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Engineering System - Cost

• Commitment during Conceptual/Embodiment Design
– Economic factors

• Capital cost
– Optimal configuration

– Materials

– ...

• Life cycle cost
– Operation

» Performance

» Uptime

» Job/mission completion

– Maintenance & Repair

» Scheduled

» Unscheduled

– Inventory reduction

– Defect and rework

– Safety
• Impairment of critical functions

• Want: Resilient System
– Consider various cost elements

• Downtime (loss of revenue)

• Cost of mitigation

• Level of restoration / partial loss of function (reduced throughput/efficiency of operations

• Ability to foresee/predict and prevent failure (cost of scheduled maintenance/ avoided cost of 
downtime)
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Resilience Quantification

• Downtime

– Loss of revenue

– Loss of capability

• Cost of mitigation

• Level of restoration / partial loss of function

– Reduced throughput/efficiency of operations

• Ability to foresee/predict and prevent failure

– Cost of scheduled maintenance/ avoided cost of 

downtime

Image credit: http://www.fabricatingandmetalworking.com
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Engineering Design

• Complex engineered system (CES): a system 
composed of densely interrelated subsystems 
– tasked with performing one or more high level functions. 

• Design Stages
– Define requirements

– Conceptual design
• Establish function structures

• Search for solution principles

• Evaluate against technical and economic criteria

– Embodiment Design
• Preliminary layout and form design

• Select best preliminary layout

• Refine against techcal and economic criteria

• Optimize and complete form design

• Prepare parts list and production documents

– Detail Design
• Detail drawings etc.

Image credit: festo.com
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Fault Impact Considered
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Example Action to Mitigate Faults

Let it Fail

Fix when Broken

Redundancy

Fault Masking

Fault Tolerance

Modularity

Predictive Maintenance

Controls Adaptation

Dynamic Replanning

Self-Healing

More PHM

Less PHM
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Assess Impact of Failure and Recovery

Evaluate system level cross connections 

Determine fault propagation

Assess redundancies/flexibility

Aggregate elements with different units

• Simulation
– Measure resilience properties

• For components with different a priori reliability
– Determine impact of disruption

– Determine effectiveness of recovery

• Model
– Rule-based

• Explicit knowledge about failure propagation.

• Simulation Framework
– Monte Carlo

• Consider probability of occurence

Image credit: scs.org
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Some Resilience Metrics

• Quantify/ measure impact of fault:
– Time and magnitude of disruption and level of capability restoration

• Example metrics
– Ratio of time in resilient operation: 

𝑝𝑟 𝑇, 𝑝𝑖 = 𝑙𝑖𝑚
𝑁→∞

(𝑁𝑟/𝑁)

– Resilient operating time:

ҧ𝑟 𝑇, 𝑝𝑖 =
𝑝𝑟 𝑇, 𝑝𝑖

𝑁𝑟
σ𝑘=1
𝑁𝑟 𝑟𝑘 𝑘 | 𝑡𝑘 = 𝑇, 0 < 𝑟𝑘 ≤ 𝑡𝑘

– Time until failure

ҧ𝑓 𝑇, 𝑝𝑖 =
1

𝑁𝑓
σ
𝑘=1

𝑁𝑓
𝑡𝑘 𝑘 | 𝑡𝑘 < 𝑇, 𝑟𝑘 ≤ 𝑡𝑘

– Ratio of time in failed operation: 

𝑝𝑓 𝑇, 𝑝𝑖 = 𝑙𝑖𝑚
𝑁→∞

(𝑁𝑓/𝑁)

– Average operating time:

ҧ𝑡 𝑇, 𝑝𝑖 = 𝑝𝑓 ҧ𝑓 + 1 − 𝑝𝑓 𝑇

– Normalized resilient index:

𝜌 𝑇, 𝑝𝑖 = ҧ𝑡 𝑇, {𝑝𝑖} /𝑇
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Simulation Setup

9 /42

• Initiate lifetime 𝑇.

• Non-failed component 𝑖 is randomly assigned as 
candidate subject to failure.
– 𝑖 has a known probability 𝑝𝑖 to work properly. 

• At any time t a failure probability 𝑝𝑏(𝑡) is 
considered
– If 𝑝𝑏(𝑡) ≤ 𝑝𝑖, component 𝑖 does not fail

• a new candidate to failure is randomly chosen. 

– If 𝑝𝑏(𝑡) > 𝑝𝑖, component 𝑖 fails 
• determine whether this failure propagates to component 𝑗.

• If it does, check whether failure in 𝑗 propagates to component 
𝑘 and so on, until failure propagation eventually stops. 
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Simulation Setup contd.

10 /42

• Run simulation 𝑁 times to time 𝑇
– 𝑝𝑖 attributed to the respective component 𝑖. 

– The set of 𝑝𝑖 attributed to respective component 𝑖 is denoted {𝑝𝑖}.

• Ideal failure propagation mechanism assures a “fair game”

– makes sure that the CES differ only in their configuration:

a. all CES have the same {𝑝𝑖}; 

b. {𝑝𝑖} is constant and time-independent;

c. a failure in a component is instantaneously propagated to any other 

component connected to the failed component, regardless of the nature 

of the connection;

d. a failure in a component propagates to any other component connected 

to the failed component with a constant, time-independent probability 

equal to 1;

e. no partial failure of any component is admitted;

f. no repair action is taken.
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Example: Power Cogeneration Plant

• Generates electric power and heat at the same time

• It has the following elements:

– Generator (G) coupled to a reciprocating internal combustion engine (E) or 

gas turbine (GT). 

– Heat from engine exhaust gases are rejected to the environment, as long as 

heat from jacket water is recovered in a heat exchanger (HEX)… 

– …in order to provide hot water to a single effect absorption chiller (HWAC) 

which should meet the chilled water demand. 

– Radiator (R) allows the engine to operate when HWAC is out of service. 

Image credit: Madison Gas&Electric

– Mechanical-driven chiller (MDC) can be used 

either for backup or supplement purposes. 

– Cooling tower (CT) rejects heat from condenser 

of both chillers 

– Heat from turbine exhaust gases is recovered 

in a heat recovery steam generator (HRSG) in 

order to provide steam to a double effect 

absorption chiller (SAC), which should meet the 

chilled water demand. 
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Cogeneration Plant Design Variations

/42

C#1

C#2

C#3

C#4
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Specific Fault Assumptions

• Permanence

– Once fault is present, it will stay

• Can only evaluate some resilience properties

• But sufficient for illustrative purposes

• Magnitude

– Fault is either present or not

• No partial fault in this version

• Two Fault Probabiliy scenarios considered

– Are all the same
• pi = 0.9995 for all components.

– Are different
• pi = 0.9985 for pumps; 

• pi = 0.9990 for heat exchangers;

• pi = 0.9995 for all other components.

Image credit: Wikipedia.org
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Results

14 /42

Case Resilience metric
Most 
resilient

→ →
Least 
resilient

Equal pi

T = 8760 h
N = 3000

Average resilient time (h) C#2 (4245.7) C#4 (3658.5) C#1 (3187.5) C#3 (2889.5)

Average time until failure (h) C#2 (5197.6) C#4 (5116.0) C#1 (5056.7) C#3 (4848.6)

Average operating time (h) C#2 (7592.7) C#4 (7252.6) C#1 (7051.6) C#3 (6703.9)

Prob. of resilient operation C#2 (0.654) C#4 (0.568) C#1 (0.516) C#3 (0.456)

Prob. of failing C#2 (0.328) C#4 (0.414) C#1 (0.461) C#3 (0.526)

Normalized resilience index C#2 (0.867) C#4 (0.828) C#1 (0.805) C#3 (0.765)

Different pi

T = 8760 h
N = 3000

Average resilient time (h) C#2 (4082.1) C#4 (3658.5) C#1 (2985.3) C#3 (2919.7)

Average time until failure (h) C#2 (5449.0) C#4 (5334.0) C#1 (5113.0) C#3 (4913.0)

Average operating time (h) C#2 (4832.6) C#4 (4476.4) C#1 (3559.5) C#3 (3542.0)

Prob. of resilient operation C#2 (0.550) C#4 (0.508) C#1 (0.406) C#3 (0.404)

Prob. of failing C#2 (0.448) C#4 (0.489) C#1 (0.594) C#3 (0.596)

Normalized resilience index C#2 (0.552) C#4 (0.511) C#1 (0.406) C#3 (0.404)
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More Results

15 /42

Case C# Res. index

Equal pi

T = 8760 h
N = 3000

2 0.867

4 0.828

1 0.805

3 0.765

Different pi

T = 8760 h
N = 3000

2 0.831

4 0.809

1 0.753

3 0.738

ҧf/T ≲ ρ ≤ 1

Resilience index comparison.

C#3 is the least affected by components with low pi: resilient index decreased 2.32%.

C#1 is the most affected by components with low pi: resilient index decreased 6.48%. 
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Conclusions

16 /42

• For optimally resilient systems

– Embrace PHM as an active element within design of systems

– Assess performance during conceptual design to best 

understand impact of PHM

• Proposed framework 

– allows early assessment of resilience 

– Resilience is a property of the system configuration.

• Framework agnostic of particular design

– Potential to be used with any CES.

• Ability to provide failure rationale can provide insight to 

design team.

– Redundancy is not always the best alternative to increase 

resilience.

• Can also use approach to assess retrofit solutions
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Thank You !

Questions!
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More Stuff

• Book

– Prognostics: The Science of Prediction

Goebel et al.

• Prognostic Data Repository

– Run-to-failure data

• Bearings, batteries, composite structures, jet engines, milling 

machine, 

– Find the data at: prognostics.nasa.gov


