The National Fire Research Laboratory and Recent Results Supporting Smokestack Emissions Measurements

Rodney Bryant, Matt Bundy, Greg Fiola*

National Institute of Standards and Technology Fire Research Division Summer Undergraduate Research Fellow, Univ. MD*

Workshop on Improving Measurement for Smokestack Emissions

NIST
Gaithersburg, Maryland
28-29 June 2017

Preview

- Objective: To demonstrate ±1.0% measurement uncertainty for CO₂ emissions and generate best practice documents as guides for the industry to follow.
- NFRL and power plants have similar measurement capabilities and therefore similar measurement challenges.
- NFRL improvements
 - Improved flow measurements
 - Implemented independent confirmation measurements
 - Exhaust Flow Averaging Pitot Tube (Annubar) vs TGDM
 - CO₂ emissions Burner (Fuel Calculation) vs Exhaust
 - Increased sustained fire capacity from 2 MW to 20 MW
- Demo confirmation measurements, Burner vs Exhaust
 - Heat release
 - CO₂ emissions

Heat released by a fire is the primary measurement capability of the NFRL. Heat release is measured by oxygen consumption calorimetry.

- Heat release
- Flame and fire spread
- Smoke movement and toxicity
- Early detection and abatement

- Support fire model validation studies
- Enable fire investigations
- Support post disaster and failure studies
- Enable advances in fire measurements, standards, and codes

Power plants and the NFRL have a shared problem: accurate characterization of flow and concentration for an industrial scale flue gas.

 $\dot{m}_i = \dot{m}_{exh} \Delta X_i MW_i / MWexh$

 $HRR = (\dot{m}_{exh}\Delta X_{O2} MW_{O2}MWex_h)\Delta H_C$

Uncertainty due to flow measurement is a major contributor to the overall uncertainty of heat release and emissions measurement.

Around 2003, a detailed audit of measurement uncertainty for heat release was conducted.

Flow: std unc = $\pm 5\%$; contribution $\leq 90\%$

Bi-Directional Probe

Major modifications to the facility's exhaust flow measurement between 2003 and 2010 resulted in reduced measurement uncertainty.

- Replaced the bi-directional probes with an averaging pitot tube (Annubar).
- Performed detailed flow characterization with flow RATAs; ±0.7% ≤ std unc ≤ ±1.3%

Lessons learned from past results have been applied to further the improvements of NFRL's exhaust flow measurements.

Installed two Annubars in each exhaust duct, offset by 90°.

Additional measurement provides redundancy and reduces measurement uncertainty.

For the flow path considered here, the average difference between the two Annubar measurements is 4.8%.

Lessons learned from past results continue to be applied to further the improvements of NFRL's exhaust flow measurements.

Completed a series of experiments to compare the routine flow measurement (Annubar) to flow measured using the Tracer Gas Dilution Method

- Verified uniform mixing of the tracer
- Demonstrated ±(1.0% 3.0%) repeatability for TGDM
- Methods agree to within preliminary uncertainty estimates, ±(3.0% -4.0%)

NFRL has the capability to confirm CO₂ emissions with mass balance experiments.

- Micro gas chromatograph for natural gas analysis provides real-time fuel composition measurements
- Demonstrated good agreement with NG carbon fraction, X_c, from local gas supplier
- Real-time measurements improve accuracy; 2.0% shift in X_c , observed in 24 hr period

Improved flow measurements have resulted in better agreement between the natural gas burner and the exhaust measurements of heat release and CO₂ mass flow.

2003: $\pm 10\% \le Std Dev \le \pm 20\%$

2010: Std Dev ≤ ±7%

Summary

- NFRL and power plants have similar measurement challenges: accurate characterization of gas flow and gas concentration.
- Improvements in NFRL's flow measurement have resulted in better agreement for energy (heat release) and mass (CO₂ mass flow) balance experiments – demonstrating the benefits of improved flow measurements.
- NFRL's energy and mass balance examples demonstrate the use of independent measurement confirmation for quality control.

Questions?

