Monte-Carlo Modeling of Multiplexed Neutron Spectrometers

Samantha Isaac

Mentor: Leland Harriger

Standard Triple Axis Spectrometers

A1(θ_{M}): Angle of the Monochromator

A3(θ_s): Angle of the Sample

A5(θ_A): Angle of the Analyzer Crystal Group

A2($2\theta_M$): Take-off angle from the Monochromator A4($2\theta_S$): Take-off angle from the Sample A6($2\theta_A$): Take-off angle from the Analyzer Crystals

RITA-Style Multiplexed Triple Axis Spectrometers

- In order to cover a larger A4 range, multiple analyzer crystals are aligned along A5 in order to form an Analyzer Crystal Group
- Each crystal can then be individually rotated to scatter a different energy

Rowland Geometry

• Uses the Central Angle Theorem

http://www.mathopenref.com/arccentralangletheorem.html

- Bragg's Law
 - Waves are scattered from lattice planes whose interplanar distance is d. The angle necessary for this scattering process to take place is the Bragg angle (θ_B). The waves then scatter off at an angle of $2\theta_B$.
 - $n\lambda = 2dsin\theta_B$

https://en.wikipedia.org/wiki/Bragg%27s_law#/media/File:BraggPlaneDiffraction.svg

Rowland Geometry

• Typically, this simple geometry is used throughout the world in triple axis spectrometers

- A wide A4 range created by the sample is compressed to produce a sample image at the position of a single detector
- The analyzer crystal group is placed tangent to the circle
- In fixed-E_f mode (our primary mode of interest), each analyzer crystal is individually rotated such that each reflect off the same energy
- This results in a relaxed Q-resolution due to the loss of the A4 information

Inverse Rowland Geometry

- This is a new geometry developed for RITA style multiplexed spectrometers by Leland Harriger and Igor Zaliznyak
- A sample image reproduced by the multiplexed analyzer is projected onto the Rowland circle and then viewed by a position sensitive detector (PSD) through a radial collimator.
- This ability to use a radial collimator just before the PSD greatly increases the signalto-noise ratio.

Monte-Carlo Simulations

- All simulations were run using McStas, a neutron ray-trace simulation package.
 - http://www.mcstas.org/
- I built a virtual triple axis spectrometer that mirrors SPINS in McStas where neutron ray paths were determined component by component using the Monte-Carlo method
- Monte-Carlo simulations use a repeated random sampling process rather than an analytical calculation to determine neutron ray paths

National Institute of Standards and Technology U.S. Department of Commerce

Focal Length at Sample Image

Focal Length at Sample Image

Focal Length at Sample Image

Calibration Results

- The elastic lines from a simulation of a spectrometer using Rowland defocusing is consistent with real data from SPINS
- The A4 scans are also very similar

Calibration Results

- All Monte-Carlo results were restructured to mimic real data files and DAVE was then used to run calibrations.
- The peak and width (A, b) are use to determine the sensitivity of each pixel.
- The center (x₀) is used to determine the A4/Ef value sampled by each pixel.

National Institute of Standards and Technology U.S. Department of Commerce

Calibration Results

- Fits were then run in DAVE using the previous calibrations to produce these plots
- Curved shape of the energy plot is a result of the crystals lying tangent to the Rowland circle

 Intensities are not uniform across the crystals for this same reason as seen in the sensitivity plot

Simulating a 'Perfect' Rowland Triple-Axis Spectrometer

- The analyzer crystal group is placed along the circle as opposed to tangent to it
- Each crystal is then rotated to produce the A5 value relative to their individual position on the circle.

Results

 Uniform intensity across crystals is due to a reduction in beam depletion caused by being further and further away from the sample

Wide Angle Designs

IRIS (Inverse Rowland Inelastic Spectrometer)

- We can expand the multiplexing of analyzer crystals to a 150° A4 coverage by closely packing the crystals
- The PSD is then converted into a large detector bank

LEAF (Low Energy Anti-Focusing Spectrometer)

• This design superimposes multiple Rowland circles with each encompassing its own reduced IRIS design

Radial Collimato

Detector E

 Slightly reducing Q-space allows for sampling of multiple energies at once

LEAF

National Institute of Standards and Technology U.S. Department of Commerce

IRIS

Conclusions

- Multiplexing a triple axis spectrometer increases throughput considerably.
- Rowland defocusing can be applied to triple axis spectrometers immediately
- Monte-Carlo results agree very well with experimental results for a Rowland defocused triple axis spectrometer
- Monte-Carlo results for wide angle designs can now be carried out with a high level of confidence

Acknowledgments

- Leland Harriger
- Jeff Lynn
- Julie Borchers and the other SURF Directors
- NSF and CHRNS

