Model the cold flow experiments at IBHS

• Compare cold flow (wind only; no burning) experimental and simulated wind speed/direction results

Experimental setup: Anemometer positions and wind tunnel speeds

FDS model configuration

NoBlockage measured wind speed at anemometers 3 and 28

Experiment: NoBlockage Source90TargetNA
Time (s): =
$an \qquad - \blacktriangleright + \bigotimes \boxtimes \rightarrow$
View data: OExperimental OSimulated (FDS) OComparison
Tunnel output velocity (m/s): • 5.2 7.9 10.7 13.5 16.4 19.5
Anemometer height: Top (2.4m) Middle (1.6m) Obttom (0.2m)

Model the NIST 8MW gas burner

- Test the fidelity with which FDS can simulate the heat flux environment generated by a burner
- Evaluate if burners can be used to generate experimentally a computationally predictable heat flux environment for testing of structures

Configurations used in FDS to model the gas burner

Experiment performed to measure the heat flux (HF) generated by the gas burner

- HF1, HF3, HF5: 1 m high and 2, 3, 4 meters from the burner center
- HF2, HF4, HF6: 3 m high and 2, 3, 4 meters from the burner center

Experimental heat release rate (HRR)

HRR vs time (1617906553_GasBurner_Flow50kgs_8MWb-PrelimReport.xlsx)

Compare the experimental and simulated heat fluxes

Experiment #3 HRR: 1000, 2000, 3000, 5000, 8000 (kW)

Conclusions

- None of the FDS models for the gas burner reproduced the experimental results particularly well
- The details of how natural gas is injected, how it is oxygenated and combusted, etc. determine the flame structure and the heat flux produced as a function of height
- The positioning of the heat flux gauges close to the flame make this a particularly demanding test

in Z viewangle) Burner