Metrology Challenges Associated With Gate Dielectric Scaling, Including the Vertical, Replacement-Gate MOSFET

Don Monroe Jack Hergenrother Rafi Kleiman

Outline

- Drivers for scaling
- Scaled gate oxide
- High-κ gate dielectrics
- Replacement gate processes
- Vertical Replacement Gate

Outline

- Drivers for scaling
 - Density
 - Performance
 - Recent history: hyperscaling of gate oxide and gate length
- Scaled gate oxide
- High-k gate dielectrics
- Replacement gate processes
- Vertical Replacement Gate

Why Scale T_{ox}?

1. Better gate control of channel

- thinner T_{ox} helps for shorter gates
- other "knobs" available

2. Increased *drive* through C'ox

$$f \sim \frac{I_D}{C_{total}V_{DD}} = \frac{C'_{ox}W(V_{DD}-V_T)v_{sat}}{(C'_{ox}WL+C_{ext})V_{DD}}$$

Improvement from increased C'_{ox} depends on:

1999 ITRS*

Memory and Logic Technology Requirements -- Near Term

YEAR TECHNOLOGY NODE	1999 180 nm	2000	2001	2002 130 nm	2003	2004	2005 100 nm
MPU GATE LENGTH (nm)	140	120	100	85	80	70	65
Minimum Logic Vdd (V) (desktop)	1.5-1.8	1.5-1.8	1.2-1.5	1.2-1.5	1.2-1.5	0.9-1.2	0.9-1.2
T _{ox} equivalent (nm)	1.9-2.5	1. 9- 2.5	1.5-1.9	1.5-1.9	1.5-1.9	1.2-1.5	1.0-1.5
Nominal I _{on} @ 25°C µA/µm) [NMOS/PMOS] high performance	750/350	750/350	750/350	750/350	750/350	750/350	750/350
Maximum I _{off} @ 25°C (µA/µm) [NMOS/PMOS] high performance	5	7	8	10	13	16	20
Percent static power reduction necessary due to innovative circuit/system design	0	33	48	55	71	77	81

* International Technology Roadmap for Semiconductors December 1999

Difficult Challenge (before 2005): "Production worthy high k dielectrics and compatible gate materials will not be available."

Moore Plot of Moore's Law

1999 ITRS*

Memory and Logic Technology Requirements -- Long Term

YEAR TECHNOLOGY NODE	2008 70 nm	2011 50 nm	2014 35 nm
MPU GATE LENGTH (nm)	45	32	22
Minimum Logic Vdd (V) (desktop)	0.6-0.9	0.5-0.6	0.3-0.6
T _{ox} equivalent (nm)	0.8-1.2	0.6-0.8	0.5-0.6
Nominal I _{on} @ 25°C (µA/µm) [NMOS/PMOS] high performance	750/350	750/350	750/350
Maximum I _{off} @ 25°C (µA/µm) [NMOS/PMOS] high performance	40	80	100
Percent static power reduction necessary due to innovative circuit/system design	91	97	98

* International Technology Roadmap for Semiconductors December 1999

Outline

- Drivers for scaling
- Scaled gate oxide
 - manufacturing yield
 - Boron penetration
 - reliability
 - tunneling current
 - diminishing returns in capacitance
 - degraded mobility
- High-k gate dielectrics
- Replacement gate processes
- Vertical Replacement Gate

Boron Penetration

Typical dopant-activation RTA 1000°C, 5 sec

Boron from p-poly gate shifts pMOS threshold voltage

- 10^{11} - 10^{12} cm⁻² is a problem
- Only *electrical* measurement is sensitive enough
- Repeatability is the key issue
- Depends sensitively on thermal cycle
- Dependes sensitively on oxide thickness
- BF₂ assists boron transport
- Nitrogen engineering can buy process margin

Anode Hole Injection Model

Percolation Model for Breakdown

Fig. 7. Schematic illustration of the spheres model for intrinsic oxide breakdown simulation based on trap generation and conduction via traps. A breakdown path is indicated by the shaded spheres.

Degraeve et al, TED 45(4), 904(1998) (IMEC)

"Soft" Breakdown

Sudden event

- increase in current or current noise
- not a resistive shunt afterwards

• More prevalent:

- For thin oxides
- At low voltages
- For small areas (like transistors)

• New Model (Alam et al. '99 IEDM)

- Explains many features
- Breakdown soft if power is below a threshold
- Circuit Implications
 - Some transistors still function
 - What can we live with?

Soft Breakdown Data

The IBM "Doomsday Scenario"

Stathis et al., IEDM '98, pp167 (IBM)

Reliability of SiO₂

- Reliability *determines* useful oxide thickness
- Time-dependent dielectric breakdown (TDDB)
 - Not voltage for instantaneous breakdown
 - Need stressing of tens of samples for days or more
 - Depends on much more than electric field: electrode type, polarity, thickness, temperature, ...
- Breakdown is getting softer
- Other reliability issues (not discussed here)
 - Process-induced damage
 - Stress-induced leakage current
 - Negative Bias-Temperature Instability
 - Hot-carrier reliability at high V_{DS}

Current estimate of limit: $T_{ox, physical} \sim 1.5$ nm general agreement among Lucent, IBM, IMEC (see IRPS 2000)

SiO₂ Tunneling Current

Sorsch et al., '98 VLSI Symposium

What's the Tunneling Current Limit?

- Historical: 34Å
- Recent Past: 1 A/cm² \Rightarrow 16Å SiO₂
- Intel, AMD*: > 100 A/cm² ! \Rightarrow 11–12Å nitrided SiO₂
- TSMC* ultra low power: $< 10^{-3} \text{ A/cm}^2 \stackrel{!}{\longrightarrow} 26 \text{\AA}$

*VLSI Technology Symposium, June, 2000

F_{ox} from **CV**

Calculated ΔT_{ox} in Substrate

Andrea Ghetti: Poisson and many-subband Schrodinger simulation

Scaling Oxide is Not Enough

- Quantum effects become significant
- Must scale C_{gate} , not C_{ox}

Kathy Krisch, 1997 VLSI Symposium

Mobility-limiting Mechanisms

Mobility for t_{ellips} 20.7Å

Oxide Scaling

- Difficulties
 - Boron penetration
 - Reliability
 - Tunneling current

• Diminishing returns

- Capacitance corrections
- Mobility degradation

Outline

- Drivers for scaling
- Scaled gate oxide
- High- κ gate dielectrics
 - materials and processing challenges
 - characterization challenges
- Replacement gate processes
- Vertical Replacement Gate

One View of Gate Dielectric Transition

Si/SiO₂ Interface Properties

- Known preparation techniques (cleans+anneal)
- Low interface state density (<1/10,000 after H₂)
- Very low fixed charge
- No extrinsic scattering (?)
- Thermally stable
- Atomically abrupt
- Strained SiO₂ layer unless annealed above 900°C

35 years of experience!

It's not Si, it's SiO₂ that makes CMOS work! It's not SiO₂, it's the Si/SiO₂ interface!

High-к Gate Stack Approaches

High-k on Si Metal gate Bottom Barrier

Al, Pt Ta₂O₅, TiO₂ STO, BST Si

Top and Bottom Barrier

Metal-gate Improvement?

With Kathy Krisch and Jeff Bude, '97 VLSI Symp.

Possible High-ĸ Stacks

 $\frac{\text{poly-Si gate}}{40 \text{ Å } (\epsilon = 16)}$ Si

Metal gate with SiO_2 barrier. Much of the electrical thickness "budget" is used by the SiO_2 layer. Si-compatible dielectric *Retains compatibility with poly-Si gate*

Stability of Silicates (700 - 900°C)

After Beyers, J. Appl. Phys. **56**, 147 (1984) and Wang and Mayer, J. Appl. Phys. **64**, 4711 (1988)

• ZrO₂/ZrSi_xO_y stable next to Si; Ta and Ti oxide/silicate not stable

• Zr, Hf Silicates: no interfacial layer required AND can be used with poly-Si(Ge) gates

Stability of Hafnium Silicates on Si

As-Deposited top Si at 25°C

After Anneal N₂/1050^oC/20 sec

Courtesy G. Wilk formerly TI, now Bell Labs

Metal-Gate Challenges

Metal Electrodes

- Metals eliminate poly depletion and B penetration
- Midgap metals force $V_t \sim 0.5 \text{ eV}$ too high
- Dual metals achieve low V_t , but difficult & costly processing

Poly-Si
Poly-Si allows same gate, only alter doping
Electrodes
Poly depletion and B penetration must be addressed

Outline

- Drivers for scaling
- Scaled gate oxide
- High-k gate dielectrics
- Replacement gate processes
 - Non-planar geometry
- Vertical Replacement Gate

Standard vs. Replacement Gate*

Substrate with isolation

Deposit and Etch Gates; implants; anneal

Deposit interlayer dielectric; remove dummy gate

*A. Chatterjee *et al.* (TI) '97 IEDM ©2000 Lucent Technologies

Replacement-Gate Challenges

Standard high-κ challenges

- Ultra-conformal deposition
- Properties of film in corner

Risk of new process Critical CMP process

Outline

- Drivers for scaling
- Scaled gate oxide
- High-k gate dielectrics
- Replacement gate processes
- Vertical Replacement Gate
 - Nonlithographic gate length control
 - Increased drive without scaling oxide
 - New knobs, new challenges

Comparison with Planar MOSFET

Planar MOSFET

Our Vertical MOSFET

Vertical, Replacement-Gate Process

100 nm VRG MOSFET

Gate length controlled precisely through a deposited film thickness \Rightarrow can be scaled to sub 30 nm

Scanning Capacitance Image

Solid source diffusion provides self-aligned source/drain extensions

 $L_G = 50 \text{ nm}$

2-Input AND Comparison

Layout Density and Drive Metrics

- Traditional Transistor Current Drive: $A/\mu m$
 - Useful for comparing planar transistors
 - Simple speed proxy if interconnect loaded
- VRG has (roughly) twice the width per area
 - Same coded gate width
 - Two sides per pillar

Need a new drive current metric $A/\mu m \Rightarrow A/\mu m^2$

VRG could be *twice as good* as planar (currently ~20-40% better)

Can Extra Width Be Traded for *T*_{ox}**?**

- Extra width gives more drive, but also more loading
 - ALSO true of T_{ox} scaling! (not all circuits benefit!)
- *T_{ox}* scaling needed for short devices
 - BUT don't need to worry about length variations
- T_{ox} scaling has driven oxide fields very high
 - Leakage, reliability issues
 - Carrier velocity is degraded at high normal fields
- Electrical thickness of inversion layer limimits effectiveness of T_{ox} scaling

Some relaxation of oxide scaling should be possible!

Special VRG Metrology Needs

Gate Oxide

- The usual replacement-gate challenges
- No blanket film area- sidewall is vertical
- Stress in stack may change growth

Dopant distribution

- No planar structure for SIMS profiling
- Solid-source diffusion may be sensitive to interlayers
- The usual problem: interstitial distribution
 - » Only indirect, post-mortem measurements
 - » Critical for all shallow doping extensions

Summary

- Gate oxide scaling
 - Daunting challenges
 - Diminishing returns

• Alternative gate dielectrics

- Similar diminishing returns
- Many materials unknowns
- New processes possible

• Vertical, Replacement-Gate MOSFET

- Huge risks due to process and layout changes
- No immediate materials changes
- Provides an alternative to traditional oxide scaling
- Non-lithographic gate-length control