Statistics of Mechanics

Statistical modeling of plastic yielding at small length scales

J. R. Morris,^{1,2} H. Bei,¹ E. P. George,^{1,2} G. M. Pharr^{2,1}

- ¹ MS&T Division, Oak Ridge National Lab, Oak Ridge, TN
- ² Dept. of Materials Science & Engineering, University of Tennessee

Sponsor: Materials Science and Engineering Division, Basic Energy Sciences, Department of Energy

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Other projects:

- Last CMSN meeting: metallic glasses & interfaces
- Traditional CMSN topic: solid-liquid interfaces, crystal nucleation (JCP 2010)
- H₂ storage in carbon structures (JPCC 2010)
- Hydrogenated planar structures and interfaces (PRB 2009)

"Conventional" length scale effects in nanoindentation

3 Managed by UT-Battelle for the U.S. Department of Energy to eqn (8).

What happens as indenter becomes small? (Focus on spherically tipped indenters)

- •a large indenter samples many defects (bulk limit)
- •a small indenter likely samples no defects (theoretical limit)

• Intermediate size is much more variable in response.

4 Managed by UT-Battelle for the U.S. Department of Energy

- •For very small indentors, there is a sharp transition from elastic to plastic behavior.
- •Usually assumed to be due to homogeneous <u>formation of dislocation loops</u>

5 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Not necessarily "homogeneous" dislocation nucleation: Depends on processing!

Highly annealed vs. pre-strained (100 Ni)

100 indentations

New nanoindentation size effect: Pop-in stress varies with both indenter size and dislocation density

7 Managed by UT-Battelle for the U.S. Department of Energy

A statistical model for pop-in statistics:

- Assume a defect density ρ (per volume).
- Assume the defects are *perfectly randomly distributed.*
- Assign a pop-in stress τ_{pop-in} associated with each defect.
 - For simplicity, assume this is identical for each defect.
- What is the probability that a given load *P* samples does not affect any defects?
 - Determined by the volume where $\tau > \tau_{pop-in}$
 - Poisson statistics: Prob(no defect) = $exp(-\rho V)$

Scaling of volume in Hertzian contact theory

- Elastic solution from Hertzian contact theory
- Length scale set by contact radius a
- Stress scale is set by *mean pressure* or equivalently by the *peak shear stress under the indenter.*
- V/a³ is a function of τ_{pop-in}/τ_{max}

Statistical model of defect-driven pop-in:

Simplest model:

- Assume a *completely random* distribution of defects.
- Only 2 parameters:
 - Defect activation stress = 0.52 GPa
 - Defect density = $2x10^{16} / m^3$
- Fit shown at right.
 - Red line indicates a 50% *cumulative* probability of pop-in.
 - Green, black lines show 10% and 90% values.

Can compare with full probability distribution:

Scaling theory:

- From before,the high-stress region has a scaled volume $V/a^3 = f(\tau_{pop-in}/\tau_{max})$
- Define $\tau_{1/2}$ to be value of τ_{max} when cumulative probability = 1/2
 - Theory predicts ρ V=ln(2) at this stress.
- $(\rho V)/(\rho a^3) = \ln(2)/(\rho a^3) = f(\tau_{pop-in}/\tau_{\frac{1}{2}})$
- Plotting 1/a³ vs. $1/\tau_{\frac{1}{2}}$ should give a universal curve.

Behavior of experiments closely matches predicted scaling law when $\tau_{\frac{1}{2}} < \tau_{theo}$:

- Solid red curve shows fit to theory.
- Only two parameters in fit: the defect density, and the defect strength.
- τ_{pop-in} =0.52 GPa
- $\rho = 0.02 \, / \, \mu m^3$
- Dashed lines examine sensitivity to dislocation density.

Is the defect density reasonable?

- Defect density = ρ_{defect} = 0.02/(µm)³ =2x10¹⁶/m³
 - Characteristic distance between defects ~ $\rho_{disl}^{-1/3}$ = 3.7 μ m
 - Corresponds to a dislocation density of $2x10^{11}/m^2$
- For our annealed Mo single crystal: Dislocation density $\rho_{disl} = 10^{11}/m^2 = 0.1/(\mu m)^2$
 - Coarse estimation from x-ray line broadening
 - Characteristic distance between dislocations ~ $\rho_{disl}^{-1/2}$ = 3.2 μ m
 - \rightarrow reasonable estimate of spacing between defects
- Or: $\rho_{disl} \sim 10^{11}/m^2 = 0.1/(\mu m)^2 = 100 \text{ nm}/(\mu m)^3$
 - 1 defect per 50 nm of dislocation length

What about "Wires & whiskers?" Size effects without strain gradients

Sample Dimensions Influence Strength and Crystal Plasticity

Michael D. Uchic,^{1*} Dennis M. Dimiduk,¹ Jeffrey N. Florando,² William D. Nix³

Uchic *et al.* Science 2004

Fig. 3. Dependence of the yield strength on the inverse of the square root of the sample diameter for Ni₃Al-Ta. The linear fit to the data predicts a transition from bulk to size-limited behavior at ~42 μ m. σ_{ys} , the stress for breakaway flow.

17 Managed by UT-Battelle for the U.S. Department of Energy

Defect-free Mo pillars grown by directional solidification

• Yield at the theoretical strength independent of size

Directional solidification of Mo-NiAl eutectic

Bei et al, Scripta Mater. (2007)

18 Managed by UT-Battelle for the U.S. Department of Energy

Important Observations:

- 1. Pillars yield at ~9.2 GPa, independent of size
- 2. τ_y is ~G/26 (in the range for τ_{theo})
- 3. Plastic deformation is unstable (work softening)

Preliminary experiments show that pre-straining can indeed be used to vary the material length scale

Bei, Shim, Pharr, & George, Acta Mater. (2008)

19 Managed by UT-Battelle for the U.S. Department of Energy

Engineering stress (GPa)

Effects of FIB damage on mechanical properties of nanopillars

Shim et al., Acta Mater. (2009)

Fig. 5. (a) Compressive load-displacement curves for FIB-milled micropillars and (b) stress-strain curves for as-grown (directionally solidified) and FIB-milled pillars. Note that a is the edge length of square crosssection as-grown pillars and D is the diameter of circular cross-section FIB-milled pillars.

Nanoindentation behavior

Fig. 9. Nanoindentation load-displacement curves obtained from electropolished and FIB-milled surfaces. The Hertzian elastic solution follows closely the curve for the electropolished surface below the pop-in.

Conclusions:

- A new, exactly solvable model shows that statistics of defects in small volumes affect size-dependent nanoindenter pop-in.
- The <u>same</u> two parameters in the model describe the experimental results for <u>all</u> indenter sizes (700 μm down to 3.75 μm):
 - the defect *strength* and the defect *density*.
- A scaling theory agrees nicely with the experimental results.
- Crossover from bulk (determinative) behavior to stochastic pop-in occurs when the defect density ρ is on order of $1/V_{stressed}$. This volume may be much greater than (contact radius)³.
- Similar effects seen experimentally in deformation of pristine and predeformed pillars. Small amount of FIB damage hides the effects.

On-going work:

- Same model applied to pillar compression
- Examination of *distribution* of defect strengths

