

Molecular Dynamics Study of the Conformational Properties of Polymers in an Explicit Solvent and the Identification of the θ-Temperature

James Gayvert¹, Alexandros Chremos², Jack Douglas²

¹Le Moyne College, ²National Institute of Standards and Technology(NIST), U.S. Department of Commerce, Gaithersburg, Maryland, USA

POLYMERS

Large molecule/macromolecule composed of repeating subunits called monomers

Polystyrene(Styrofoam)

Image from: https://www.theodysseyonline.com/ne w-year-no-more-styrofoam

Polyisoprene(rubber)

Image from: https://www.tirerack.com/content/t irerack/desktop/en/homepage.html

Insulin Hexamer

lmage from: https://en.wikipedia.org/ wiki/Insulin DNA

Image from: http://exchange.smarttech.com/search. html?q=%22DNA%20structure%22

POLYMER MODELS

- Ideal Chain:
 - Modeled after a random walk model (no attractions, no repulsions)
- "Real Chain":
 - Incorporates interactions between all segments
 - Includes a repulsive excluded volume interaction and an attractive component that allows us to account for the quality of the solvent

A typical ideal chain

https://en.wikipedia.org/wiki/Ideal_chain

FLORY THEORY/SCALING LAW

$$R_g \sim N^{\nu}$$
 $R_g^2 = \frac{1}{N} \sum_{k=1}^{n} (r_k - r_{mean})^2$

 R_g is the radius of gyration of the polymer N is the degree of polymerization(# of segments) ν Is the Flory exponent

For a good solvent, $v \approx 3/5$

For the θ -solvent, $v \approx 1/2$

For a poor solvent, $v \approx 1/3$

Solvent quality depends on chemistry and temperature

SOLVENT QUALITY

"Good solvent":

- Monomers prefer to interact with the solvent particles rather than with other monomers
- Repulsive interactions dominate
- Polymer swells

• "θ-solvent":

- Attractive and repulsive interactions are equal
- Polymer behaves as if it's an ideal chain

- Monomers prefer to interact with other monomers rather than with solvent particles
- Attractive forces dominate
- Polymer contracts and behaves more as a hard sphere

Images from: http://rkt.chem.ox.ac.uk/lectures/pol.html

OBJECTIVES

- Develop a model that can identify the θ -temperature of a polymer solution
- Use molecular dynamics to simulate polymers of varying chemistries and molecular architectures in an explicit solvent

MOLECULAR DYNAMICS SIMULATIONS

IMPLICIT SOLVATION WORK

- Implicit solvation work on this topic has been done by Steinhauser M.O. In J. Chem. Phys. 122(2005) on flexible linear polymer chains of varying molecular masses
- Used a coarse grained bead-spring model that introduced a dimensionless parameter λ which determines the depth of the intermolecular potential
- Larger λ =greater attractive forces between segments
- The overall intermolecular potential has the form

$$V_{inter}(r) = \begin{cases} V_{WCA}(r) - \lambda \epsilon, & 0 < r < 2^{1/6} \sigma \\ \lambda V_{cos}(r), & 2^{1/6} \le r < r_{cut} \\ 0 & else \end{cases}$$

$$V_{WCA}(r) = 4\epsilon \left\{ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right\} + \epsilon$$
$$V_{cos}(r) = \left[\frac{1}{2}\cos(\alpha r^{2} + \beta) + 0.5\right]\epsilon$$

Where α and β are parameters that fit the cosine curve to smoothly approach 0 at the cutoff

IMPLICIT SOLVATION WORK

WHY USE AN EXPLICIT SOLVENT?

Image from: http://csb.stanford.edu/~koehl/ProShape/born.php

- Provides a more realistic and detailed full-atom description of the system
- Essential to reproduce certain properties of solute molecules
 - Reaction kinetics
 - Dynamics
- Computationally expensive... but worth it

SIMULATION DETAILS

- Used a coarse grained bead model with an explicit solvent to try and determine the θ -temperature of various polymers of different molecular architectures and chemistries
- NPT Ensemble
- The Lennard Jones Potential was used with a cutoff of 2.5σ
- Used ZENO numerical path integration software to obtain conformational properties of the generated polymer chains (radius of gyration, hydrodynamic radius, etc)

Polymer chain with 41 monomers

72000 solvent particles + polymer

$$V_{LJ}(r) = 4\epsilon \left\{ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right\}$$

Image from: http://www.sklogwiki.org/SklogWiki/index.php/Lennard-Jones_model

SYSTEMS STUDIED

Molecular Mass: 41,81,161,321

Temperature=0.5,0.7,0.9

 ϵ_{pp} for polymer-polymer interactions: 1.0 ϵ_{ss} for solvent-solvent interactions: 1.0

 ϵ_{sp} cross interactions: Modified Lorentz Berthelot mixing rule

$$\varepsilon_{sp} = \sqrt{\varepsilon_{pp} * \varepsilon_{ss}} (1 - \alpha)$$

 $\alpha = .0, \alpha = .02, \alpha = .04, \alpha = .06, \alpha = .08, \alpha = .1, \alpha = .12, \alpha = .14, \alpha = .16,$

Linear Chain

Ring Polymer

WHAT SHOULD OUR MIXING RULE BE?

SWOLLEN REGION-LINEAR

- α=0
- No clear trend between <R_g> and temperature, difficult to identify θ-temperature
- Chains are more swollen, cross interactions too attractive (good solvent conditions)
- Cannot naively choose mixing rule

COLLAPSED REGION-LINEAR

- $\alpha \ge 0.06$
- Chain is always collapsed, cross interactions too repulsive (bad solvent conditions)
- Desired behavior was not achieved for these simulations, no crossover occurs

NIST

INTERMEDIATE REGION-LINEAR

NIST

MATERIAL MEASUREMENT LABORATORY

RING POLYMERS

Swollen Ring

Collapsed Ring

MATERIAL MEASUREMENT LABORATORY

INTERMEDIATE REGION-RINGS

- *α*=0.04
- θ-temperature in range
 0.8< θ<0.9

FUTURE WORK

- Increase resolution of search for θ -temperature
 - Explore $0 < \alpha < 0.06$
 - Explore more temperatures within range 0.5<T<0.9
- Explore different types of molecular architectures
 - Find θ -temperature for branched polymers

×	
15	
	*

Branched/Star Polymer

ACKNOWLEDGMENTS

- Dr. Alexandros Chremos
 - Dr. Jack Douglas
- Computational Soft Materials Working Group
 (COMSOFT)
- NIST Material Measurement Laboratory (MML)
- NIST Summer Undergraduate Research Fellowship
 (SURF) Program
 - Le Moyne College

