
NIST: Request for Information

Relating to Cybersecurity Frameworks

A Foundation Response

by

Gordon E Morrison

Gordon.Morrison@VSMerlot.com
(816-835-3071)

2951 Marina Bay Dr. 130-250

League City, TX 77573

4/1/2013 www.VSMerlot.com 1

http:www.VSMerlot.com
mailto:Gordon.Morrison@VSMerlot.com

Cyber Secure Framework
• Can’t exist without a proper foundation

• Current Foundation
– Spaghetti code

• “if – then – else”
• “case – switch”
• Not organized
• Not structured

– Artistic
• Approach will not be as secure as it could be

4/1/2013 www.VSMerlot.com 2

http:www.VSMerlot.com

Foundation Definition

• Foundation – the architecture that software
uses as the core structure for organizing
human written or machine generated code.
Currently writing or generating code is an
artistic endeavor without an engineering
structure.
In practice a software engineered foundation
does not exist.

4/1/2013 www.VSMerlot.com 3

http:www.VSMerlot.com

Framework Definition

• Framework – the collection of software
designed to provide services built on a
nonexistent foundation. Frameworks are
often combined into application specific
libraries or collections.

4/1/2013 www.VSMerlot.com 4

http:www.VSMerlot.com

Software Engineering Practices

• Foundation
– Lacking a foundation architecture
– Lacking an engineering discipline

• Coding is artistic
– Requirements – Specifications – Models

• All depend on the foundation
• Implementations drift away form original design

documentation
• Synchronization requires manual effort

• Frameworks are built sans foundation

4/1/2013 www.VSMerlot.com 5

http:www.VSMerlot.com

From CMU-SEI

•	 www.sei.cmu.edu/solutions/softwaredev/

•	 “The quality of a system is influenced by
the quality of the process used to
acquire, develop, and maintain it, the
analysis and forethought that goes into
an architecture…”

4/1/2013	 www.VSMerlot.com 6

http:www.VSMerlot.com
www.sei.cmu.edu/solutions/softwaredev

CMU –SEI (cont’d)

•	 “Using proven methods for progress

and product quality, software success is
predictable and achievable, and failure
is avoidable.”

4/1/2013	 www.VSMerlot.com 7

http:www.VSMerlot.com

CMU – SEI (cont’d)

•	 “Once coding starts, teams trained in
mature software engineering
processes can remove defects early,
when defect removal is 10 to 100 times
less costly than it is during test.”

4/1/2013	 www.VSMerlot.com 8

http:www.VSMerlot.com

Requirements

• SEI alludes to failures due to lack of
requirements.

• SEI requirements don’t correlate to the
application over time.

• SEI requirements are documents that
fail to stay in sync over time.

• SEI approach not as good as it could

be. A good idea poorly implemented.

4/1/2013 www.VSMerlot.com 9

http:www.VSMerlot.com

No CMU-SEI Foundation Definition

• Big money is in process consulting
– CMU-SEI sells what it knows
– Doesn’t understand lacking foundation

• No solution to spaghetti code
– Process Management

• Often referred to as “Software Engineering”

• Without a good foundation success is
difficult at best.

• CMU-SEI – room for improvement
4/1/2013 www.VSMerlot.com 10

http:www.VSMerlot.com

SEI Template

• SEI uses a template to collect information

– It’s a fill in form approach
– State information
– Action information
– Provides documentation

• Template becomes throwaway
• The template will not stay in sync
• Good idea – poorly implemented

4/1/2013 www.VSMerlot.com 11

http:www.VSMerlot.com

Herding Cats is the Standard

• Programmers want to be engineers

– An engineering foundation is missing

•	 “if-then-else” and “case-switch”
statements:
– Are the cause of spaghetti code
– Create logic that is overly complex

– No support for temporal control flow

• Required for correlation

4/1/2013	 www.VSMerlot.com 12

http:www.VSMerlot.com

Temporal Software Engineering

• Similar to CMU-SEI template based logic
• Integrated into the application
• Uses Vector State Machine

– Correlates to
• Requirements
• Specification

• Model Driven Architecture
– Maps to IDEF ++ process

• Improved IDEF0 & IDEF1
• Provides a solid organized foundation
4/1/2013 www.VSMerlot.com 13

http:www.VSMerlot.com

CMU-SEI Example Template
Student J. Developer Date 10/27
Program LogIn Program #
Instructor Humphrey Language C++ •	 SEI-TSP/PSP

– Rule
– State

– Action

•	 Mixed Modes
•	 Does not correlate

with solution
•	 Software Engineers

DON’T sync this
document!

State Name Description
Start Start condition for system

CheckD The state of the system after a user ID is requested
CheckPW The state of the system after a user password is requested

End The final state: LogIn either logs in or cuts off the user.
Function/Parameter Description

ID User identification: ID is Valid or !Valid
PW User password: PW is Valid or !Valid
n Integer count of ID and password errors

nMax Maximum value of ID and password errors: n >= nMax is rejected.
Fail Error count or timeout error indicator: Fail = true is failure, Fail = false is ok.

States/Next States Transition Condition Action
Start

Start No transitions from Start to Start
CheckID True Get ID, n := 0; ID and PW

!Valid
CheckPW No transitions from Start to CheckPW
End No transitions from Start to End

CheckID
Start No transitions from CheckID to Start
CheckID No transitions from CheckID to CheckID
CheckPW Valid ID Get password
CheckPW !Valid ID Get password
End Timeout Fail := true

CheckPW
Start No transitions from CheckPW to Start
CheckID (!Valid PW  !Valid ID)  n < nMax 

!Timeout
Get ID, n := n + 1

CheckPW No transitions from CheckPW to
CheckPW

End Valid PW  Valid ID Fail := false, login user
End (n >= nMax  Timeout)  (!Valid PW 

!Valid ID)
Fail := true, cut off user

End
No transitions from End to any state

4/1/2013 www.VSMerlot.com	 14

http:www.VSMerlot.com

CMU-SEI - Stopwatch Example

•Work is not part of implementation
•Must be converted to if/else or switch-case logic

State Name Description
Zero Start condition for system

Running Stopwatch running and displaying
On-hold Stopwatch running with display on hold
Stopped Stopwatch stopped

States/Next States Transition Condition Action
Zero

Zero reset  hold Stop clock, reset clock, clear display
Running start/stop Start clock, display clock

Running
Zero reset Stop clock, reset clock, clear display
On-hold hold Hold display
Stopped start/stop Stop clock, hold display

On-hold
Zero reset Stop clock, reset clock, clear display
Running hold Start clock, display clock
Stopped start/stop Stop clock, hold display

Stopped
Zero reset Stop clock, reset clock, clear display
Running start/stop Start clock, display clock
Stopped hold Stop clock, hold display

4/1/2013 www.VSMerlot.com 15

http:www.VSMerlot.com

Proposed Foundation

• COSA – based on US Patent 6,345,387
– Free of License – Free of License!
– Template based executable logic table
– Table based Vector State Machine (VSM)

• Temporal Engineering – the use of COSA,
correlating all aspects of the software
development life cycle.

• Temporal Engineering – improves the CMU-SEI
management paradigm
– Everything stays in sync!!!

• This is a good idea – good implementation
4/1/2013 www.VSMerlot.com 16

http:www.VSMerlot.com

SEI vs. COSA

• Work going into the SEI template is not
directly used, i.e. it’s wasted.

• Work put into a COSA table is used
– The table is a logic template
– The table is executed with COSA Engine

– Testable with populated member functions

or stubs
– Does one thing and does it well
– Includes trace debugging

4/1/2013 www.VSMerlot.com 17

http:www.VSMerlot.com

18

No Foundation vs. Foundation

• No Foundation Today
– Bucket-of-Bolts

• Spaghetti code

• Foundation – COSA
– An Engineering Discipline
– Not an artistic approach
– Not just writing code
– Organized
– Standardized

• COSA
– No License required
– Patent definition open disclosure
– Book available on Amazon.com

4/1/2013 www.VSMerlot.com

http:www.VSMerlot.com
http:Amazon.com

What’s Missing

• “Software engineering” mentioned on

slide 8 does not refer to a foundation
architecture.

• It refers to the process in which the
code is developed.

• The fundamental “if-then-else” structure

i.e. “spaghetti” code that SEI teaches.

• Compare the next two slides…

4/1/2013 www.VSMerlot.com 19

http:www.VSMerlot.com

Traditional Software

What Is Wanted
• Engineering Discipline
• Uniformity
• Consistency
• Preemptablity
• Single Point Logic Testing
• Trace - True

– True Behavior Logic
– True Logic Trace
– True Logic Temporal Path

• Trace - False
– False Behavior Logic
– False Logic Trace
– False Logic Temporal Path

• Well Defined
– Rules
– Specification
– Analysis

• Orthogonal
– Logic

– Data

What is Delivered
• Authors that are like Herding Cats
• The style of the author
• Inconsistent development styles
• Control and Preemptablity an after thought
• Multiple if-then-else logic dispersed everywhere
• Spaghetti Logic
• Trace - True

• Numerously inserted trace logic
• NONE
• Trace – False

• Numerously inserted trace logic
• Spaghetti Logic
• NONE
• NONE
•	 Rarely Well Defined

– No Rules
– Independent Specification
– Inconsistent Analysis

• Never Orthogonal
– Spaghetti Logic
– Spaghetti Data

4/1/2013 www.VSMerlot.com	 20

http:www.VSMerlot.com

COSA Engineering

What Is Wanted
• Engineering Discipline
• Uniformity
• Consistency
• Preemptablity
• Single Point Logic Testing
• Trace - True

– True Behavior Logic
– True Logic Trace
– True Logic Temporal Path

• Trace - False
– False Behavior Logic
– False Logic Trace
– False Logic Temporal Path

• Well Defined
– Rules
– Specification
– Analysis

• Orthogonal
– Logic

– Data

COSA Delivers
• Engineering Discipline
• Uniformity
• Consistency
• Preemptablity
• Single Point Logic Testing
• Trace - True

– Static Document Trace
– Dynamic Logic Trace

• Trace – False
– Static Document Trace
– Dynamic Logic Trace

• Well Defined
– Template Rules
– Specification
– Traced Spec to Application

• Orthogonal
– Logic

– Data

4/1/2013 www.VSMerlot.com 21

http:www.VSMerlot.com

Complexity is out of control

4/1/2013 www.VSMerlot.com 22

http:www.VSMerlot.com

Compare Complexity

4/1/2013 www.VSMerlot.com 23

http:www.VSMerlot.com

Now with Trace

4/1/2013 www.VSMerlot.com 24

http:www.VSMerlot.com

ITE Trace Complexity

•	 3 columns of
trace
–	 4 columns

info in each

•	 Little info
•	 Embedded

throughout
program

•	 Side effects

•	 107 states

4/1/2013 www.VSMerlot.com	 25

http:www.VSMerlot.com

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

COSA Trace More Information

•	 1 Column Trace

– 8 Columns Info

•	 Reduced
Complexity

•	 More Information

•	 Dynamic On-Off

•	 Minimal side

effects
•	 30 states vs. 107

Count Step Tra ce Eng Static Dynam ic Beha vior Value
+T= 0; 100 Off; 44; 44; Nega te ; N= -
+T= 1; 101 Off; 1; 1; Any_Number; N= -3
ĞF= 1; 101 On; 1; 59; Ignore; N=
+T= 2; 102 Off; 59; 59; One_Perio d ; N= -3.
+T= 3; 103 Off; 1; 1; Any_Number; N= -3.1
+T= 3; 103 Off; 1; 1; Any_Number; N= -3.14
+T= 3; 103 Off; 1; 1; Any_Number; N= -3.141
+T= 3; 103 Off; 1; 1; Any_Number; N= -3.1415
+T= 3; 103 Off; 1; 1; Any_Number; N= -3.14159
ĞF= 3; 103 On; 1; 44; Ignore; N=
ĞF= 4; 104 On; 12; 44; Ignore; N=
ĞF= 5; 105 On; 11; 44; Ignore; N=
ĞF= 6; 106 On; 1; 44; Push_Disp ; N=
ĞF= 7; 500 On; 43; 44; Ignore; N=
+T= 8; 501 On; 44; 1; Subtra ction ; N= -3.14159
+T= 12; 700 Off; 1; 1; Engine_Off; N= -3.14159
+T= 13; 701 Off; 44; 44; Nega te ; N= -
+T= 14; 702 Off; 1; 1; Any_Number; N= -2
ĞF= 14; 702 Off; 1; 59; Ignore; N=
+T= 15; 703 Off; 59; 59; One_Perio d ; N= -2.
+T= 16; 704 Off; 1; 1; Any_Number; N= -2.1
+T= 16; 704 Off; 1; 1; Any_Number; N= -2.14
+T= 16; 704 Off; 1; 1; Any_Number; N= -2.141
+T= 16; 704 Off; 1; 1; Any_Number; N= -2.1415
+T= 16; 704 Off; 1; 1; Any_Number; N= -2.14159
ĞF= 16; 705 On; 1; 13; Ignore; N=
ĞF= 18; 706 On; 12; 13; Ignore; N=
ĞF= 17; 707 On; 1; 13; Save_D isp; N=
ĞF= 19; 900 On; 11; 13; Ignore; N=
+T= 20; 901 Off; 13; 13; Equal s; N= -1

4/1/2013 www.VSMerlot.com	 26

http:www.VSMerlot.com

Carnegie Mellon - SEI

Copyright Northrop Grumman Company 2003 2211/18/2003

CMMI Extensibility and Flexibility

Engineering Management Processes
Program Management Processes

Process Infrastructure Processes

Integrated Enterprise Process

Engineering Processes

COSA
impact

4/1/2013 www.VSMerlot.com 27

http:www.VSMerlot.com

A 4 Step COSA Solution
1) Well Defined Core Foundation

– COSA – Table Drive Vector State Machine
• Temporal Software Engineering

2) Model Driven Architecture
– WYSIWYG BNF model to application
– Rules / Logic can be tested on boundary values

3) Re-manufactured Applications
– Legacy Integrated Forward Engineering (LIFE)
– Replaces & Reduces Maintenance Costs

4) System Level Integration
– Focus on top-down organization
– Reduce failures, improve quality, reduce costs

4/1/2013 www.VSMerlot.com 28

http:www.VSMerlot.com

The End

4/1/2013 www.VSMerlot.com 29

http:www.VSMerlot.com

