

Predicting Global Failure Regimes in Complex Information Systems

Chris Dabrowski, Jim Filliben and Kevin Mills June 19, 2012 NetONets 2012

Overview of Our Past & Ongoing Research – with

Ioday's Blitz Topics

application to complex information systems, e.g., Internet, Clouds, Grids

➤What is the problem?

► Why is it hard?

> Four Approaches we are investigating:

- 1. Combine Markov Models, Graph Analysis & Perturbation Analysis
- 2. Sensitivity Analysis + Correlation Analysis & Clustering
- 3. Anti-Optimization + Genetic Algorithm
- 4. Measuring Key System Properties Such as Critical Slowing Down

Past ITL Research: How can we understand the influence of distributed control algorithms on global system behavior and user experience?

ast Researc

- Mills, Filliben, Cho, Schwartz and Genin, <u>Study of Proposed</u> <u>Internet Congestion Control Mechanisms</u>, **NIST SP 500-282** (2010).
- Mills and Filliben, "Comparison of Two Dimension-Reduction Methods for Network Simulation Models", *Journal of NIST Research* 116-5, 771-783 (2011).
- Mills, Schwartz and Yuan, "How to Model a TCP/IP Network using only 20 Parameters", *Proceedings of the Winter Simulation Conference* (2010).
- Mills, Filliben, Cho and Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", *Proceedings of ASME* (2011).
- Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", *Proceedings of the 4th International Cloud Computing Conference*, IEEE (2011).
- Mills, Filliben and Dabrowski, "Comparing VM-Placement Algorithms for On-Demand Clouds", *Proceedings of IEEE CloudCom*, 91-98 (2011).

For more see: <u>http://www.nist.gov/itl/antd/emergent_behavior.cfm</u>

June 19, 2012 NetONets

http://www.nist.gov/itl/antd/Congestion_Control_Study.cfm

- Ongoing & Planned ITL Research: How can we help to increase the reliability of complex information systems?
- Research Goals: (1) develop design-time methods that system engineers can use to detect existence and causes of costly failure regimes prior to system deployment and (2) develop run-time methods that system managers can use to detect onset of costly failure regimes in deployed systems, prior to collapse.

Ongoing Research

- > **Ongoing**: investigating
 - a. Markov Chain Modeling + Cut-Set Analysis + Perturbation Analysis (MCM+CSA+PA) (e.g., Dabrowski, Hunt and Morrison, "Improving the Efficiency of Markov Chain Analysis of Complex Distributed Systems", NIST IR 7744, 2010).
 - b. Sensitivity Analysis + Correlation Analysis & Clustering
 - c. Anti-Optimization + Genetic Algorithm (AO+GA)

Planned: investigate run-time methods based on approaches that may provide early warning signals for critical transitions in large systems (e.g., Scheffer et al., "Early-warning signals for critical transitions", NATURE, 461, 53-59, 2009).

Problem: Given a complex information system (represented using a simulation model), how can one identify conditions that could cause global system behavior to degenerate, leading to costly system outages?

National Institute of Standards and Technology Why is it Hard? - Reason 1 NIST National Institute of Standards and Technology Why is it Hard? - Reason 1

nat is the Proolem

Determining causality is hard given that only global system behavior is observable. (in a complex system, global behavior cannot always be understood, even if behavior of components is completely understood)

> For example, unexpected collapse in the mitigation probability density function of job completion times in a computing grid was unexplainable without more detailed data and analysis.

Size of the search space!!

For example, the NIST *Koala* simulator of IaaS Clouds has about n = 125 parameters with average k = 6.6 values each, which leads to a model **parameter space** of ~10¹⁰⁰ (note that the visible universe has ~10⁸⁰ atoms) and the *Koala* response space ranges from m = 8 to m = 200, depending on the specific responses chosen for analysis (typically $m \approx 42$).

National Institute of Standards and Technology Cut-Set + Perturbation Analysis Netional Institut Standards and Technology

Using simulated failure scenarios in a Markov chain model to predict failures in a Cloud

Example: Markov simulation and perturbation of <u>a minimal s-t cut set</u> of a Markov chain graph:

- Corresponds to software failure scenario involving multiple faults/attacks.
- Simulation identifies threshold beyond which increased failure incidence causes drastic performance collapse

→ Verified in target system being modeled (i.e., Koala, a large-scale simulation of a Cloud)

- Sensitivity Analysis: Determine which parameters most significantly influence model behavior and what response dimensions the model exhibits. Allows reduction parameter search space and identifies model responses that must be analyzed.
- Correlation Analysis & Cluster: Determine response dimensions of a model

Sensitivity

Use 2-level, orthogonal fractional factorial (OFF) experiment design to identify the most significant parameters of your model

Use correlation analysis and clustering to identify unique behavior dimensions of your model

Analysis + CAC

Compute correlation coefficient	Response Dimension	SA1-small (9 dimensions)	SA1-large (8 dimensions)	SA2-small (10 dimensions)	SA2-large (9 dimensions
(r) for all response pairs	Cloud-wide Demand/Supply Ratio	y1, y2, y3 , y5, y6, y8, y9, y10, y13, y23, y24, y25, y29, y30, y32, y34, y36, y38	y1, y2, y3 , y5, y6, y7, y8, y9, y10, y13, y23, y34, y25, y29, y30, y32, y33, y34, y36, y38	y1, <mark>y2</mark> , y3, y5, y6, y8, y9, y10, y11, y13, y14, y15, y23, y24, y25, y38	y1, y2, y3, y5, y6, y8, y9, y23 , y24, y25, y38
Examine frequency distribution for all $ r $ to determine threshold for correlation pairs					
	Cloud-wide Resource Usage	y10, y11, y12, y13, y14, y15	y10, y11, y12, y13, y14, y15	y10 , y11, y12, y13, y14, y15	y10 , y11, y12, y13, y14, y15
to retain; r > 0.65, here Create clusters of mutually correlated pairs; each cluster represents one dimension Select one response from each cluster to represent the dimension; we selected response with largest mean correlation that was not in another cluster*	Variance in Cluster Load	y16, y17, y18, y19,y20, y21, y26 , y27	y16, y17, y18, y19,y20, y21, y26 , y27	y16, y18, y19, y20, y21, y26, v27	y16, y17, y18, y19,y20, y21 y26, y27
				y17 (Mem. Util)	
	Mix of VM Types	<i>y34, <mark>y35</mark> (</i> WS)	y31 (MS)	y12, y14, y15, y30, y31, y33,	y14, y15, y30 y31 , y33, y34, y35
		y31 (Ms)		y34, y35, y36	y15, y36 (DS
	Number of VMs	y29. y37	y37	y 29, y 37	y29
	User Arrival Rate	y4	y4	y4	y4 . y37
	Reallocation Rate	y7 , y22	у7. у22	y7 (cluster) y22 (node)	у7. <mark>У22</mark>
	Variance in Choice of Cluster	y28	y28	y28	y28

See: Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", *Proceedings of the 4th International Cloud Computing Conference*, IEEE (2011).

MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Principal Components Analysis, Clustering, ...

GENETIC ALGORITHM

Growing Collection of Tuples:

Standards and Technol

Genetic Algorithm

{Generation, Individual, Fitness, Parameter 1 value,....Parameter N value} (Generation, Individual, Fitness, Parameter 1 value,...,Parameter N value) {Generation, Individual, Fitness, Parameter 1 value,....Parameter N value} {Generation, Individual, Fitness, Parameter 1 value,...,Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value, Parameter N value}

owing Down

Suggestions? Ideas?

Question

Contact information about studying Complex Information Systems: {<u>cdabrowski</u>, <u>jfilliben</u>, <u>kmills@nist.gov</u>}

Contact information about Information Visualization: <u>sressler@nist.gov</u>

For more information see: http://www.nist.gov/itl/antd/emergent_behavior.cfmand/orhttp://www.nist.gov/itl/antd/emergent_behavior.cfm