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for prediction of strain localisation in an
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We fit a two-parameter Weibull regression model by maximum likelihood estimation (MLE) to

filtered surface roughness data. These data were acquired with scanning confocal laser

microscopy performed on aluminium alloy AA 5754-O surfaces that were subjected to a range of

plastic strain intensities in three different in-plane strain modes. Noting that one of the two Weibull

regression parameters is, to a good approximation, invariant with strain intensity for a given strain

mode, the authors find that the variation of the second parameter with strain intensity conforms to

a simple quadratic function. These functions may then be used to generate accurate, statistically

significant, single parameter predictors of both strain intensity and strain mode up to and

including the onset of critical strain localisation and/or failure.
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Introduction
The need to reduce gross vehicle weight and improve fuel
economy has escalated the demand for new lightweight
materials such as aluminium alloys, magnesium alloys and
advanced high strength steel throughout the transportation
industry. However, the available property data and
constitutive laws for these new materials are often limited
or inadequate for use in the numerical models that are used
to predict the behaviour during sheet metal forming. The
ensuing inability to reliably model the mechanical beha-
viour creates significant obstacles that impede widespread
incorporation of new alloys. Inaccurate prediction of the
manner in which surface inhomogeneities evolve during
sheet metal forming is a prime example of the problem. In
addition to creating a surface that is cosmetically un-
acceptable, surface inhomogeneities have profoundly
detrimental effects on the formability of the metal sheet.
Specifically, they generate unpredictable variability in the
friction between the metal sheet and the die surfaces during
stretch forming, and they promote strain localisation, both
of which lead to unexpected failures in the sheet metal
component.25 For this reason, the character of the de-
formed surface can essentially determine whether an alloy is
suitable for a particular application.

During sheet metal forming, macroscopic deformation
occurs through a complex combination of strain modes (e.g.
biaxial, uniaxial and plane strain). Since each strain mode
imposes specific constraints on the material flow during

stretch forming, each mode imparts distinctly different
surface morphologies for the same overall level of plastic
strain.23 Thus, it is essential that the deformation produced
by each component of the macroscopic strain be properly
identified and accurately characterised. Such characterisa-
tions tend to be expensive and complicated processes that
require numerous high resolution measurements of the
deformation under each strain mode.13 Despite all of the
many improvements in the numerical models currently
adopted by the US automotive industry to predict the
evolution of the deformed surface,1,6–8,15,19,21,27 inconsisten-
cies still exist between the results predicted by these models
and what is observed experimentally. This creates a
situation where a numerical model that predicts the material
behaviour during forming may correctly indicate the overall
trends of the deformation, but fails to reliably predict the
actual magnitudes of the strain at which critical localisation
(failure) occurs.9

It was recently noted23 that a two-parameter Weibull
probability distribution, in which a is the scale para-
meter and b is the shape parameter, provides good
overall fits to filtered surface roughness data. These
roughness data were acquired from the surfaces of
aluminium alloy AA 5754-O specimens that were sub-
jected to a range of plastic strain intensities in three
different in-plane strain modes. The authors refer to this
data as filtered because they analysed raw topographic
data with a technique that extends the profile based peak
to valley surface roughness parameter Rt to a matrix
form. This process generated sets of local intensity maps
composed of coarse grained (n6n) arrays of Rt ‘cells’
that were constructed from the raw topographic data.

The maximum height of a profile, Rt, is defined in the
surface roughness literature as the vertical distance
between the highest and the lowest points within a
profile of any given length3
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Rt~RpzRv (1)

In this equation, Rp is the vertical distance between the
highest point of the profile and the mean line, and Rv is
the vertical distance between the lowest point of the
profile and the mean line within the same evaluation
length. Note that the data located below the mean line of
the profile are traditionally given a negative sign, so by
this convention, all of the Rt values are positive.

The Rt parameter demonstrates several attractive proper-
ties that make it ideal to characterise the surface conditions
that promote critical strain localisation, and to quantify the
relative magnitudes of those surface conditions:

(i) it is highly sensitive to local changes in surface
height

(ii) it is based on a straightforward calculation

(iii) the data over which Rt is determined can range
from a short profile segment to the entire
profile. Consequently, the Rt parameter can
track the changes in the surface height on a
local or on an overall basis

(iv) the magnitudes of the local surface extremes will
change with strain to the point where they
reflect the onset of critical strain localisation

(v) the Rt parameter can be easily determined
between any two points or nodes during a
numerical simulation, thereby making changes
in the local surface conditions directly integr-
able into formability models.

Mathematically, an Rt matrix is analogous to a Euclidean
distance matrix.10 Construction of an Rt matrix required
subdividing the original 512 row6512 column matrix of
height data into a 128 row6128 column array of Rt
‘cells.’ Each element in the 16 384 cell Rt matrix, Rt(i,j), is
the maximum difference for the set of 16 height values
contained within each (4 row64 column) cell. While
similar in concept to the profile form, the matrix format
preserves the spatial coordinates for each Rt(i,j) cell by
construction. Therefore, this approach enables direct
quantification of the local Rt magnitudes as well as the
specific location of that Rt value within the original
topography. That is, this technique directly links any
discernible feature in the source topography to the
corresponding change in magnitude of the local surface
height. Obviously, the level of resolution can easily be
adjusted by simply changing the dimensions of the
submatrix cells. For this reason, this process was repeated
using larger (64 element 868 cells) to evaluate the
strength of the resolution dependence in the Rt data.

An example of this construction exhibiting the relation-
ships between the original topography (Fig. 1A), the
distribution of surface heights in the topography (Fig. 1B),
the corresponding Rt map (Fig. 1C) and the distribution
of filtered surface heights (Fig. 1D) is shown as Fig. 1.
Each cell in the Rt map (Fig. 1C) is derived from the
topography (Fig. 1A) and it accentuates the height
disparities between topographical features. As such, this
approach generates a direct three-dimensional quantifica-
tion of the local intensities produced by a change in the
surface morphology. Since maps were constructed for
multiple strain levels in three different strain modes, one
can evaluate the morphological conditions that promote
critical strain localiation for each strain condition.

It was noted in Refs. 22 and 23 that the Weibull a
parameter seems to vary systematically with strain mode

and strain intensity, and that the Weibull b parameter was
essentially constant for each strain mode. For this reason,
the Weibull b parameter could possibly be regarded as a
characteristic of the AA 5754 alloy in the O condition. In
the present paper, the authors attempt to quantify these
general observations and to ascertain the extent to which
the Weibull scale parameter a can serve as a predictor of
the strain intensity up to and including the onset of cri-
tical strain localisation and/or failure. The existence of an
isomorphism (i.e. a one to one relationship) between the
strain mode, the strain intensity and a Weibull regression
scale parameter, would strongly suggest an empirical
correlation between these Rt maps and the active
deformation mechanisms for this particular alloy.

Experimental
Sets of 30630 cm (12612 in.) blanks were sheared from
commercially available 1 mm thick AA 5754-O sheet
stock for testing. This aluminium alloy was developed
primarily for automotive applications, and like most alloys
in the 5xxx series, AA 5754 is substitutionally strength-
ened, and it demonstrates good overall formability. The
literature indicates that AA 5754 typically contains
2?8 mass%Mg for solid solution strengthening, and
y0?5 mass%Mn for grain refinement and stability.4 The
grain structure was relatively equiaxed in the rolling plane
and slightly elongated along the rolling direction of the
sheet, which is indicative of the recrystallised microstruc-
ture normally associated with the O temper. The grain size
for this alloy was 40¡20 mm.5 All of the specimens used
for this evaluation were polished to a 6 mm diamond finish
using standard metallographic practice to better reveal the
surface character at low strains and to produce more
consistent surface roughness measurements.

After polishing, the blanks were deformed in three in-
plane proportional strain modes, which are traditionally
defined in terms of the ratio of in-plane principal strains:
r5e2/e1.14 The first strain mode was equibiaxial (r51).
The second strain mode was uniaxial (r520?5), and the
third was plane strain (r50). Both the equibiaxial and
plane strain deformations were imposed using an
augmented20 Marciniak flat bottom ram test.16 Samples
were strained in equibiaxial tension using a typical strain
rate of 561024 s21 to 5, 10, 15 and 20% nominal true
strain. The uniaxial samples were all machined to an
ASTM E08-91 standard sheet type tensile specimen
geometry and then strained to nominal true strain values
of 5, 10 and 15% using standard test methods2 with a
constant displacement rate resulting in an average strain
rate of 661024 s21. A third set of samples was strained to
similar true strain levels in the plane strain condition.

One sample was taken to ‘failure’ in each strain mode. In
this case, the term ‘failure’ denotes the maximum uniform
strain outside of the region where critical localisation
occurred. Note that the actual fracture event is not
included in any of the topographic measurements at the
failure strain level. For this reason, the surface roughness
data acquired from these samples are the maximum
roughness values that can be generated uniformly in the
AA 5754-O alloy by each strain mode. These data also
reflect the surface conditions that produced the failure
event. Coupons were cut from the centre of each deformed
specimen for topographic analysis.

The surfaces were quantified for each strain condition
with scanning laser confocal microscopy (SLCM). Each
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topographic measurement consisted of acquiring five
well separated SLCM images of the specimen surface
using a 610 objective lens and a nominal z-scan depth
of y40 mm. These imaging conditions generated sets of
6406512 pixel intensity images acquired with 12 bit
resolution and were consistent for all measurements.
The spacing between sampling points in the (x,y) plane
was fixed by the objective lens at 1?56 mm, and the
spacing between the individual focal planes within each
image was y100 nm. These conditions yielded nominal
physical dimensions (x,y,z) of 10006800640 mm for
each image. As described in Ref. 24, the SLCM stores
each topographic image data as a raw depth map in
tagged image file format (TIFF), which contains the

complete set of imaging parameters and binary pixel
values. A computer code utilising the format standards
within these TIFF images was developed to convert the
raw depth map into a simple numerical matrix of surface
heights. The resulting matrix was then trimmed to a
square 512 row6512 column array to facilitate the
matrix based mathematical operations. Using the afore-
mentioned x–y pixel spacing, the values in each matrix
correspond to an 8006800 mm area of the surface.

After conversion, the extreme values (defined as the
values in the height data greater than ¡6s, where s is
the standard deviation for all the heights in that matrix)
were screened from the datasets. This step was required
because some of the statistical parameters used to

A topography of AA 5754-O at maximum uniform strain condition in uniaxial strain mode; B corresponding distribution of
surface heights for each of five areas sampled in this strain condition; C Rt map constructed from topography shown in
A; D corresponding distribution of Rt values for each of five Rt maps

1 Series of figures illustrating relationships between topography, Rt maps and Weibull distribution used to evaluate and

model Rt data
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interpret the surface data are highly sensitive to outlier
data points. Any individual Rt value that exceeded the
¡6s threshold was reset to the mean value for that
particular surface. Note that the number of affected data
points for a given surface was typically less than 20 points
(or ,0?008% of the total number of data points within the
matrix). The resulting sets of residual matrices were used
as the source for all subsequent assessments of the surface
character. Note that it was essential for these images to be
well separated to ensure that the surface data contained in
each image was statistically independent (i.e. no over-
lapping image data), and that the data properly
represented the full range of surface characteristics.24

Results and discussion

Weibull regression
The authors modelled the dispersion of the Rt values
using Weibull probability distributions in which the
scale parameter is expressed as an explicit function of
the strain intensity. This model is often called a Weibull
Regression, a special case of survival regression, which is
widely used in studies of reliability. Such a model is
appropriate when one wishes to describe how the
lifetime of a mechanical part depends on one or several
attributes (either qualitative or quantitative).

The Weibull probability density pa,b is defined as

pa,b rð Þ~ b

a
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r

a

� �b{1
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r

a
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� �

(2)

for any Rt value r.0, and fixed values of the scale (a.0)
and the shape (b.0) parameters. Given a sample of Rt
values (r1, …, rm), the maximum likelihood estimates

(MLEs) of the scale and shape parameters â andb̂ (the hats
denote MLE values), maximise the product pa,b(r1), pa,b(r2),
…, pa,b(rm) of the likelihood function L with respect to the
Weibull a and b parameters for a given strain mode.17

The method of maximum likelihood is one of several
statistical methods that can be used for estimating
parameter values from empirical data. However, when it
is applicable, MLE is generally preferred over other
methods because MLEs have attractive statistical
properties. In addition, the maximum likelihood estima-
tion process also produces approximate assessments of
the parameter uncertainties. When the empirical data
are similar outcomes of independent Weibull random

variables, all with the same values of a and b, the MLEs
can be found by solving a system of two non-linear
equations, LL/La50, and LL/Lb50, where L, the
logarithm of the likelihood function, is defined as

L a,bð Þ~m log
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Alternatively, the MLEs can be found by maximising L
directly, which is what was carried out in this case, using
Nelder–Mead’s18 algorithm as implemented in function
‘optim’ of the R programming environment for statis-
tical analysis and graphics.26

The Rt values in this evaluation are not necessarily
statistically independent because the Rt values in
neighbouring cells tend to be positively correlated.
That is, if an individual cell has an Rt value larger than
the median Rt value, then it is highly likely that a
neighbouring cell will also have a similarly large Rt
value. Therefore, even though the parameter estimates
will be optimised by the MLE technique, the associated
uncertainty assessments, which are based on the
assumption of statistical independence, will tend to
underestimate the magnitude of the actual uncertainties.

The measured strain values are expressed as nominal
true strain values, as equivalent scalar modal true strain
values emodal (where modal denotes either equibiaxial,
uniaxial or plane strain and is equivalent to e11 in the
table), and as effective true strain values eeff (where the
effective strain is the magnitude of a modal strain
expressed in terms of the equivalent uniaxial strain) in
Table 1. The effective strain is typically determined from
the principal components of the modal strain tensor (i.e.
e11, e22 and e33 in Table 1 and the von Mises criterion11

eeff~
2ð Þ1=2

3
e11{e22ð Þ2z e22{e33ð Þ2z e11{e33ð Þ2

h i1=2

(4)

The authors have found that the maximum likelihood

estimate of the Weibull scale parameter â varies
markedly and systematically with strain intensity within

each strain mode. That is, while the magnitude of â is
proportional to the strain intensity, the manner in which

â varies depends on the macroscopic constant volume
constraints imposed by the individual strain modes. In
contrast, the overall magnitude of the maximum like-

lihood estimate for the Weibull shape parameter b̂

Table 1 Strain levels achieved during in-plane deformation: effective strains were calculated using von Mises criterion
(equation (4))11

Nominal true strain emodal;e11 e22 e33 eeff

Equibiaxial
0.05 0.049 0.051 20.106 0.104
0.10 0.097 0.097 20.216 0.210
0.15 0.140 0.139 20.278 0.279
0.20 0.200 0.199 20.412 0.408
0.25 0.258 0.254 20.638 0.512
Uniaxial
0.05 0.051 … … 0.051
0.10 0.116 … … 0.116
0.15 0.166 … … 0.166
0.20 0.228 … … 0.228
Plane strain
0.05 0.051 20.002 20.064 0.066
0.10 0.100 20.008 20.089 0.109
0.15 0.147 20.001 20.145 0.169
0.20 0.158 20.003 20.207 0.181
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remains essentially constant with strain intensity for a
given strain mode. However, the relative magnitudes of

the b̂ values do exhibit slight differences between the
three strain modes. Because of the relative insensitivity

of b̂ to changes in strain, and given the approximately

quadratic trend of the values of a
_

as a function of e, the
authors model these as

log að Þ~c0zc1ezc2e2 (5)

In these circumstances, the likelihood function L
becomes a function of four parameters, b, c0, c1 and
c2. The values of these parameters that maximise the
likelihood function are the maximum likelihood esti-

mates b̂, ĉ0, ĉ1 and ĉ.

Figures 2 and 3 exhibit the results of the Weibull
regression model fits to the Rt data, using the modal
strain intensity, separately for each particular strain
mode. The plots shown in Fig. 2 are derived from the set
of Rt maps produced by the 64664 cell format. Similar
plots, as shown in Fig. 3, are derived from the set of Rt
maps produced by the 1286128 cell format.

The lines in Figs. 2A and 3A exhibit how a varies with
the set of strain intensities determined from each set of
modal strain values (for the 64664 and the 1286128
cases respectively). While the a magnitudes are somewhat
greater in Fig. 2A, the patterns of the relationships are
strikingly similar to those shown in Fig. 3A. Each plot
symbol represents the value of â derived from all five
regions sampled on an individual coupon. Data were
pooled across all five regions because each topographic
sample has the same nominal strain intensity. The
uncertainty in the vertical placement of each plotted
symbol in Figs. 2A and 3A (and also in both panels of
Fig. 4) is the uncertainty of â that derives from the
dispersion of Rt values within and between regions in the
same coupon. The magnitudes of these uncertainties are
roughly comparable to the sizes of the plot symbols and
are not visible in these figures. Note that the curved lines
shown in these figures are not fitted to the points. The
lines result directly from the Weibull regression. The

points, which represent the MLEs derived for each value
of strain intensity (and strain mode) separately, are
included to emphasise that the model is not a perfect fit.
Figure 4 shows the behaviour of a as a function of the
effective true strain. Since the effective strain is an
estimate of the uniaxial strain component in each strain
mode, this figure enables a direct comparison of the a
behaviour with respect to a common strain intensity.

Each point in Figs. 2B and 3B illustrates how b varies
with the same set of modal strain intensities. The
corresponding plots for the b estimates as a function of
the effective strain are qualitatively comparable to those
shown in Figs. 2B and 3B. The superimposed thin vertical
lines shown in these plots represent the 95% confidence
intervals for b. These confidence intervals are based on
standard uncertainties derived from a simulation study
that was performed to account for the fact that the Rt
values are not statistically independent. More precisely,
the authors took the following steps to estimate the
standard uncertainty of the maximum likelihood estimate
of b for each modal strain intensity value. First, the
authors modelled the logarithms of the Rt values as a
Gaussian random field on a regular lattice (based on
either the 64664 or 1286128 maps), with Matern’s
covariance function.12 Second, the authors used the
parameters of the fitted model to simulate 1000 realisa-
tions of arrays of Rt values, to which the authors fitted
the Weibull probability distributions described above.
Third, the authors computed the standard deviation of
the resulting b̂ values. This approach provides a more
conservative and accurate assessment of the true uncer-
tainties in the b parameter estimates. The results revealed
that the standard deviations of the b̂ values produced by
the simulation are approximately twice as large as the
standard deviations that were based on the assumption
that the Rt values are statistically independent.

When the confidence intervals of all the b values
within a particular strain mode are projected onto the
vertical axis in either Fig. 2B or Fig. 3B, an overlap
between two or more intervals indicates that the values
of b corresponding to those strain intensities are

A Weibull scale parameter a as function of modal true strain; B Weibull shape parameter b as function of modal true
strain

2 Magnitudes of Weibull parameters estimates calculated for set of Rt values based on 64664 maps

Hubbard et al. Topographic analysis for prediction of strain localisation

1210 Materials Science and Technology 2011 VOL 27 NO 7



statistically indistinguishable. Even when the b values do
not overlap (i.e. they are significantly different statisti-
cally), the relative magnitude of the differences between
these b values is quite small with respect to the
magnitude of the changes in the a values for the same
strain intensities. For this reason, the variability in the b
values is of little consequence from an engineering
perspective.

Strain prediction
The Weibull regression models fitted to the Rt data are
all highly statistically significant, in that the Weibull
parameters and the coefficients in the quadratic regres-
sion fit in equation (5) are statistically non-negligible.
This implies that the fitted Rt values are a relevant
predictor of strain intensity for the three strain modes
considered in this study. Furthermore, the Rt values

retain their predictive value whether they are expressed
as either modal or effective strains. To illustrate how the
models used in this evaluation can be used to derive
predictions of strain intensity information from a set of
roughness data, consider the specimen that was strained
in uniaxial tension to produce a strain intensity of
emodal50?116 as an example. The Weibull MLEs
calculated for one of the five sets of Rt values from
this coupon were â56?526 and b̂52?896 (note that in
Figs. 2 and 3, there is only one point representing the
MLE for each combination of strain intensity and strain
mode because, as indicated above, the Rt data from all
five coupons were pooled to estimate the MLEs shown).
The Weibull regression produced the following fit for
this strain intensity for this particular strain mode

log að Þ~0:8487z6:633emodalz9:321e2
modal

A Weibull scale parameter a as function of modal true strain; B Weibull shape parameter b as function of modal true
strain

3 Magnitudes of Weibull parameters estimates calculated for set of Rt values based on 1286128 maps

A a values calculated from set of 64664 maps; B a values calculated from set of 1286128 maps
4 Magnitudes of Weibull scale parameters shown as function of effective true strain
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Substituting the â value of 6?526 into this expression and
solving for emodal produces a result of emodal50?13.
Similar calculations produce estimates of emodal for the
remaining four surface measurements for this particular
strain intensity: 0?11, 0?12, 0?11 and 0?12. These results
suggest that in this example, there is little variability in
the strain intensity between regions of the same coupon.

It should be re-emphasised that the following
simplifying assumptions were made to enable the
application of Weibull regression analysis to these
data:17 the shape parameter b remains invariant with
strain intensity for each strain mode and the a parameter
and the strain intensity are related as described by
equation (3). This model is advantageous because it
allows for integration of the information from each
surface measurement, irrespective of the strain intensity,
which corresponds to a particular strain mode.

The differences in magnitudes of a and b produced
from the two sets of Rt maps (64664 and 1286128)
demonstrate that the filtering and the binning of the data
have some influence on the behaviour of both a and b.
That is, the values of a and b both exhibit some
resolution dependence. However, the similarities in the
overall trends of these two parameters across the two
different resolutions suggest that they reflect character-
istics of the material as a whole. Therefore, the key
question raised by these results is whether this predictive
capability only holds for this specific alloy and heat
treatment, or whether it might be more generally
applicable. If the latter possibility turns out to be valid,
this approach could provide a basic methodology for
constructing a fundamental constitutive relationship
between surface roughness and strain. Such a relation-
ship could have substantial practical relevance. To
determine the answer, it is necessary to ascertain
whether the Weibull shape parameter b remains
approximately invariant for any or all of the strain
modes after implementing a change in a material
characteristic of this alloy that has a strong influence
on the mechanical properties, such as the grain size, the
workhardening behaviour or the crystallographic tex-
ture. It is also of particular interest to determine whether
the b parameter demonstrates a similar approximate
invariance in a different alloy system. If b were to
demonstrate approximate invariance and a were to scale
with strain intensity monotonically under either of these
conditions, it may then be possible to use surface
roughness measurements straightforwardly to determine
the principal components of the strain tensor (i.e. e11, e22

and e33) in each strain mode. Such a constitutive
relationship could prove to be quite useful as a
predictive tool in sheet metal forming.

Conclusions
In the present paper, the authors have shown that a
Weibull regression, fitted using the method of maximum
likelihood, is an appropriate model for the Rt values
that were derived from topographic measurements on
strained coupons of AA 5754. The results also indicated
that the Weibull model could be used to develop an
accurate parametric predictor of strain intensity for a
given set of Rt data. Even though the differences
observed between the 64664 Rt maps and the
1286128 Rt maps revealed that the behaviour of the

Weibull scale and shape parameters are somewhat
dependent on the Rt cell size, the similarities in the
general trends suggest that these parameters are likely to
be characteristics of the material as a whole.

The critical issue raised with this analysis is whether
the Weibull parameters will demonstrate the same
characteristics that were observed here in a different
alloy. That is, shape parameter is approximately
invariant, and the scale parameter scales monotonically
with strain intensity. If so, it may then be possible to use
surface roughness measurements straightforwardly to
determine the principal components of the strain tensor
(i.e. e11, e22 and e33) in each strain mode. A constitutive
relationship such as this could be quite useful as a
predictive tool in sheet metal forming. For this reason,
further studies are in progress to determine the universal
nature of these characteristics.
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