Phase Field Crystal Simulations of Nanostructure Formation

Kuo-An Wu and Peter W. Voorhees Department of Materials Science and Engineering Northwestern University, Evanston IL

Outline

Nanostructure growth processes
Phase field crystal model
Quantum dot formation on surfaces
Nanowire growth
Conclusions

Semiconductor Nanowires

- Single crystal, nanoscale diameters, micron lengths
- Unique properties by virtue of aspect ratio

Nanowire Growth Vapor-Liquid-Solid Mechanism

Vapor Liquid

Solid

R. S. Wagner and W. C. Ellis, *Appl. Phys. Lett.* **4**, 89 (1964).

Martenson et al, Nano letters 4, 669 (2004)

Ross and Hannon

5 nm Wu et al, Nanoletters, 2004

Heteroepitaxial Si_{0.82}Ge_{0.18}/Si films

(b)

AFM images for 100Å thick Si_{0.82}Ge_{0.18}/Si films annealed at 850°C. (no misfit dislocation) Ozkan et al., Appl. Phys. Lett., 1997

$$F[\phi, \nabla \phi] = \int \left(f(\phi - k_o^2 |\nabla \phi|^2 + |\nabla \phi|^4) dV \right)$$

Swift- Hohenberg Free Energy
$$F[\phi, \nabla \phi] = \int \left\{ \frac{\phi}{2} \left[a + \lambda \left(\nabla^2 + k_o^2 \right) \right] \phi + \frac{g}{4} \phi^4 \right\} dV$$

Phase Field
(Amplitude equations)
Phase Field Crystal
$$\phi(\vec{r}) = \overline{\phi}(\vec{r}) + \sum_{|k|=k_0} A_{\vec{k}}(\vec{r}) e^{i\vec{k} \cdot \vec{r}}$$

Swift-Hohenberg Free Energy

$$F[\phi, \nabla \phi] = \int \left\{ \frac{\phi}{2} \left[a + \lambda \left(\nabla^2 + k_o^2 \right) \right] \phi + \frac{g}{4} \phi^4 \right\} dV$$

+ Conservation gives the following ground-state patterns:

PFC Free Energy Functional

 $F = \int d\vec{r} \left\{ \frac{\phi}{2} [a + \lambda (\nabla^2 + q_o^2)^2] \phi + \frac{g}{4} \phi^4 \right\}$

Dimensionless units

 $\epsilon = -\frac{a}{\lambda q_o^4}$ $q_o \vec{r} \to \vec{r}$

 ψ

Dimensionless Form

$$\mathcal{F} = \int d\vec{r} \left\{ \frac{\psi}{2} \left[-\epsilon + (\nabla^2 + 1)^2 \right] \psi + \frac{1}{4} \psi^4 \right\} \qquad \qquad \sqrt{\frac{g}{\lambda q_o^4}} \phi \to$$

Equation of Motion

$$\frac{g}{\lambda^2 q_o^5} F \to \mathcal{F}$$

$$\frac{\partial \psi}{\partial t} = \nabla \cdot \nabla \frac{\delta \mathcal{F}}{\delta \psi} = \nabla \cdot \nabla \left\{ [-\epsilon + (\nabla^2 + 1)^2] \psi + \psi^3 \right\}$$

Question : Is the phase field crystal model a physical model?

Connection to density functional theory

From Ramakrishnan and Youssoff, expanding around a liquid of uniform density relative to an ideal gas:

$$\frac{F}{k_B T \rho_o} = \int d\mathbf{r} \left[(1+n(\mathbf{r})) \ln (1+n(\mathbf{r})) - n(\mathbf{r}) \right] - \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' n(\mathbf{r}) C \left(|\mathbf{r} - \mathbf{r}'| \right) n(\mathbf{r}')$$
where $n(\mathbf{r}) = (\rho(\mathbf{r}) - \rho_o) / \rho_o$

$$C''(K_o) = S''(K_o) / S(K_o)^2$$

$$\int \int d\mathbf{r} \left\{ \frac{\psi}{2} \left[-\epsilon + (\nabla^2 + 1)^2 \right] \psi + \frac{1}{4} \psi^4 \right\}$$

$$\epsilon = \frac{8}{(1-3\psi_c^2) K_o^2 S(K_o) C''(K_o)}$$

By expanding the structure function of Fe to eighth order, BCC crystal:

Results agree well with MD simulations using Finnis-Sinclair potential

A. Jaatinen C. V. Achim, K. R. Elder, T. Ala-Nissila

Stress Induced Instability – Asaro-Tiller-Grinfeld Instability

Growth Rate vs. Wavenumber: Solid-Liquid

 $\hat{h} \sim \exp\left(\sigma t\right)$

Critical Wavenumber vs Strain

See also Huang and Elder, PRL 2008

Quantitative Comparison of Strain Fields

(cf. Stefanovic, Haataja and Provatas, PRL, 2006)

Strain Field as a Function of Time

Elastic field completely relaxed on the time scale of interface evolution

Finite Interface Thickness and Nonlinear Elasticity

Heteroepitaxial Si_{0.82}Ge_{0.18}/Si films

(b)

AFM images for 100Å thick Si_{0.82}Ge_{0.18}/Si films annealed at 850°C. (no misfit dislocation) Ozkan et al., Appl. Phys. Lett., 1997

Conclusions

• Stress driven instability:

- Phase field crystal method can be used for quantitative simulations: critical wavelength
- Captures the effects of a finite interface thickness and nonlinear elasticity associated with the large strains in semiconductor systems
- Critical wave number can be linearly related to strain, as observed experimentally
- Solid-vapor PFC model has been developed:
 - Density oscillations at a liquid-vapor interface
 - Definable step energy
 - Facet formation during nanowire growth
 - Importance of the solid-vapor-liquid triple line