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POLYMERS

Large molecule/macromolecule composed of repeating subunits called monomers

7

Polystyrene(Styrofoam) Polyisoprene(rubber) Insulin Hexamer DNA
Image from: Image from: Image from: Image from:
https://www.theodysseyonline.com/ne https://www.tirerack.com/content/t https://en.wikipedia.org/ http://exchange.smarttech.com/search.
w-year-no-more-styrofoam irerack/desktop/en/homepage.html wiki/Insulin html’g=%22DNA%20structure%2?2
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POLYMER MODELS

o ldeal Chain:

o Modeled after a random walk model (no
attractions, no repulsions)

o “Real Chain™:
o Incorporates interactions between all
segments

o Includes a repulsive excluded volume
interaction and an attractive
component that allows us to account
for the quality of the solvent

A typical ideal chain

https://en.wikipedia.org/wiki/ldeal _chain
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FLORY THEORY/SCALING LAW

NV 2 _ 1 _ 2
Rg N Rg Y k:1(rk Tmean)
R, is the radius of gyration of the polymer For a good solvent, v=3/5
N is the degree of polymerization(# of segments) For the 8-solvent,v = |/2
v Is the Flory exponent For a poor solvent,v = |/3

Solvent quality depends on chemistry and temperature
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SOLVENT QUALITY

e “Good solvent’’:

Monomers prefer to interact
with the solvent particles rather
than with other monomers
Repulsive interactions dominate
Polymer swells

e “Q-solvent’’:

Attractive and repulsive
interactions are equal
Polymer behaves as if it’s an
ideal chain

MATERIAL MEASUREMENT LABORATORY

e “Poor solvent”

* Monomers prefer to interact
with other monomers rather
than with solvent particles

* Attractive forces dominate

* Polymer contracts and behaves
more as a hard sphere

Images from: http://rkt.chem.ox.ac.uk/lectures/pol.html



OBJECTIVES

* Develop a model that can identify the 8-temperature
of a polymer solution

* Use molecular dynamics to simulate polymers of
varying chemistries and molecular architectures in an
explicit solvent
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MOLECULAR DYNAMICS SIMULATIONS

Animation from
https://en.wikipedia.org/wi
ki/Molecular_dynamics

time 0.0041 ps

Set initial conditions, particle

positions/velocities, and select
ensemble (NPT,NVE etc.)

A 4

Calculate forces from particle
positions using chosen
interaction model

A 4

Solve Newton’s equations of
motion(integrate)

A

Write Data to Disk/Analyze
Results

A

Loop over
time-steps
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IMPLICIT SOLVATION WORK

. Implicit solvation work on this topic has been done by Steinhauser M.O. In J. Chem. Phys. 122(2005) on flexible linear polymer chains of
varying molecular masses

. Used a coarse grained bead-spring model that introduced a dimensionless parameter A which determines the depth of the intermolecular
potential
. 1 -5 v 1 v 1 " 1 1 B 1 i
. Larger A=greater attractive forces between segments i “E' =00
. The overall intermolecular potential has the form w 1.0} \‘-“ s A=021_
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Where a and 8 are parameters that fit the A | A | a | A | " | A 1 i
08 09 10 11 12 13 14 15

cosine curve to smoothly approach 0 at the cutoff
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IMPLICIT SOLVATION WORK
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Image from: Steinhauser M.O Int. J. Mol. Sci. 2009, 10(12) Steinhauser M.O. J. Chem. Phys 122(2005)
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WHY USE AN EXPLICIT SOLVENT?

A

Explicit Solvent

B

Implicit Solvent

Image from: http://csb.stanford.edu/~koehl/ProShape/born.php

NIST
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* Provides a more realistic and
detailed full-atom description of
the system

* Essential to reproduce certain
properties of solute molecules

* Reaction kinetics
* Dynamics

* Computationally expensive...

but worth it




SIMULATION DETAILS

Used a coarse grained bead model with an explicit solvent to try and 150
determine the -temperature of various polymers of different molecular

|
architectures and chemistries ||
- NPT Ensemble y |
& | 5
: : = 2.5
¢ The Lennard Jones Potential was used with a cutoff of 2.50 = 0 l|| PE——— =0
= |
* Used ZENO numerical path integration software to obtain conformational |'|
properties of the generated polymer chains (radius of gyration, ".
hydrodynamic radius, etc) 1198 /
03 0.382 0.5 0.85
r/mm
cﬂ‘ o12 g6
/ N r T
Polymer chain with 41 monomers 72000 solvent particles + polymer Image from: http://www.sklogwiki.org/SklogWiki/index.php/Lennard-Jones_model
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SYSTEMS STUDIED

Molecular Mass: 41,81,161,321 < K —)

Temperature=0.5,0.7,0.9

&, for polymer-polymer interactions: 1.0 e O
g, for solvent-solvent interactions: |.0

g, Cross interactions: Modified Lorentz Berthelot
mixing rule

Esp =VEpp * ESS(]- —a) Linear Chain Ring Polymer
a=.0, a=.02, a=.04, a=.06, a=.08, a=.1, a=.12, a=.14, a=.16,
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WHAT SHOULD OUR MIXING RULE BE?

a=0

Swollen Region
Good solvent
conditions

0.02<x<0.04
Intermediate Region
R, is sensitive to
changes in temperature

NIST

Mixing Rule Dependence of <R,> for Linear Chains
=7

MW=41
MW=81
MW=161 |
MW=321

0.7 |

ISSPI

a = 0.06

@EEEEmmES  Collapsed Region

Always poor solvent
conditions

0.1

0.00 002 004 006 008 010 012 0.14 0.16
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SWOLLEN REGION-LINEAR

« a=0
<R,> v T for Linear Chains * No clear trend between <R > and.
a=0 temperature, difficult to identify
f-temperature
08l ] * Chains are more swollen, cross
interactions too attractive (good
solvent conditions)
071 | * Cannot naively choose mixing rule
Ml o = ——]
<[z e | | |
Vv ’. ;
L ;
0.5} ] | |
oo MW=41 |
0.4 - o MW=81 || 1 !
®-® MW=161 | |
®-e Mw=321 | |

0.3 ] ] ] ] | ‘| / A\ ]I
0.4 0.5 0.6 0.7 0.8 0.9 1.0 <‘

T —
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Mixing Rule Dependence of <R,> for Linear Chains
=7

a=0
Swollen Region
Good solvent

conditions a > 0.06
Collapsed Region
Always poor solvent
conditions
0.02<x<0.04

Intermediate Region
<R > is sensitive to
changes in temperature

0.00 002 004 006 008 010 012 0.14 0.16
«
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COLLAPSED REGION-LINEAR

<R,> v T for Linear Chains

0.50 , a=.16 | | « a= 0.06
®® MW=41 * Chain is always collapsed, cross
0.45 .| @@ Mw=81 | interactions too repulsive (bad
@ MW=161 solvent conditions)
0.40 | | ®—® MW=321 | * Desired behavior was not achieved
for these simulations, no crossover
0.35 | - occurs
°f, =030} | ‘ ’
| |
0.25 | . | ‘
0.20 | | | |
| |
\ |
0.15 : | |
y %
010 1 1 1 1 ] / \:
0.4 0.5 0.6 0.7 0.8 0.9 1.0 S
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Mixing Rule Dependence of <R,> for Linear Chains
=7

a=0
Swollen Region
Good solvent

conditions a > 0.06
Collapsed Region
Always poor solvent
conditions
0.02<x<0.04

Intermediate Region
R, is sensitive to
changes in temperature

0.00 002 004 006 008 010 012 0.14 0.16
«
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INTERMEDIATE REGION-LINEAR

0.8 | |
— 0.7
a = 0.02
0.7 |
0.6 |-
0.6 A
:’;;-, E o> 1= o5
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0.4 |
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e MW=321 & ® MW=321
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RING POLYMERS

T |
Mixing Rule Dependence of <R,> for Rings ‘ |
|
0.6 L — | l’
oo MW=41 | |
e MW=381 | |
03 oo MW=161 |] | |
Swollen Region oo MWN=321 ‘/ \1
0.4} 1 ]
Al Swollen Ring
0.3 ] | |
Intermediate ‘, |
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0.2+ T R }
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Collapsed Ring
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INTERMEDIATE REGION-RINGS

<R,> v T for Rings

0.50 . . a=.04
e a=004
ool | * f-temperature in range
0.8< 6<0.9
<|% 035}
0.30
o MW=41
0251 e MW=81 |
oo MW=16l1
0.20 ' L L .
0.4 0.5 0.6 0.7 0.8 0.9 1.0
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FUTURE WORK

* Increase resolution of search for 6-temperature N 4
* Explore 0 < a <0.06
* Explore more temperatures within range
0.5<T<0.9 *
* Explore different types of molecular architectures
* Find 6-temperature for branched polymers

Ve

Branched/Star Polymer
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