Footwear Evidence and Modelling Accidentals

Neil Spencer

Motivation: Are these a match?

CRIME SCENE PRINT
SUSPECT'S SHOE

Motivation: Are these a match?

Similarity assessed by likelihood ratio

MATCH

Similarity assessed by likelihood ratio

$$
\frac{\mathrm{P}(\text { Suspect Shoe } \mid \text { RACs })}{\sum \mathrm{P}(\text { Other Shoes } \mid \text { RACs })}
$$

$$
=\underline{\mathrm{P}(\text { RACs } \mid \text { S.S. }) \mathrm{P}\left(\mathrm{~S} . \mathrm{S}^{2}\right)}
$$

$$
\Sigma \mathrm{P}(\mathrm{RACs} \mid \mathrm{O} . \mathrm{S} .) \mathrm{P}(\mathrm{O} . \mathrm{S} .)
$$

Similarity assessed by likelihood ratio

P(Suspect Shoe \| RACs)
 $\Sigma \mathrm{P}($ Other Shoes | RACs)

$$
=\frac{\mathrm{P}(\text { RACs } \mid \text { S.S. }) \mathrm{P}(\mathrm{S.S.})}{\sum \mathrm{P}(\text { RACs } \mid \text { O.S. }) \mathrm{P}\left(\mathrm{O} . S_{.}\right)}
$$

This is the focus of our work

We are developing a statistical model for

Probability of Accidentals given the Shoe

We are developing a statistical model for

Example

Probability of Accidentals given the Shoe

The Existing Approach

Footwear Examinations: Mathematical Probabilities of Theoretical Individual Characteristics (Stone 2006)

Figure 1
Hypothetical shoe with 16,000 sq mm grid.

Model Set-up

- Uniform density
- Independently distributed
- on hypothetical contact

The Existing Approach

Footwear Examinations: Mathematical Probabilities of Theoretical Individual Characteristics (Stone 2006)

- Uniform density
- Independently distributed
- on hypothetical contact

Drawbacks

- Not based on data
- No use of contact surface

Figure 1
Hypothetical shoe with 16,000 sq mm grid.

Model Set-up

Data

386 marked, aligned, and normalized impressions of men's shoes from real cases by the Israeli Police

Two parts: Accidentals and Contact Surface

Newly Proposed Model

$$
f(x, y)=\sum_{i=1}^{k_{1}} \sum_{j=1}^{k_{2}} \pi_{i j} \operatorname{Beta}\left(x \mid i, k_{1}-i\right) \operatorname{Beta}\left(y \mid j, k_{2}-j\right)
$$

Newly Proposed Model

$$
f(x, y)=\sum_{i=1}^{k_{1}} \sum_{j=1}^{k_{2}} \pi_{i j} \operatorname{Beta}\left(x \mid i, k_{1}-i\right) \operatorname{Beta}\left(y \mid j, k_{2}-j\right)
$$

X

16

Newly Proposed Model

$$
f(x, y)=\sum_{i=1}^{k_{1}} \sum_{j=1}^{k_{2}} \pi_{i j} \operatorname{Beta}\left(x \mid i, k_{1}-i\right) \operatorname{Beta}\left(y \mid j, k_{2}-j\right)
$$

Controls height of basis function
Depends on:

- Contact Surface
- Location

Newly Proposed Model

The "Foot" Component

The "Foot" Component

The "Foot" Component

Model for Weights

$\pi_{i j}=$ Contact ij \times Shoe Specific \times Foot ij Noise ij

Model for Weights

$\pi_{i j}=$ Contact ij \times Shoe Specific \times Foot ij Noise ij

Six levels depending on nearby contact intensity
约 $=0$ 吅 $=2$ 㙁 $=4$
品 $=1$ 号 $=3$ 号

Model for Weights

$\pi_{i j}=$ Contact ij \times Shoe Specific \times Foot ij Noise ij

Six levels depending on nearby contact intensity
凸 $=0$ § $=2$ 号 $=4$
品 $=1$ 号 $=3$ 号

can explain clusters 24

Model for Weights

$\pi_{i j}=$ Contact ij \times Shoe Specific \times Foot ij Noise ij

Six levels depending on nearby contact intensity

$$
\begin{aligned}
& \text { 出 }=0 \text { 吅 }=2 \text { 饫 } \\
& \text { 品 }=1 \text { 号 }=3 \text { 号 }
\end{aligned}
$$

can explain Common across clusters

Results of Fit (for 386 shoes)

Contact Surface Variables

Results

The "Foot" Component

Results

The "Foot" Component with an example shoe

Results

Example Predictive Distribution for Shoe

Results

Example Predictive Distribution for Shoe Actual Accidental Locations

Results

Example Predictive Distribution for Shoe

Results

Example Predictive Distribution for Shoe

Actual Accidental Locations

Conclusion

We developed a model for accidentals given contact surface

It features the contact surface variables and a "foot" variable

~ 0.88
~ 0.35
~ 0.02
<0.01
<0.01
<0.01

Thank you

Sarena Wiesner

Yoram Yekutieli

Yaron Shor

National Institute of Standards and Technology U.S. Department of Commerce

