitability condition imposes an upper 
bound on the number of competing providers *NN < .  
Optimization problem (18)-(20) implies a large number of 
providers *N  driving provider profit down to zero, and it is 
easy to see that in our simple case this can occur only if the 
barrier for a provider to enter the market a  is much less than 
user willingness to pay w : wa << .  It can be shown that this 
qualitative conclusion holds for general topology networks. 
 

IV. INFRASTRUCTURE MODELS 

Given set of network nodes N , we characterize 
network infrastructure by a binary vector 

)\,),,(:( nNkNnknll ∈∈== δδ , where 1=nkδ  if 

directed link nkll =  from node n  to node k  exists and 

0=nkδ  otherwise.  This Section proposes equilibrium and 
evolutionary models for )(tδδ =  under assumptions that 
“almost perfect” competition keeps the network infrastructure 
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close to socially optimal.  The proposed models are based on 
the underlying economic model of user/provider interactions. 
Subsection A introduces infrastructure social utility )(* δW , 
which is the result of maximization of the social welfare over 
bandwidth demand/supply for a given vector δ .  Subsection B 
suggests an entropy-based equilibrium model for vector δ  
with )(* δW  playing the role of the negative energy.  
Subsection C suggests an approximation of infrastructure 
evolution by a time-reversible Markov process )(tδδ =  used 
in physics to describe evolution of interacting spins.   
 
A. Infrastructure Utility 

Optimization problem (18)-(20) is non-convex due to the 
assumed concavity of the communication bandwidth cost 
functions nNkNncnk \,);( ∈∈φ .  It is known that this 
non-convexity leads to multiple local maxima of the aggregate 
utility (19).  However, given the vector ))(()( xx lδδ = , 
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xif
x rlr
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0

01
)( :δ ,                               (22) 

describing network infrastructure, the aggregate utility 
maximization (18)-(20) typically becomes a convex 
optimization problem.  The corresponding maximal aggregate 
utility is a function of vector δδ =)(x :  )(* δΣU  assuming 
that infrastructure δδ =)(x  can support provider 

profitability (20).  It is natural to interpret )(* δΣU  as the social 
utility of infrastructure δ .  Of course actual evaluation of 

)(* δΣU  is computationally infeasible, and in the rest of this 
subsection we briefly discuss some approximations. 
 Consider the Lagrangian of the optimization problem 
(18)-(20) 
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where ),( qpMM γγ =  are the Lagrange multipliers solving 

the corresponding dual problem.  Let )(* δW  be the 
maximum of function (23) over ),,( xqp  for a given vector 
δ .  Due to non-convexity, solutions to the primal (18)-(20) 
and the corresponding dual problems may differ, and thus 

constWU ≠−Σ )()( ** δδ  (utilities are defined up to additive 

constant). Nevertheless, the function )(* δW  can be viewed as 
an approximation of the infrastructure utility.  The 
computational advantage of the function )(* δW  over 

)(* δΣU  is that to evaluate )(* δW  one has to solve only one 
optimization problem rather than solve an optimization 
problem for each vector δ  to evaluate function )(* δΣU . 
 In a case of low barriers to entering the market, further 
simplification is possible since (23) can be approximated by 
the difference between the aggregate user utility (18) and 

aggregate provider expenses: 
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In a case of bandwidth cost function (3) social welfare (24) 
takes the following form: 
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where the set of available routes from node Nn ∈  to node 
nNk \∈   conditioned on infrastructure δ  is 
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Define the social utility of infrastructure δ  to be the 
maximum value of social welfare (20) achievable for this 
infrastructure:  

                 ),,(max)(
,

* xqWW
xq

δδ =                                (27) 

Infrastructure utility (25) can be evaluated effectively and even 
explicitly under realistic assumptions.  Due to limited space we 
only note that in a case of network security insensitive users 

)0( =nkη  with utilities xwxu nknk log)( =  the 
infrastructure utility (25) is 
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where user ),( kn  optimal route is  

                 ∑
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=
rl

lRrnk br
nk )(

* minarg)(
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B.  Equilibrium Infrastructure 

We model unavoidable uncertainties present in large 
networks by assuming that vector δ  is a binary random 
variable with some probability distribution )(δΩ  and entropy 

               ∑ ΩΩ−=
δ

δδ )](log[)(H                              (30) 
Social optimization either maximizes the infrastructure 
expected social utility  
                   ∑ Ω=

δ
δδ )()(** WW                                  (31) 

subject to low bound on entropy (30) or, equivalently, 
maximizes entropy (30) subject to low bound on the expected 
infrastructure utility (31). 
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Solution to these dual optimization problems is 

                       )(1* *

)( δβδ WeZ −=Ω                                    (32) 
where the parameter 0>β  is determined by the 
corresponding optimization constraint and Z  is the 
normalization constant.  As uncertainty decreases: 0→H  or 
equivalently ∞→β , the distribution (32) recovers the 
optimal network infrastructure.  Similar to approach [2] we 
define an equilibrium graph distribution by the entropy 
maximization procedure.  The difference is that in our case the 
graph energy )()( * δδ WE −=  is derived from user/provider 
microeconomics.  This opens a possibility of exploring the 
effect of microeconomics, including network security 
considerations, on the network infrastructure emergence. 
 
C.  Infrastructure Emergence 

We assume that competitive pressures may result in 
elimination of some network elements 

)0()1(: =→= lll δδ  due to un-profitability and/or adding 

some network elements )1()0(: =→= lll δδ  due to 

potential profit.  Let vector lδ  be the result of flipping 
component l

ll δδδ −→1:  in vector δ , i.e., infrastructure 

described by vector lδ contains (does not contain) link l  if the 
infrastructure described by vector δ  does not contain 
(contains) link l .  Otherwise vectors lδ  and δ  are identical.   

Viewing vector )( lδδ =  as a system of interacting 

spins with energy )()( * δδ WE −= , we model infrastructure 
evolution by a Markov process ))(()( tt lδδ = ,  with 

continuous time ),0[ ∞∈t  and transitions lδδ →  with 

rates )](exp[),( * δδμ Wl lΔ= , where the infrastructure 
utility change due to this transition is  

)()()( *** δδδ WWW l
l −=Δ  [16].  Process )(tδ  is time 

reversible and satisfies conditions of detailed balance.  This 
Markov evolutionary model is consistent with the entropy-
based equilibrium model (32) since the process )(tδ  
distribution converges to distribution (32) as ∞→t .  
Moreover, process )(tδ ’s relative entropy 

∑ ΩΩΩ
δ

δδδ ])(),(log[),( *tt , where 

})(Pr{),( δδδ ==Ω tt , monotonously decreases with time.  
 Process )(tδ , which describes infrastructure drift 
towards infrastructure utility increase perturbed by random 
fluctuations, can provide a foundation for phenomenological 
models of network growth.  Connecting a new node n  to the 
network can be viewed as creating link l  from node n  to 
some already connected to the network node Nk ∈ : 

)1()0( =→= ll δδ .  The corresponding change in the 

infrastructure utility )(* δWlΔ  weights the benefit of 

connectivity to a specific node against cost of this connection.  
It can be shown that, after some simplifying assumptions, 
network growth based on infrastructure utility gain )(* δWlΔ  
takes the form of “heuristically optimized” [3]. 
 

V. CONCLUSION AND FUTURE RESEARCH 

Assuming that the network infrastructure is represented by 
the network graph and ownership, this paper suggests that 
network infrastructure modeling should be based on the 
network microeconomics.  The paper argues that 
methodologies used in transitions from statistical physics of a 
large number of interacting particles to thermodynamics of a 
small number of macro-variables may prove applicable to the 
networking domain.  The proposed approach assumes that 
“almost perfect competition” keeps the system close to social 
optimum, which maximizes the aggregate user utility subject 
to provider profitability.  Future research will be concentrated 
on demonstrating the practical validity of the proposed 
approach and extending this approach to competitive 
user/provider equilibria far from perfect competition. 
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