Approaches to Provide Assurance for Biological Measurements

Nancy J. Lin, Joy Dunkers January 15, 2020

Workshop on Ultraviolet Disinfection Technologies & Healthcare Associated Infections: Defining Standards and Metrology Needs

Nancy J. Lin Leader, Biomaterials Group Biosystems and Biomaterials Division

MATERIAL MEASUREMENT LABORATORY

Lack of Confidence in Biomedical Research

7 January 2019

The nature of the biological material and the irreproducibility problem in biomedical research

George V Papamokos 💿 🔛

Author Information

EMBO J (2019) 38: e101011 | https://doi.org/10.15252/embj.2018101011

PLOS BIOLOGY

How measurement science can improve confidence in research results

Anne L. Plant¹*, Chandler A. Becker¹, Robert J. Hanisch¹, Ronald F. Boisvert², Antonio M. Possolo², John T. Elliott¹

1 Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America, 2 Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004299 April 23, 2018

1 Freedman et al. "The Economics of Reproducibility in Preclinical Research," 2015, PLoS Biol 13(6): e1002165.

Standards

Documentary standards

Standard reference materials

Standard reference data

Standard reference instruments

MATERIAL MEASUREMENT LABORATORY

Measurement Assurance

- Provides a known level of confidence to inform decision making
- · Is based on supporting data and metadata to provide credibility
- Leads to accelerated technology development and translation

Microbial Metrology

Developing measurement science, technology, and standards to increase confidence in measurements of microbes and their complex communities and to promote responsible biotechnology innovations

> Planktonic cells Microbiome Communities Biofilms

Candidate RM 8230: Living Cells Characterized for Total Cell Count and CFUs

Saccharomyces cerevisiae NE095

Measurand	# per vial x 10 ⁷
Total cells (Coulter)	3.81 ± 0.51 (13.3 %)
CFUs (Plating)	0.095 ± 0.018 (18.9 %)

Homogeneous, Stable, Fit for Purpose

"Ground	truth"	material	to
Ground		material	

- assess accuracy of total cell count methods
- enable comparison of methods
- evaluate efficiency of antimicrobial approaches
- increase confidence in results

Sandra Da Silva

6

Antimicrobial testing Probiotics Live biotherapeutic products Food contamination NGS pathogen detection Biothreat detection

Check Assumptions When Possible

CFUs for Biofilms

2

Diameter (µm)

10

0

MATERIAL MEASUREMENT LABORATORY