

Network Modeling and Simulation of Mine Communication Systems

N. Moayeri and M. Souryal

May 12, 2011

Disclaimer: The National Institute of Standards and Technology (NIST) does not endorse any commercial software product mentioned in this presentation.

Network Modeling and Simulation (NMS)

- What is it good for?
 - Facilitate design and development of communications & networking products.
 - Size up, deploy, and configure a communication network at a particular site to meet performance requirements.
 - Connectivity
 - Quality of Service (QoS)
 - Network Capacity / Blocking Probability
 - Assess fault-tolerance and self-healing capabilities of the network.

Network Modeling and Simulation (NMS)

- What does it take to do NMS?
 - Complete technical specifications of communication devices and networking protocols that run on them.
 - Knowing how to use the NMS tool and a lot of manhours; NMS is resource-intensive!
- What are the caveats?
 - Fidelity of the models; there will always be some abstraction in any modeling effort.

Types of Modeling and Simulation

- For characterizing the communication channel
 - e.g. ray tracing for modeling RF channels
- For designing point-to-point communications equipment
 - e.g. MATLAB or SPW for detailed modeling and simulation of the physical (PHY) layer
- For assessing the performance of the network
 - e.g. OPNET for detailed modeling of the network and performance evaluations
- To keep the computational complexity manageable, it is typically not possible to run a simulation that uses all three components simultaneously and jointly.

Overview of Simulation System

NMS Tool Components

- Network Topology Modeler
 - mine layout
 - Initial node positions
- Node Mobility Modeler
- Traffic Generator
 - voice / data / video
 - constant / variable bit rate (CBR/VBR)
- Network Node Modeler
 - models for various layers of the protocol stack (PHY, MAC, network, application, etc)
- Performance Evaluation Tools
 - performance metrics (packet delivery ratio, delay, jitter, blocking probability)
- Visualization Tools
- Support for data archival

National Institute of Standards and Technology • U.S. Department of Commerce

Popular NMS Tools

OPNET

- most commonly used NMS tool
- has the largest repository of models
- ns2 / ns3
 - free and open source
 - initially intended for wired networks; large set of wireless models available now
 - no extensive visualization aids or technical support
- QualNet
 - about 10 years old
 - originally advertised as more scalable than OPNET

More on NMS Tools

- In addition to network models that come with any of these tools, the user can develop his/her own models using C/C++.
- It takes some effort to learn how to use any of these tools, let alone develop your own models and link them to the tool.

NMS Example

- In 2008-2009, NIST developed models for the MF mesh networking solution (secondary communication system) developed by Kutta Technologies under order from NIOSH and as a result of the 2006 MINER Act.
- Details of this network modeling and simulation effort are given in the next dozen slides along with some performance evaluation results.

Medium Frequency Mesh Network

Evolution of Mesh Node Model

	v. 1	v. 2	v. 3	
Routing	AODV	Simple Flooding	Proprietary	
MAC	CSMA/CA	CSMA/CA	Relative TDMA	
Modulation	QPSK	MSK	MSK	
FEC	RS + CC	CC	None	
Data Rate	30 kb/s	10 kb/s	26 kb/s	

Components of model discussed today

Noise/Interference Model

- Background noise
 - Additive white Gaussian noise (AWGN): model for post-accident scenario
 - Electromagnetic interference (EMI)
 - Generated by mine machinery
 - Model for normal operations
 - More impulsive distribution
- Multiple access interference
 Simultaneous transmission
 - Simultaneous transmissions by two or more nodes

Channel Propagation Model

- MF signal attenuation due to:
 - Length of conductor
 - *X* dB per 305 m (1000 ft) where $3 \le X \le 24$
 - Inductive coupling
 - 30-40 dB over 0.305 m (1 foot)
 - $1/r^4$ power loss with distance
 - Breaks/gaps in conductor

Packet Error Rate of Uncoded MSK: 568-bit Packets

Push-to-Talk Voice Traffic Example: 3 Sources

* D. S. Sharp et. al., "Analysis of Public Safety Traffic on Trunked Land Mobile Radio Systems," *IEEE Journal on Selected Areas in Communications*, vol. 22, no. 7, Sept. 2004, pp. 1197-1205.

MF Mesh Network Simulation System

OPNET Screenshot: Mobile MF Node Example

NGST National Institute of Standards and Technology • U.S. Department of Commerce

MF Static Network Example

Group Communication Results

<1% packet loss

Point-to-Point Communication Results

 $G \rightarrow 4$

 $5 \rightarrow 6$

NMS for Interoperability Testing

- One way of achieving interoperability is through use of gateways / bridges between the primary and secondary system(s).
- It is straightforward to develop models for such gateway / bridge nodes and carry out simulations to assess network performance when the primary system is no longer available in the aftermath of a mine incident.
- Need to know how many such nodes should be deployed and where.
- Can evaluate various traffic management and prioritization algorithms.
- Can determine how much storage is needed at a gateway / bridge for store / forward scenarios.

Extra Slides

Packet Format

Length	Node Coverage	Spare	Dst Addr	Seq Num	Last Src	Orig Src	App Payload
1 byte	2 bytes	1 byte	1 byte	2 bytes	1 byte	1 byte	52 bytes

Voice (2400 bps codec)	Text			
@ 8 frames/packet	@ 48 characters/packet			
= 48 Bytes	= 48 Bytes			
+ 4-byte application header				
+ 9-byte frame overhead				
= 61 Bytes				
+ 8-byte preamble/sync + 2-byte CRC				
= 71 Bytes (568 bits)				
21.8 ms @ 26 kb/s				

Bit Error Rate of Uncoded MSK: AWGN vs. EMI

Mobile MF Node Example

Mobile MF Node Results

Summary of Simulation Capabilities

- Applications: PTT Voice, Text (unicast and group multicast)
- Routing: Simple flooding, AODV, …
- PHY modulation: MSK, QPSK, …
- PHY FEC: Convolutional, Reed Solomon, Turbo, ...
- Channel model:
 - Conductor loss, inductive coupling loss
 - AWGN, EMI
- Performance measures: Packet loss, end-to-end delay, throughput, etc.