Optimizing a Magnetically Shielded Solenoid for Extended-Q SANS Polarization Analysis Capability

Sidney Molnar, Hamilton College '22 SURF Gaithersburg NCNR 2021 Mentor: Wangchun Chen

Overview

Background

SANS and vSANS Measurements

³He Cell

Optimization

Turn Configurations Sensitivity and Resistance **Results** Figures of Merit

Hamilton

NUST Center for Neutron Research

SANS and vSANS Measurement Capabilities

SANS and vSANS Measurement Capabilities

6

Essential Features of the Solenoid

7

Optimizing Uniformity of the Magnetic Field in a Shielded Solenoid

0

- Initial Calculations
 - Final Turns
 - Sensitivity
- Fractional Turns
- Off-Axis Scans

0

Initial Parameters for Optimization

8 small compensation coil turns

15 large compensation coil turns

0.8 amps of current through each coil

NIST OHRNS

Initial Parameters for Optimization

8 small compensation coil turns

15 large compensation coil turns

0.8 amps of current through each coil

NIST OHRNS.

Finding the Final Configuration

- 14 small coil turns
- 22 large coil turns

Figure of Merit: Line Average = $(dB_z/dz)/|B_z|$

Hamilton

11

Sensitivity Analysis

How does the position of the solenoid within the mu-metal shield affect our field?

12

Adjustments for Fractional Turn Configurations

• Parallel Resistance =

(Coil Current * Coil Resistance)

Parallel Current

• Parallel Resistance: ~2.6 ohms

NIST OHRNS

13

Summary of Our Results

Extended Q-Range for smallscale nanomagnetic research

Optimal uniformity for longer relaxation time of ³He cell

Final Figures of Merit reduced significantly from our original calculations

