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- Last CMSN meeting: metallic glasses & interfaces
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 Traditional CMSN topic: solid-liquid interfaces, crystal
nucleation (JCP 2010)

* H, storage in carbon structures (JPCC 2010)

« Hydrogenated planar structures and interfaces
(PRB 2009)




Hardness (GPa)

“Conventional” length scale effects in nanoindentation
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Geometrically Necessary Dislocations

Fig. 2. Geometrically necessary dislocations created by a rigid conical indentation. The dislocation structure
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is idealized as circular dislocation loops.

*H, = hardness due to pre-existing
dislocations

«h™ = characteristic length scale arising
from geometry, pre-existing dislocations

Nix & Gao
J. Mech. Phys. Solids, 1998

Fig. 3. Depth dependence of the hardness of (111) single crystal copper, taken from Fig. 1, plotted according

to eqn (8).



What happens as indenter becomes small?

(Focus on spherically tipped indenters)
a large indenter samples many defects (bulk limit)

«a small indenter likely samples no defects (theoretical limit)
*Intermediate size is much more variable in response.
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*For very small indentors, there is a sharp
transition from elastic to plastic behavior.
*Usually assumed to be due to homogeneous Hertzian Analysis
formation of dislocation loops
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Not necessarily “homogeneous” dislocation nucleation:
Depends on processing!
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New nanoindentation size effect:
Pop-in stress varies with both indenter size and dislocation

density
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A statistical model for pop-in statistics:

* Assume a defect density‘Z (per volume).

« Assume the defects are perfectly
randomly distributed.

 Assign a pop-in stress|t
with each defect.

— For simplicity, assume this is identical for each
defect.

- What is the probability that a given load P
samples does not affect any defects?

— Determined by the volume where > T, i,

— Poisson statistics: Prob(no defect) = exp(- pV)




Scaling of volume In Hertzian contact theory

* Elastic solution from
Hertzian contact theory

» Length scale set by
contact radius a

 Stress scale is set by
mean pressure or
equivalently by the peak
shear stress under the
Indenter.
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Statistical model of defect-driven pop-in:

Simplest model:

* Assume a completely random distribution

of defects.

* Only 2 parameters:
* Defect activation stress = 0.52 GPa
 Defect density = 2x10%® / m3

* Fit shown at right.

* Red line indicates a 50% cumulative

probability of pop-in.

* Green, black lines show 10% and 90%

values.

Maximum shear stress at pop-in
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Can compare with full probabillity distribution:
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Scaling theory:

*From before,the high-stress region
has a scaled volume
Viad =f(ty0n.in/ Tmax)

*Define 1., to be value of ., when
cumulative probability = Y%

— Theory predicts pV=In(2) at this stress. oo 1: - '_'m/
pop-in
* (pV)/(pa®)=In(2)/(pa)=f(Tyop.in/ T+,)

*Plotting 1/a3vs. 1/r.,, should
give a universal curve.
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Behavior of experiments closely matches
predicted scaling law when 7., < 7o,

Solid red curve shows fit to theory.

Only two parameters in fit: the defect
density, and the defect strength.

Tpop-in —0-92 GPa
p=0.02/um3

Dashed lines examine sensitivity to
dislocation density.
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Is the defect density reasonable?

* Defect density = p o = 0.02/(um)? =2x101%/m3
— Characteristic distance between defects ~ p /3 = 3.7 um

— Corresponds to a dislocation density of 2x10'1/m?

* For our annealed Mo single crystal:
Dislocation density py, =10*/m? = 0.1/(um)?

— Coarse estimation from x-ray line broadening
— Characteristic distance between dislocations ~ p /2 =3.2 pm

— =2 reasonable estimate of spacing between defects

* Or: py ~1011/m?=0.1/(um)?=100 nm/(um)3
— 1 defect per 50 nm of dislocation length



What about “Wires & whiskers?”
Size effects without strain gradients

Sample Dimensions Influence Uchic et al.
. Science 2004
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» Defect-free Mo pillars grown by directional solidification
* Yield at the theoretical strength independent of size
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Bei et al, Scripta Mater. (2007) Important Observations:

1. Pillars yield at ~9.2 GPa, independent of size

2. 1, 1s ~G/26 (in the range for Ty,q,)
3. Plastic deformation is unstable (work softening)




Engineering stress (GPa)

Preliminary experiments show that pre-straining can indeed be
used to vary the material length scale

ei, Shim, Pharr, & George, Acta Mater. (2008)
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Effects of FIB damage on mechanical
properties of nanopillars

Shim et al., Acta Mater. (2009)
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Fig. 5. (a) Compressive load-displacement curves for FIB-milled micro-
pillars and (b) stress—strain curves for as-grown (directionally solidified)
and FIB-milled pillars. Note that a 15 the edge length of square cross-
section as-grown pillars and D is the diameter of circular cross-section
FIB-milled pillars.

Nanoindentation behavior
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Fig. 9. Nanoindentation load-displacement curves obtained from elec-
tropolished and FIB-milled surfaces. The Hertzian elastic solution follows
closely the curve for the electropolished surface below the pop-in.




Conclusions:

* A new, exactly solvable model shows that statistics of defects in small
volumes affect size-dependent nanoindenter pop-in.

« The same two parameters in the model describe the experimental results for
all indenter sizes (700 ym down to 3.75 pm):

= the defect strength and the defect density.
« Ascaling theory agrees nicely with the experimental results.

« Crossover from bulk (determinative) behavior to stochastic pop-in occurs

when the defect density p is on order of 1/V,.oq- ThiS VOlume may be
much greater than (contact radius)s3.

« Similar effects seen experimentally in deformation of pristine and pre-
deformed pillars. Small amount of FIB damage hides the effects.

On-going work:
« Same model applied to pillar compression
- Examination of distribution of defect strengths



