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William Edwards Deming: On profound knowledge

Deming advocated that all managers 
need to have what he called a “System 
of Profound Knowledge,” consisting of 4 
parts:
Appreciation of a system: 
understanding the overall processes 
involving suppliers, producers, and 
customers (or recipients) of goods and 
services;
Knowledge of variation: the range and 
causes of variation in quality, and use 
of statistical sampling in 
measurements;
Theory of knowledge: the concepts 
explaining knowledge and the limits of 
what can be known.
Knowledge of psychology: concepts of 
human nature.
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If enough is known about the distribution of a population from which questioned 
and known fibers originate, then knowledge of multiple associated characteristics 
(physical, optical, or spectroscopic) can be employed to decrease the random 
probability of a match occurring solely by chance. 

Caveat 1: Usable and Realistic
To consider any trace evidence database usable and realistic, it is necessary to 
have a large number of diverse, and representative samples, that are common in 
use within the geographic region where the crime occurred. 

Caveat 2: Impediment to source
Establishing a collection of fibers that is truly representative is complicated by 
rapid changes in manufacturing practices and globalization of textile production: 
the population is a moving target of indeterminate size and evolving diversity.

Caveat 2: Impediment to source matching
“…a ‘match’ means only that the fibers could have come from the same type of garment, 
carpet, or furniture; it can provide class evidence…”34, and that “fiber analyses are 
reproducible across laboratories because there are standardized procedures for such 
analyses. [National Research Council. Strengthening Forensic Science in the United States: 
A Path Forward, 2009, National Academy Press: Washington, D.C.] 

Working Hypothesis
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Understanding the Population

1. How is the item made?
2. Who are the major producers of 

the item?
3. Who are the major distributors of 

the item?
4. Where is the item sold?
5. Does the item carry any markings 

that are traceable to a 
retailer/distributor/manufacturer?

6. Is the item regulated or approved 
by a third party?

7. Has the formulation of the item 
changed over time?

8. How common is the item – how 
many are distributed/sold?

9. In what regions is the item more 
common?

10. What is the typical “lifecycle” of 
an item? How long is it used prior 
to disposal?

Information sources include: the manufacturing industry, literature, industry 
representatives, local merchants, and other forensic scientists.
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Acquiring a Representative Collection

1. Acquire multiple items from the major manufacturers/distributors;
2. Geographically diverse – cover the area from which your samples 

originate;
3. Ideally, the make-up of your collection reflects market share and 

availability;
4. Acquire multiple items of the same type;
5. How many is enough?

More!
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Using Multiple Analytical Methods

1. Consult the literature;
2. Assess your available equipment
3. Do not assume that your preferred method is the most discriminating!
4. Use the same sample set and number of replicates for each technique;
5. Ideally, use orthogonal techniques (inorganic/organic, spectroscopy/ 

chromatography/mass spectrometry, etc.).



8

Reproducibility and differentiability

1. Assess sample size (do smaller 
samples exhibit more 
heterogeneity?);

2. Assess instrumental conditions 
(what conditions give the best 
precision?);

3. Always acquire replicates (how 
many is enough?); and, 

4. Apply statistical techniques.

Monitor changes in the sample 
population over time, environmental 
exposure, or other relevant variables:
1. Changes in manufacturers, 

distributors and retailers;
2. Changes in formulations; and,
3. Regularly acquire more samples! 
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The crucial issue in designing a database is to start with its purpose and 
proposed application.

Databases are specific in their content and application. For that content to be 
applicable, success requires input from all stakeholders and potential users
who will eventually be owners. 
Target users should be encouraged to discuss their needs and asked to 
provide incremental feedback during development.
Don’t forget that users require training to use the database, and the biggest 
cost may be time − time away from their real jobs. 
Developing training materials for a specialized data base takes time and 
involves costs, and again, the stakeholders should be involved in that 
process also.

Database Design

“Quality is everyone’s responsibility.”
W. Edwards Deming
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Software is never done. Code and bits are only provisional and require 
maintenance.
We’ve all noticed that software is always being updated these days. It’s not 
any different with databases:

Perhaps the database structure design, or needs to changes to 
accommodate new data objects. 
Maybe the software used to create it is outdated, or doesn’t talk nicely to 
newer protocols.

Data bases should be adaptable and capable of change to accommodate new 
data objects as needed. 

For example, how will missing data be handled in your database? 
Does missing data invalidate a data object or does partial data supply 
partial information?

Finally, the database must remain relevant to current forensic experience.
It is impossible to make anything foolproof because fools are so ingenious.

When is the database done?
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The wisdom one needs to interpret data correctly
does not come directly out of the database.
Wisdom requires insight into relationships
inherent in the data − how the data elements fit
together into a gestalt.

The most important maxim for 
translating information from 
databases to knowledge is:

context matters.

Information = data + meaning + constraints
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Samples of the four most common 
fibers encountered in forensic trace 
evidence: acrylic, cotton, nylon, and 
polyester; dyes available for most 
samples. For about 1,000 fibers, 
optical microscopy data, dye 
information, and spectra are 
organized in a web-based database. 
More than 500 additional samples 
including whole swatches, polymer 
staple materials, and undyed and 
dyed fibers, but no dye samples.

USC Fiber database

SLED (Columbia, SC) donated more 
than 1,400 residential carpet samples 
obtained from Lowe's consisting of  
multiple shades of different colored 
fiber polymers.
Dr. Hal Deadman (GWU) donated 
samples from a collection of 200 auto 
carpet fibers collected from junk yards 
to Northern Virginia. Automobiles 
models were identified and VIN 
numbers recorded. 
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Fiber object database diagram
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Fiber Selection Pages

The Main fiber 
selection page 

displayed upon login 
is a search page that 
solicits 1 to 5 search 
values from the user. 

All fibers in the database with the specified characteristics are returned in a 
Selected Fiber window which displays the result set returned from the database—
a list of fibers that match the characteristics previously selected.  The check list at 
the bottom left of the screen enables further filtering of the fields that are returned 
in the results grid.
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Search Results for Fiber Diameters



16

Fiber Details Page for fiber ID 38
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Dye Details Page for Fiber ID 38
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Fiber details, plots, and data export
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Information is data distilled

Raw data does not help anyone to 
make a decision until you can reduce 
it, using relevance and context, to a 
higher-level abstraction. 

Similar to the number of ways that 
beer can be brewed, there are a lot of 
ways one can distill data.

Where is the wisdom we have lost in 
knowledge?
Where is the knowledge we have lost 
in information?
− T. S. Eliot, Choruses from the Rock

“Having data in a database is not the 
same thing as knowing what to do 
with it.” [Kay, Roger L. “What is the 
meaning?” Computerworld, 17 
October, 1994].
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QUESTION 1: Instead of dealing with 
a multi-dimensional problem, why not 
just examine one variable at a time?
ANSWER: Multivariate data can be 
misleading when examined single 
variable at a time. With multivariate 
data, the single variable at a time 
approach may fail to detect the 
underlying multivariate structure, 
whereas a multivariate approach will 
reveal the truth. 
Consider Fisher’s Iris data set, which 
has four measurements on each of 50 
samples of three types of Iris. The 
individual variable histograms (in blue) 
may (or may not) show group 
separation; the two-variable scatter 
plots hint at the ability to separate 
groups. Thus, we see trends, or 
correlations, in plots of Fisher’s data.

Why not univariate?

http://en.wikipedia.org/wiki/File:Iris_versicolor_2.jpg
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Search for meaningful structure
Typical objectives:

1. Discovering patterns, 
systematic structure, 
correlations, trends, or 
regularities in data involving two 
or more variables.

2. Testing models that describe 
relationships among 
experimental variables and 
measured responses. Accuracy 
of prediction.

3. Evaluation of models that 
describe the relationships 
among two of more groups (or 
classes) of objects based on 
their multivariate patterns.

1

2 

3 
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Research objectives

 Conduct interlaboratory studies to evaluate the 
application of pattern recognition and machine learning tools 
to forensic fiber examinations based on UV/visible 
microspectrophotometry

Provide statistical measures of dissimilarity of fiber spectra 
along with visualization of comparisons to support 
decision-making.

 Determine best performing spectral pre-processing 
approaches and multivariate methods for fiber 
discrimination
Numerous pre-preprocessing methods have be applied to 
multivariate data in chemometrics. Which are necessary 
and what are the effects on discrimination.
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 Evaluate intra- and interlaboratory variability associated 
with microspectrophotometry of textile fibers. 

Can consistent conclusions be made from independent 
analyses? If the same samples are examined in different 
laboratories, with different instruments, are the results 
compatible? )

 Document intra- and inter-laboratory consistency in 
UV/visible spectra of fibers with classification error rates.

Can classification models be transferred between 
laboratories, with potential savings in time and resources 
for forensic analyses? Difficulties in using a model 
developed in one laboratory to classify data in another  
laboratory can arise from differences in sample 
preparation, environmental conditions, and instrumental 
response.

Research objectives (continued)
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Comparisons of Interlaboratory Fiber Discrimination
Cationic dye composition for 12 blue acrylic 

fibers (“Y” indicates dye presence).

The twelve blue acrylic fibers were 
characterized by 10 replicate visible 

spectra taken in at five different 
laboratories (600 spectra) following 

the same method protocol using different 
models of MSP instrumentation 

(spanning over a decade in age)

Microscope images of 12 
blue acrylic fibers (40×).
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Preprocessing is a must for various reasons

Preprocessing Equation Purpose

Autoscale 𝑋𝑋𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖

𝑠𝑠𝑖𝑖

Places variables on equal footing 
to keep scale from dominating 
analysis

Baseline correction 𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖(𝑚𝑚𝑖𝑖𝑚𝑚) Corrects baseline offsets

First derivative 𝑋𝑋𝑖𝑖𝑖𝑖,𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏𝑎𝑎 𝑑𝑑𝑏𝑏𝑓𝑓𝑖𝑖𝑑𝑑 =
𝑋𝑋𝑖𝑖,𝑖𝑖+1 − 𝑋𝑋𝑖𝑖𝑖𝑖
𝜆𝜆𝑖𝑖,𝑖𝑖+1 − 𝜆𝜆𝑖𝑖𝑖𝑖

Corrects baseline effects

Normalization to 
unit area

𝑋𝑋𝑖𝑖𝑖𝑖,𝑚𝑚𝑎𝑎𝑓𝑓𝑚𝑚 =
𝑋𝑋𝑖𝑖𝑖𝑖

∑𝑖𝑖=1𝑚𝑚 𝑋𝑋𝑖𝑖𝑖𝑖

Removes scaling differences 
arising from variations in amount
of sample as well as instrumental 
intensity variations caused by 
changes in fiber thickness 

Standard normal 
variate (SNV) 𝑋𝑋𝑖𝑖𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖
𝑠𝑠𝑖𝑖

Removes changes in slope and 
variability caused by scattering

Definitions: X – Observation 𝜆𝜆 - Wavelength i - Row
s – Standard deviation n – Number of Variables j – Column
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Blue acrylic fiber spectra from 5 labs

Preprocessing involved: truncation to 400-800 nm; Savitsky-Golay smoothing (21 point, 2nd order 
polynomial; weighted least squares baseline correction, and mean-centering
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Multivariate classification

Support vector machine discriminant 
analysis (SVMDA) builds a maximum 
margin hyperplane in feature space by 
using kernel functions in a higher 
dimensional space. 

Linear: 𝐾𝐾(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)= 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑖𝑖 + 1
Polynomial: 𝐾𝐾(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)= (𝑥𝑥𝑖𝑖× 𝑥𝑥𝑖𝑖 + 1) 𝑑𝑑

Gaussian:    𝐾𝐾(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)= exp
− (𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗

2

2𝜎𝜎2

Linear discriminant analysis 
(LDA) generates linear decision 
boundaries which best separate 
the group means by assuming 
homogeneity of variances and 
covariances. 

Quadratic discriminant analysis 
(QDA) is similar to LDA except a 
separate covariance matrix is 
estimated for each class. Unequal 
variance-covariance matrices keep 
quadratic terms of the multivariate 
Gaussian function from canceling, 
as in LDA, resulting in quadratic 
functions.
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METHOD Percent of correctly classified spectra by sample
METHOD Lab. Acc. 

(%) SD 086 087 088 091 092 095 098 099 112 113 114 145

LDA 1 95.9 0.40 89.2 100 100 91.9 100 100 100 100 70 100 100 100
2 97.3 0.53 80 100 100 100 100 100 100 100 91.2 100 100 100
3 94.0 0.31 80 100 100 100 100 100 100 90 58.2 100 100 100
4 92.0 0.83 88.8 100 100 61.6 75.6 91.4 100 100 100 100 100 100
5 94.9 0.52 70 98.9 100 100 100 98.3 100 100 81.5 90.1 100 100

QDA 1 99.2 0.43 100 100 100 90 100 100 100 100 100 100 100 100
2 95.3 0.51 87.6 100 100 100 100 100 100 100 55.8 100 100 100
3 98.2 0.30 100 100 100 100 88.3 100 100 100 100 90 100 100
4 91.8 0.89 100 95.4 100 72.8 81 79.8 100 100 81.9 90.1 100 100
5 97.2 0.56 92.5 100 100 100 100 100 100 100 73.8 100 100 100

SVM-DA 1 99.2 0.41 100 100 100 90.9 100 100 100 100 100 100 98.9 100

2 98.3 0.26 89.9 100 100 100 100 100 100 99.9 90.3 100 100 100
3 98.3 0.46 99.3 100 100 100 100 100 90.9 90 99.3 100 100 100
4 88.8 1.02 90.4 99.5 90 33.7 91.3 79.6 100 100 100 100 90.2 98.8
5 94.9 1.00 70 98.9 100 100 100 98.3 100 100 81.5 90.1 100 100

Between-laboratory comparisons: classification accuracies

Predictive performances of the discriminant analysis models were determined by internal 
validation using the stratified 10-fold cross-validation was chosen method, because it is 
often a good compromise between bias and variance. In stratified 10-fold cross-validation, 
the data is partitioned into 10 nearly equal sized parts with approximately the same number 
of samples per class (i.e., per fiber). The discriminant functions are then calculated using 
the information from all but one of these subsets, and the left-out portion is used to test the 
classifier. This process is repeated until each subset of samples has been used for testing. 
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ACTUAL CLASS
PREDICTED 

CLASS 86 87 88 91 92 95 98 99 112 113 114 145

86 85.4 14.6
87 100
88 0.1 99.9
91 96 0.3 3.4 0.3
92 2.3 92.3 5.4
95 2.2 2.8 95
98 100
99 100
112 15.8 84.2
113 0.2 99.8
114 100
145 100

Combined Lab Data Confusion Matrix using QDA

Percentages of correctly classified spectra are in bold and those equaling zero are omitted.
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PCA and DA (intra-laboratory)

PCA scores plot of 12 blue acrylic samples (10 
replicates each) collected at laboratory 3. Ellipses 
around groups of spectra represent distances that 

are statistically equal from the group mean with 
95% confidence.
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QDA 96.3 ± 2.9
SVMDA 95.9 ± 4.3
LDA 94.8 ± 2.0

Fiber QDA SVMDA LDA

112 82.3 94.1 80.4
086 96.0 89.9 81.6

Top: Average classification 
accuracy from five laboratories 
resulting from 100 iterations of 
stratified 10-fold cross-
validation.

Bottom: Samples with highest 
numbers of misclassifications
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Data Fusion Methodology 
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Accuracy comparisons for multivariate classification 
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A prototype fiber database has been developed with the objectives of providing 
access to fiber characteristics and spectra for statistical comparisons. 
Understanding the significance of fiber evidence must be based on a thorough 
background of textile manufacturing practices and of the prevalence of fiber types 
in various regions of the world. 

Mass production has resulted in the presence of textile fibers in numerous 
different and abundant commercial products. Further, when combinations of 
polymer types, colors, morphology, etc., are all taken into account, enormous 
numbers of different fibers exist. Establishing a collection of fibers that is 
representative of all possibilities is complicated by rapid changes in 
manufacturing practices and globalization of textile production: the population is a 
moving target of indeterminate size and evolving diversity.

As is often said about the problem of educating scientists to use statistics, the 
issues most discussed are often about which statistical approaches are 'best'. In 
fact, the majority of the benefit of statistics, when applied to understanding 
complex data, arises from the use of simple systematic comparisons with 
supporting descriptive statistics. It is our belief that if simple graphics do not show 
discrimination, no amount of statistical machinery will be convincing.

Summary
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