engineering laboratory

Engineering Laboratory

Proposed Standardized Test Artifact for Additive Manufacturing

Shawn Moylan, Ph.D. NIST Intelligent Systems Division shawn.moylan@nist.gov

> PDES, Inc. Workshop March 14, 2013

NIST Projects in Additive Manufacturing

engineering laboratory

Purpose—Test Artifact

- Two primary methodologies of performance characterization of a machine or process
 - Series of direct measurements of machine or process characteristics
 - Measurement on manufactured test pieces
 - **Direct measurement of AM machines difficult**
 - Lack of access and control over positioning axes
 - Sensors interfere with process or safety interlocks
- Test pieces play a larger role in AM than in traditional manufacturing

Potential Uses

- Can demonstrate capabilities and limitations of machine or process
- Can be used as point of comparison
 - Between machines or processes
 - Before and after implementation of improvements
- Can be used as method of performance verification between machine user and vendor

Suite of Standards

laboratory engineering

Suite of Standards

- 1 top level Test Method, 7 process level standard practices (1 for each process category)
- Test Method generally describes
 - potential uses of test artifact
 - test artifact geometry
 - measurements to be taken on the test artifact
 - reporting of results
- Standard Practices provide
 - links to download specific test artifact geometries (different processes may use different size scales)
 - guidance in preparing a build (not a process prescription)
 - specific process parameters to be reported.

Prior Work

- Reviewed more than 40 test artifacts previously described in literature.
- Four categories of test artifacts
 - Comparing different processes
 - Evaluating individual processes
 - Evaluating metal-based processes
 - Other uses

NISTIR 7858, "A Review of Test Artifacts for Additive Manufacturing," May 2012.

Prior Work → Design Criteria

- The intent of most test artifacts falls into one of two main categories
 - Intended to demonstrate the capabilities of the machine or process
 - Intended to highlight specific machine defects to allow iterative process improvement
 - We seek to design a test artifact that will accomplish both.

Design Criteria

 Test part should demonstrate machine's or process's ability to build features with proper form, orientation, size and location

- Straight features (paraxial and askew)
- Parallel and perpendicular features
- Round features
- Concentric circles or arcs
- Fine features
- Holes and bosses
- Features in planes orthogonal to build plane

Design Criteria

- Design should link specific part defects to specific machine or process errors
 - Geometric errors of beam positioning axes
 - Geometric errors of build platform (z-axis)
 - Alignment errors between axes
 - Beam size

Design Criteria

- General Considerations
 - Easily measurable with low measurement uncertainty
 - Trade off between testing full work volume and the time and material cost. We try to find balance, but side with faster, smaller builds
 - Minimize other variables
 - Support structures
 - Post processing
 - Minimize impact on recoating arm
 - Allow testing of surface roughness along with mechanical and physical properties

Description of Proposed Artifact

Results—Repeatability

- Multiple builds by DMLS in stainless steel show average repeatability of approximately 30 μm (2x average standard deviation using several
 - feature measurements)
 - Pin and hole diameters
 - Pin and hole positions
 - Z-heights on staircases
 - Straightness measurements
 - Roundness measurements
 - Flatness measurements

Process Improvement

- Use measured deviations of build 1 to calculate improved beam offset and x- and y-scaling
 - Pins and holes were too close to center; scaling was too small
 - Scaling = slope of best fit line to position deviation of pins and holes (represented as %)
 - Rebuild with adjusted scaling produced pins and holes with position deviations no greater than 52 µm (8 of 10 better than 25 µm)

Questions???

shawn.moylan@nist.gov

