
A FRAMEWORK FOR MODULAR SIGNAL PROCESSING SYSTEMS WITH

HIGH-PERFORMANCE REQUIREMENTS

Lukas Diduch

Information Access Division, NIST

Gaithersburg MD, USA

ldiduch@nist.gov

Ronald Müller, Gerhard Rigoll

Institute for Human-Computer Communication

Technische Universität München, Germany

rm@tum.de

ABSTRACT

This paper introduces the software framework MMER Lab

which allows an effective assembly of modular signal pro-

cessing systems optimized for memory efficiency and perfor-

mance. Our C/C++ framework is designed to constitute the

basis of a well organized and simplified development process

in industrial and academic research teams. It supports the

structuring of modular systems by provision of basic data-,

parameter-, and command-interfaces, ensuring the re-usability

of the system components. Due to the underlying multi-thread-

ing capabilities, the applications built in MMER Lab are en-

abled to fully exploit the increasing computational power of

multi-core CPU architectures. This feature is carried out by

a buffering concept which controls the data flow between the

connected modules and allows for the parallel processing of

consecutive signal segments (e.g. video frames). We intro-

duce the concept of the multi-threading environment and the

data flow architecture with its comfortable programming in-

terface. We illustrate the proposed module concept for the

generic assembly of processing chains and show applications

from the area of video analysis and pattern recognition.

1. INTRODUCTION

‘If you have an application that can benefit from parallel pro-

cessing, make threading a priority in your company. The ben-

efits can be enormous.[...]Plan for multi-core environments -

not just dual-core. Assume there will be 4, 8, and even 16

cores in the future.’

Inspired by this citation from Intel(R) Software Insight

magazine, issue on Multi-core capability [1](p.7), the team

of the MMER (Multi-Modal Emotion Recognition) project at

the Institute of Human-Machine Communication started to

conceptualize and implement the software framework now

published as MMER Lab (lab.mmer-system.eu) in order to

benefit from the new computational performance of the up-

coming multi-core CPU and multi-CPU architectures in mod-

ern and future computer systems. In general this benefit can

only be realized via internal parallelization of algorithms pre-

dominantly by separating logically independent functions such

as large matrix operations. This often comes only with an ex-

pensive and difficult reworking of the algorithms. For some

systems with certain properties there is an opportunity to profit

from parallel computational power without re-implementation.

In particular, Signal Processing Systems with several, mostly

serial-connected components organized in pipelines. These

show a great potential for acceleration via porting into the

MMER Lab framework. (Please note: We distinguish be-

tween framework (Fig. 1) and the system (Fig. 2) which runs

in the framework.)

Frame-based video processing systems constitute an ideal

example: Imagine a simple video analysis system consisting

of four modules: a video source, a head localization and track-

ing module, a face-based person recognition module and a

video display for demonstration. Such system can be paral-

lelized by executing each module in its own thread. Thus, the

person recognition module can perform its recognition task

for frame number n on CPU-core 1, while the head tracking

module already localizes the head(s) in frame m with m > n

using CPU-core 2.

However, parallel computing requires considerable skills

in programming. MMER Lab’s design is addressed to all lev-

els of software developers including pure users. Module de-

velopers are offered a convenient way to get around imple-

mentation problems of multi-threaded systems, since the em-

bedding of algorithms is performed using MMER Lab’s API.

Thanks to the Graphical User Interface (GUI), casual users

can instantly load existing modules, connect them to a com-

plete system, and execute it via mouse clicks for ad-hoc de-

monstration or education purposes. Advanced users benefit

from the scripting facilities and can perform numerous itera-

tions and evaluations, e.g. of system parameter settings, in a

batch processing style.

Our framework is developed cross platform for Linux and

Windows operating systems and independent of the bit- archi-

tecture (32 or 64). This is achieved by purely gcc-compliant

C/C++ programming code and usage of the Tcl/Tk [2] script

interpreter. Furthermore, every kind of software library writ-

ten in C and C++ can be applied for the implementation of

modules for any signal processing system. Thus, our frame-

work provides an efficient opportunity to quickly transfer ex-

isting signal processing systems into multi-threaded applica-

tions with a full exploitation of the parallel clock speed of

current and future multi-core architectures.

In the subsequent sections we explain and discuss the con-

cepts of MMER Lab for multi-threading, module structures

and data flow, followed by application scenarios. Moreover

we discuss our design decisions for MMER Lab and give a

conclusion.

2. STRUCTURE

The framework structure is based on the following three main

concepts: A multi-threaded environment, a Tcl script inter-

preter with a Tk GUI, plus the underlying flexible and modu-

lar software architecture.

In the Multi-Threaded Environment (Fig. 1) modules

are executed quasi parallel, depending on the number of avail-

able processors. Herein, the system modules (C++ objects)

embed algorithms and work like stand-alone processors with

a predefined interface. Each module core runs as a thread

with an additional thread for the modules communication in-

terface. Modules are connected by cables (C++ queue ob-

jects) for the transport of content (data, memory pointers, pa-

rameters and commands).

The synchronization between these components is imple-

mented inside the cable and module classes using the monitor

pattern [3]. This behaves as follows: Sources push data into a

cable, while filters and sinks pull data from a cable. A source

module automatically stops producing content, if the outgo-

ing cable buffer is full, and continues when the cable buffer is

depleted. A sink module automatically stops pulling content

from the incoming cable buffer if it is empty and continues as

long as the cable buffer is filled with content. A filter module

is a combination of both behaviors. Multiplexers inside the

modules interface are used for data dispatching with round

robin or priority based methods.

The second important concept is the embedded Tcl inter-

preter [2] with a Tk GUI on top of the architecture (Fig. 1).

The interpreter can create unique instances of modules and

cables with a set of procedures to manipulate them (e.g. to

connect them together). This provides an user interface for

communication with the multi-threaded environment and its

objects. By using the scripting-language capabilities of Tcl,

we define a high level framework language which includes

a large set of control command wrappers, helper functions

and Tk procedures for GUI control. This approach has sev-

eral advantages compared to using an API: The Tcl/Tk lan-

guage itself can be used to perform initializations, interface

I/O, algorithmic tasks besides the computations running in

the the multi-threaded environment. This helps the user to

focus on the main problem while he utilizes the scripting lan-

guage do high- and low-level algorithmic tasks. Examples are

sorting, parsing, file handling, computing numeric parame-

 Tcl

Interperter

Cable A

Files

Source

Module

 B

Source

Module

 A

Cable B

 Filter

Module

 C

Cable C

 Sink

Module

 D

Pipes

010101110
101110110
000100101

 Tk

 GUI

Processes Framework

Operating

System

Multithreaded Environment

Fig. 1: Schematic view of the framework concept

ters for system/module setups, managing socket ports for dis-

tributed cluster processing or creating pipes to processes. The

multi-platform capabilities of the language are also used to

provide a convenient interface for the user on multiple oper-

ating systems (e.g. different file handling on Windows and

UNIX platforms). The script interpreter is extremely help-

ful to configure module/cable setups for simplified loading

and starting of frequently used systems. No recompilation or

restart is needed for setup modifications or new different se-

tups. During demonstrations, practical courses, and lectures,

this capability turned out to be very valuable. Additionally, a

great variety of freely available Tcl/Tk packages can be used

by the framework (e.g. OpenGL Widgets, Audio Process-

ing Toolkit, Secure Socket Layer). One important feature is

the efficiency of plugging module packages into the system

at runtime. Memory and performance can be saved, because

the module code (C/C++) is stored in a set of shared libraries

which are loaded into memory on demand. MMER Lab is

per se started with no functionality except for instantiating

and controlling cables and modules. As mentioned above

the front-end to the framework is implemented as a Tk GUI.

However a GUI is not required to run the framework. It can

be run in a batch mode only. This feature is useful to gain ut-

most performance or hide the framework interface if desired.

The last core concept is a flexible Software Architec-

ture which is explained in detail within the following sec-

tion. Based on this architecture, the software developer is

able to embed almost every existing library written in C/C++

into the modules computation core. Thus, useless and labori-

ous re-implementation of standard functionality becomes dis-

pensable.

3. SOFTWARE ARCHITECTURE

The underlying software architecture of MMER Lab conse-

quently follows the concepts of procedural and data abstrac-

tion [4]. Four fixed layers of abstraction have been established

to provide access from low level functions (libraries) up to

high level procedures (modules).

The lowest system layer (libraries) contains all basic ex-

ternal code libraries used in the framework and in most of our

systems. This includes standard libraries like the C++ stdlib,

Xlib, OpenCV, OpenGL and Boost or ATLAS, C-BLAS and

GSL, high performance and high precision mathematical li-

braries compiled optimized for the dedicated processor archi-

tecture in Fortran, assembler and C.

The mid level system layer (core functions) is used to

implement high level procedures as well as core framework

functions by wrapping the basic libraries low level function-

ality. In this layer where abstraction techniques have been

applied utmost. Here it is possible to adapt the function calls

of the layer below to a unified notation of the architecture.

Due to this concise abstraction interface it is possible to eas-

ily exchange an external library below without adapting the

layers above the core functions.

The high- to midlevel (module functions) layer provides

abstraction for base classes and functions to be called inside

modules as well as the base class hierarchy of modules, ca-

bles, and the framework itself. These are implemented in

this layer using C++ with the advantages of object orienta-

tion. Wrappers of framework procedures to Tcl/Tk are also

located here. Due to the object oriented structures in C++ and

the high abstraction level, other developers can easily re-use

the basic behavior of their modules as well as basic algorith-

mic patterns. Experienced developers can change the multi-

threading and data dispatching behavior on this level.

The top layer (modules) consists of high level module

implementations. The modules are derived from the base

classes of the layer below. This is the primary layer for the

researcher and developer who wants to embed his algorithms

into MMER Lab. Here we define the data and parameter in-

terface to the module as well as an interface to interpreter

and GUI, which is part of a module package. Finally the

C/C++ code is stored in shared libraries (.dll/.so), organized

as a package which can be loaded on demand at runtime.

4. DESIGN DECISIONS, APPLICATIONS,

EVALUATION

Modularity, cross platform usability, and performance issues

led to several crucial decisions, which have been made in the

design phase of MMER Lab. Some of the few existing soft-

ware systems have been examined with respect to the three

mentioned requirements.

Fermus [5] and Smartflow [6] for example are process-

based systems for network distributed computing utilizing In-

ter Process Communication (IPC) techniques like socket com-

munication and shared memory. This systems, designed to

work on networks, support modularity and the usage of mul-

tiple processors very well. However, we will show that con-

HeadNEyeLocalisator AAM Search SVM TrainingImageSourceStringData

NumClassData

Fig. 2: Training a SVM with AAM Parameter Data

text switching on standalone computers using multi-tasking

decreases the performance compared to multi-threaded archi-

tectures. This is because multi-tasking systems operate within

their own virtual address space. Processes are protected by

the operating system from interference by other processes. A

user process can not communicate with another process un-

less it makes use of IPC mechanisms provided by the operat-

ing system. Passing data between computers comes with nat-

ural network latencies as well, which can affect real time high

bandwidth computations such as video processing. The main

advantage of [5] and [6] is the enormous computing power of

a cluster system versus the network latency and intercommu-

nication time.

A multi-threaded implementation on a multi-core com-

puter addresses this flaw. Multiple processors are used to

distribute the computing tasks and the hardware architecture

provides a high bandwidth for exchanging data between the

processors. The context switch of a threaded system is light-

weight, since the threads all run in a single process and share

the same address space. MMER Lab was chosen to be imple-

mented in this way providing performance and using an API

for modularity and a carefree application of multi-threading.

If desired, the framework can be extended to work in a dis-

tributed network environment by using a middleware as Smart-

flow. The multi-threaded approach also supports the tight

integration of graphic processors into the framework. With

MMER GPU and MMER Lab GPUs and CPUs can perform

different computations in parallel. (gpu.mmer-systems.eu)

To demonstrate the capabilities of the framework, we in-

stantiate a video processing and pattern recognition applica-

tion. It performs the training of a Support Vector Machine

(SVM) classifier with feature vectors provided by an Active

Appearance Model (AAM) for the automatic recognition of

four facial expressions (neutral, smile, frown, scream) based

on a training set of annotated example images (see Fig. 2).

An ’image source’ module is directly connected to a ’head

and eye localization’ module. The output of the localizer pro-

vides a set of four signals (image frame, head-,left-,right-eye-

region). These dataflows are connected to the AAM module

for initialization of its face analysis. The output of the AAM

module contains the extracted facial feature vector. This vec-

tor data is connected with the first port of the ’SVM’ mod-

ule. The second port is used for the class identifier of the

corresponding facial expression. To begin the SVM train-

ing process the system requires two data items: filenames of

the training images for the image source (at the head of the

chain) and their corresponding class assignment for the SVM

module (at the tail of the chain). A script parses the image-

Video Source

Video Source

Video Source

Head and Eye

 Localization

Head and Eye

 Localization

Head and Eye

 Localization

Head and Eye

 Localization
Display

Display

Display

Display

Head and Eye

 Localization

simple

par

ser

Fig. 3: Three Performance Evaluation Setups

filenames including the class information and feeds both mod-

ules with data at the same time. Here the synchronization abil-

ities become apparent: The SVM cable containing the class

information buffers the data until the module gets a facial

feature vector from the AAM. Due to the fact that the SVM-

module is built to pull exactly one instance from each of the

input cables, it is ensured that the class identifier matches with

the AAM feature vector of the correct image file.

For evaluation purposes we use a simpler application setup.

Three different types of modules are combined to form three

different video processing chains as seen in Fig. 3. We want

to measure the performance using two different machine se-

tups and three different framework types (’MMER’, ’SF’, ’di-

rect’) as explained below Table 1. To estimate the perfor-

mance we measure the average framerate at the end of the

chains. A higher framerate (more images are processed per

second) indicates a higher performance.

The results of the evaluation can be seen in Table 1. The

performance of both frameworks compared to the ’direct’ im-

plementation drops on a single core CPU system. This is a

reasonable result because of the framework overheads (Thread-

ing, IPC) in both cases. However one can see that the per-

formance on MMER Lab increases for the ’simple’ and ’ser’

video processing systems for dual core CPUs. For the ’ser’

case we have an increase of one third compared to a direct C

implementation. In comparison with Smartflow, MMER Lab

achieves a slightly higher performance for every system in the

evaluation. This result was expected due to the usage of IPC

mechanisms for data transport in Smartflow. Smartflow is de-

signed to work in a distributed network environment, so as

default data is copied completely instead of passing pointers.

However it is one of the few frameworks available at the mo-

ment which could be used for an evaluation with MMER Lab.

5. CONCLUSION

When developers strive to exploit the parallel computational

power of modern hardware, it is mandatory to separate sys-

tems and its components into multiple threads. Since threaded

implementation constitutes an complex field in software de-

velopment and requires considerable experience in program-

ming, we built up MMER Lab as framework to provide a

System Single Core Dual Core

simple ser par simple ser par

Direct 100% 100% 100% 100% 100% 100%

MMER 94.9% 93.9% 98.7% 105.3% 133.9% 96.7%

SF 92.0% 88.1% 93.6% 94.6% 130.9% 93.3%

Table 1: Performance Evaluation Results

MMER Lab framework (’MMER’) (one process, 3-5 threads) compared with

the NIST Smartflow (’SF’) system (3-5 processes) and a ’direct’ implemen-

tation in OpenCV and C (only one process). The ’direct’ implementation

serves as a reference and is supposed to have always 100% of performance.

Two different computer types have been used: a single core AMD 3700+,

2GB RAM computer with Linux Fedora Core 5 (FC5) and a dual core Intel

Pentium4 3.0 GHz, 1GB RAM and FC5.

multi-threading environment with the multi-threading and all

its difficulties encapsulated behind interfaces. Due to the mod-

ule concept of MMER Lab with the necessity to define inter-

faces, the re-usability of modules is ensured and the system

development process within research teams is constructively

supported by our framework. MMER Lab is especially appro-

priate for systems with high data flow between components,

since it allows the handover of memory pointers on whatever

kind of data structure. MMER Lab is in our daily applica-

tion for development, evaluation and demonstration of sys-

tems from the areas of image/video processing and pattern

recognition. This validates, that the actualized concepts of

MMER Lab constitute a practical exemplar for generic and

flexible environments to identify new design paradigms and

to be prepared for the highly parallel hardware architectures

of the near future.

6. REFERENCES

[1] Intel Corporation, “Intel(R) software insight - multi-

core capability,” www.intel.com/cd/software/main/asmo-

na/eng/285893.htm, 2005.

[2] J. K. Ousterhout, Tcl and the Tk Toolkit, Addision-

Wesley Professional Computing Series, 1997.

[3] D. Schmidt, M. Stal, H. Rohnert, and F. Bushmann, Pat-

tern Oriented Software Architecture, vol. 2, pp. 343–355,

John Wiley and Sons, 2000.

[4] H. Abelson, G. Sussman, and J. Sussman, Structure and

Interpretation of Computer Programs (Second edition),

The MIT Press, 1996.

[5] G. McGlaun, M. Lang, and G. Rigoll, “Development of

a generic multimodal framework for handling error pat-

terns during HMI,” in Proc. of SCI, 2004, vol. I.

[6] M. Michel, V. Stanford, and O. Galibert, “Network trans-

fer of control data: An application of the NIST smart data

flow,” J. of Systemics, Cybernetics and Informatics, vol.

2(6), 2005.

