Monte-Carlo Exploration of Focused Neutron Guide and Monochromator Geometries

Samantha Isaac

Mentor: Leland Harriger

New Cold Source

- A new cold source will be replacing the current cold source
- This produces most of the cold neutrons used at the NCNR

Replacing NG5 and SPINS

NIS

National Institute of Standards and Technology

U.S. Department of Commerce

Replacing NG5 and SPINS

Replacing NG5 and SPINS

Primary Spectrometer

Ē

Software used

Mcstas

- http://www.mcstas.org/
- Guide_bot_distribution
 - Courtesy of Mads Bertelsen
- iFit
- NCNR Rocks Cluster

NG5

- NG5 is a 41 meter long straight rectangular guide
- Neutron guides contain coatings that line the inner walls that allow the neutrons to bounce down the guide
- Coated in Ni58

Momentum Transfer

 The momentum and collision angle determine the momentum transfer (Q)

$$Q = 2Ksin\theta$$

sin heta pprox heta

Guide Coatings

• Increasing m-value is one way of increasing flux

National Institute of Standards and Technology U.S. Department of Commerce

Source: Swiss Neutronics

Ballistic Ellipse

- Use a ballistic elliptical geometry
- Each neutron should ideally only bounce once down the guide

Ballistic Ellipse

National Institute of Standards and Technology U.S. Department of Commerce

NG5 Baseline

2.3 meV: 1.5e8 Flux , 30% brilliance transfer17 meV: 1.6e8 Flux , 6% brilliance transfer

Ballistic Ellipse

2.3 meV: 5e8 Flux , 80% brilliance transfer 17 meV: 11e8 Flux , 45% brilliance transfer

Monochromator Optimization

Doubly Focusing Monochromator

Source: Johns Hopkins University

U.S. Department of Commerce

Source Image

 The focal point of the elliptical guide is NOT where the source image is produced

Monochromator Results

Future Plans

- Compare intensities at sample position of flat monochromator with optimized focused monochromator.
- Integrate the monochromator into guide optimization
- Vary the m-value of the coating along the ellipse
- Build the best guide/spectrometer ever

Acknowledgments

- Leland Harriger
- Mads Bertelson
- •Jeff Lynn
- Julie Borchers, Joe Dura, and all SURF Directors
- NSF and CHRNS

