Footwear Evidence and Modelling Accidentals

Neil Spencer

Jared Murray

Steve Fienberg

PITTSBURGH PENNSYLVANIA

0061

CRIME SCENE PRINT

SUSPECT'S SHOE

Step I Class Characteristics Brand, Type, and Size

SUSPECT'S SHOE

CRIME SCENE PRINT

CRIME SCENE PRINT

SUSPECT'S SHOE

Step I Class Characteristics Brand, Type, and Size

Step 2 Accidentals (RACS) Holes, Cuts, Scrapes, etc.

SUSPECT'S SHOE

CRIME SCENE PRINT

CRIME SCENE PRINT

Step I Class Characteristics Brand, Type, and Size

Step 2 Accidentals (RACS) Holes, Cuts, Scrapes

6

SUSPECT'S SHOE

Similarity assessed by likelihood ratio

MATCH

NO MATCH

Similarity assessed by likelihood ratio

<u>P(Suspect Shoe | RACs)</u>

Σ P(Other Shoes | RACs)

P(RACs | S.S.)P(S.S.)

$\Sigma P(RACs | O.S.)P(O.S.)$

Similarity assessed by likelihood ratio

P(Suspect Shoe | RACs)

Σ P(Other Shoes | RACs)

$$= \frac{P(RACs | S.S.)P(S.S.)}{\Sigma P(RACs | O.S.)P(O.S.)}$$

This is the focus of our work

We are developing a statistical model for

Probability of Accidentals given the Shoe

We are developing a statistical model for

Probability of Accidentals given the Shoe

The Existing Approach

Footwear Examinations: Mathematical Probabilities of Theoretical Individual Characteristics (Stone 2006)

Model Set-up

- Uniform density
- Independently distributed
- on hypothetical contact

Figure 1 Hypothetical shoe with 16,000 sq mm grid.

The Existing Approach

Footwear Examinations: Mathematical Probabilities of Theoretical Individual Characteristics (Stone 2006)

Model Set-up

- Uniform density
- Independently distributed
- on hypothetical contact

Drawbacks

Not based on data

• No use of contact surface

Figure 1 Hypothetical shoe with 16,000 sq mm grid.

Data

386 marked, aligned, and normalized impressions of men's shoes from real cases by the Israeli Police

Two parts: Accidentals and Contact Surface

$$f(x,y) = \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \pi_{ij} \operatorname{Beta}(x|i, k_1 - i) \operatorname{Beta}(y|j, k_2 - j)$$

Х

У

У

Х

У

Х

У

Х

The "Foot" Component

$\begin{array}{ll} \pi_{ij} &=& {\rm Contact} ~ {\rm ij} ~ \times {\rm Shoe} ~ {\rm Specific} ~ \times ~ {\rm Foot} ~ {\rm ij} \\ {\rm Noise} ~ {\rm ij} \end{array}$

$\pi_{ij} = \text{Contact ij} \times \text{Shoe Specific} \times \text{Foot ij}$ Noise ij

23

π_{ij} = Contact ij × Shoe Specific × Foot ij Noise ij

Six levels depending on nearby contact intensity 📫 =l 📫 =3 📫 =5

can explain clusters 24

$|\pi_{ij}|$ = Contact ij \times Shoe Specific \times Foot ij Noise ij

25

Six levels depending on nearby contact intensity 📫 =l 📫 =3 📫 =5

can explain clusters

Common across all Shoes

Results of Fit (for 386 shoes) Contact Surface Variables

Results The "Foot" Component

The "Foot" Component with an example shoe

Example Predictive Distribution for Shoe

Example Predictive Distribution for Shoe

Actual Accidental Locations

Example Predictive Distribution for Shoe

Example Predictive Distribution for Shoe

Actual Accidental Locations

Conclusion

We developed a model for accidentals given contact surface

It features the contact surface variables and a "foot" variable

Thank you

Sarena Wiesner

Yoram Yekutieli

Yaron Shor

National Institute of Standards and Technology U.S. Department of Commerce