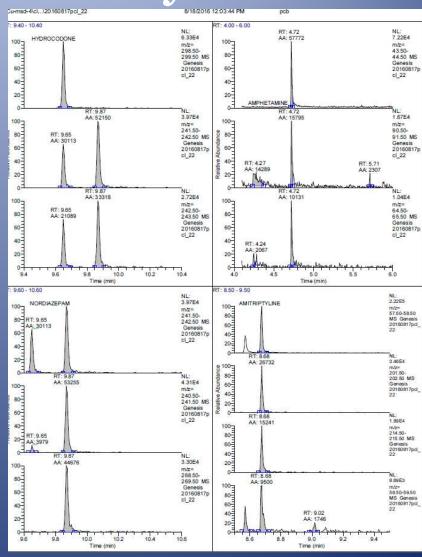


Low Level Analytes and Reducing the Time to Detection in Forensic Toxicology Analysis

Madeline Montgomery FBI Laboratory Madeline.Montgomery@ic.fbi.gov

Names of commercial manufacturers are provided for identification purposes only, and inclusion does not imply endorsement of the manufacturer, or its products or services by the FBI. The views expressed are those of the author and do not necessarily reflect the official policy or position of the FBI or the U.S. Government.

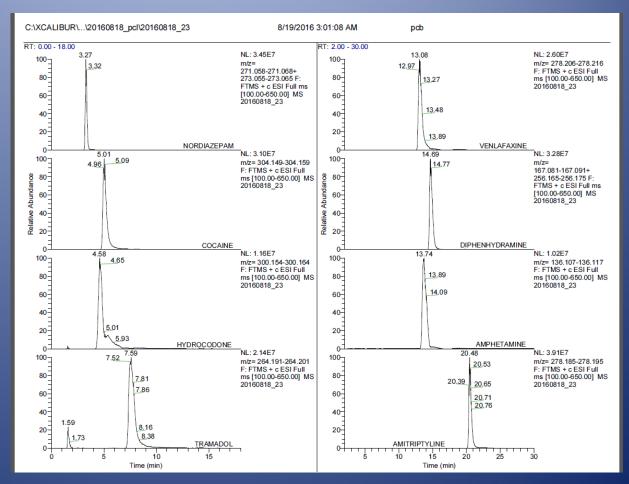
Low Level Analytes / Limited Sample


Screening for Basic Drugs

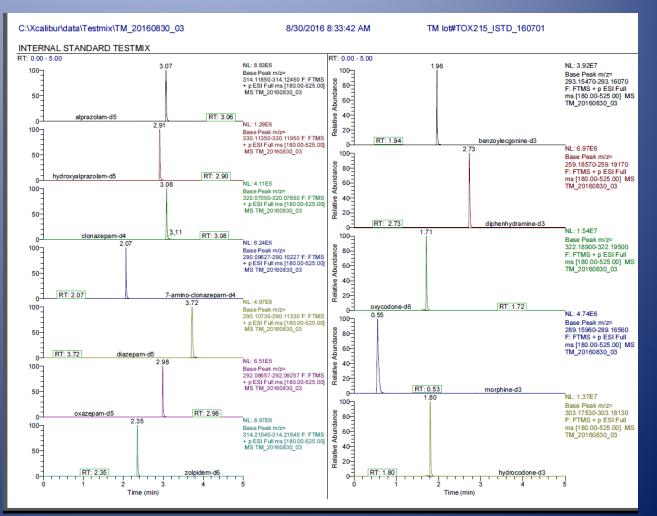
- Diverse
- Important
- Complex

- Analgesics
- Antidepressants
- Antihistamines
- Antipsychotics
- Benzodiazepines
- Cardiac Drugs
- Hallucinogens
- Hypnotics
- Stimulants
- Sympathomimetic Amines

Historical Analysis


- LLE or SPE
 - LLE analyst variability
 - SPE relatively fast
 - 1 mL sample LODs ~10 ng/mL for many
- GC/MS (35 min runtime)
 - Advantage EI library matching
 - Disadvantage not amenable to all drugs and metabolites

Historical Analysis


• LC/MS (45 min runtime)

- Advantage: increased sensitivity and scope; HRMS
- Disadvantage: long runtime; poor chromatography for some classes
- Full Scan Plus Data Dependent MSMS Scanning
 - reinjection
 - labor intensive data analysis

New and Improved...SLE with UPLC-MS/(MS)

- SLE fast
 0.3 mL sample size
- UPLC fast
 - Ten minute run time

UPLC Parameters

• Column

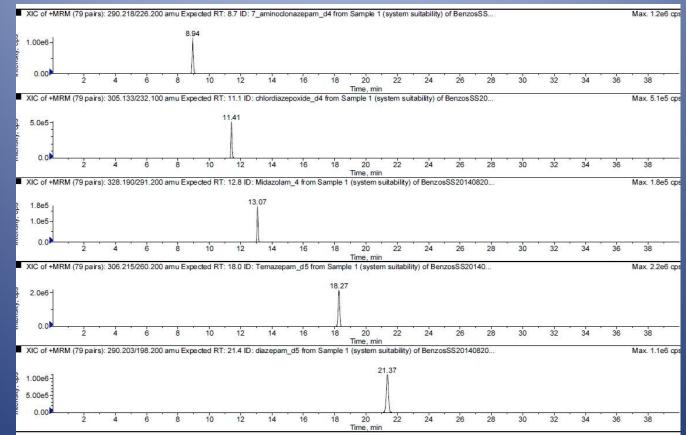
- C18 (1.6μ, 2.1 x 50 mm)
- Solid core particle technology claims to increase chromatographic efficiency
- Mobile Phases
 - 5 mM Ammonium formate in 0.1% formic acid
 - 0.1% formic acid in acetonitrile

• Flow rate: 0.5 mL/min

Time (min)	Aqueous (%)	Organic (%)
0	95	5
0.9	95	5
2.67	60	40
4.67 5.56	60	40
5.56	0	100
7	0	100
7.25	95	5
10	95	5

New and Improved...SLE with UPLC-MS/(MS)

Component	Final Concentration in Specimen (ng/mL)	
benzoylecgonine-d ₃	10	
morphine-d ₃	10	
hydrocodone-d ₃	5	
oxycodone-d ₆	5	
clonazepam-d ₄	5	
7-aminoclonazepam-d ₄	3	
α-hydroxyalprazolam-d ₅	3	
alprazolam-d ₅	3	
oxazepam-d ₅	3	
diazepam-d ₅	3	
diphenhydramine-d ₃	3	
zolpidem-d ₆	2	

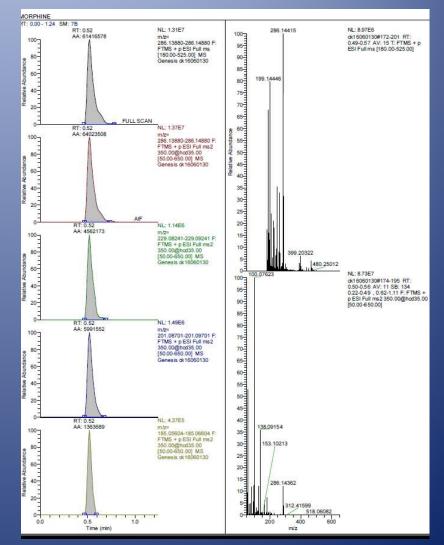

New and Improved...SLE with UPLC-MS/(MS)

Analyte	Molecular Ion (M+1)	Analyte	Molecular Ion (M+1)
α-hydroxyalprazolam	325.0851	flunitrazepam	314.0936
α-hydroxymidazolam	342.0804	flurazepam	388.1586
α-hydroxytriazolam	359.0461	lorazepam	321.0192
7-aminoclonazepam	286.0742	lormetazepam	335.0348
7-aminoflunitrazepam	284.1194	medazepam	271.0996
alprazolam	309.0902	midazolam	326.0855
bromazepam	316.0080	nordiazepam	271.0633
chlordiazepoxide	300.0898	oxazepam	287.0582
clonazepam	316.0484	phenazepam	348.9738
desalkylflurazepam	289.0539	prazepam	325.1102
desmethylflunitrazepam	300.0779	temazepam	301.0738
diazepam	285.0789	tetrazepam	289.1102
estazolam	295.0745	triazolam	343.0511
etizolam	343.0778		

27 compounds; 10 minutes

. UNCLASSIFIED

19 compounds; 40 minutes


In Contrast – LC Quant Separation for Benzos

New and Improved...SLE with UPLC-MS/(MS)

- Using MS as a screening tool
 - Advantage: high resolution data
 - Ruling out is usually easy
 - Ruling in requires MSMS analysis
 - All-ion fragmentation analysis

All-Ion Fragmentation

- All ions fragmented
- Not precursor specific
- Automated data analysis possible

Conclusions

- UPLC and HRMS can reduce sample analysis time
- Data analysis is the next hurdle
- How much data do we need to make a decision to go or no-go?