
Minutiae Interoperability Exchange III

Test Plan and Application Programming Interface

Last Updated: July 13, 2016

1 Overview

The Minutiae Interoperability Exchange III (MINEX III) test is an ongoing program to measure the

performance of fngerprint matching software utilizing interoperable minutiae-based fngerprint

templates. The content and format of those interoperable minutiae-based fngerprint templates are

defned in this specifcation and are hereafter referred to as MINEX III-compliant templates.

Those wishing to submit software for MINEX III testing shall be required to provide the National

Institute of Standards and Technology (NIST) with a software library implementing all functions of

the Application Programming Interface (API) specifed in Section 5. At a minimum, the software

library submitted must provide functionality to create MINEX III-compliant templates based on

individual fngerprint images. Support for matching pairs of MINEX III-compliant templates is

strongly encouraged, but optional.

In addition to providing a general platform for testing the performance of interoperable fngerprint

systems, MINEX III provides a mechanism for testing compliance with NIST Special Publication

800-76-2, Annex A.

2 What’s New

If you previously participated in Ongoing MINEX, you’ll fnd that the function signatures in the

API remain unchanged. There are, however, a few technical changes you will need to be aware of

before submittal.

• Failures to match might not necessarily return −1 (Section 5.4).

• Threading is not permitted (Section 6.1.1).

• A library naming convention is required (Section 6.1.3).

• The required operating system is now exclusively CentOS 7.2.1511 (Section 6.1.4).

• Submissions will be driven by a validation package (Section 6.3).

• Timing will be enforced and reported (Section 6.4).

• Greatly enhanced reporting enables new client programs (Section 7).

• Submissions won’t be used if they fall out of MINEX III Compliance (Section 8).

http://dx.doi.org/10.6028/NIST.SP.800-76-2
http://dx.doi.org/10.6028/NIST.SP.800-76-2
http://www.nist.gov/itl/iad/ig/ominex.cfm

MINEX III Test Plan and Application Programming Interface

Line 0

Line k

Line n

Line 0 Line k Line n

(0, 0)

Figure 1: Order of scanned lines.

3 Fingerprint Image Data

3.1 Format

The software library must be capable of processing fngerprint images in uncompressed raw 8-bit

(one byte per pixel) grayscale format. Images shall follow the scan sequence as defned by ISO/IEC

19794-4:2005, §6.2, and paraphrased here. Each image shall appear to have been captured in an

upright position and approximately centered horizontally in the feld of view. The image data

shall appear to be the result of scanning a conventional inked impression of a fngerprint. Figure 1

illustrates the recording order for the scanned image. The origin is the upper left corner of the

image. The X-coordinate (horizontal) position shall increase positively from the origin to the right

side of the image. The Y-coordinate (vertical) position shall increase positively from the origin to

the bottom of the image.

Raw 8-bit grayscale images are canonically encoded. The minimum value that will be assigned

to a “black” pixel is zero. The maximum value that will be assigned to a “white” pixel is 255.

Intermediate gray levels will have assigned values of 1–254. The pixels are stored left to right,

top to bottom, with one 8-bit byte per pixel. The number of bytes in an image is equal to its

height multiplied by its width as measured in pixels. The image height and width in pixels will

be supplied to the software library as supplemental information.

3.2 Resolution and Dimensions

All images for this test will employ 500 pixels per inch resolution (horizontal and vertical).

The dimensions of the fngerprint images will vary from 150–812 pixels in width, and 166–1000
pixels in height. The software library must be capable of processing images with any dimensions

within these specifed ranges without the use of separately-invoked cropping or padding facilities.

For example, software libraries that require cropping of large images must do so internal to the

operation of the create_template() (Section 5.3).

2

MINEX III Test Plan and Application Programming Interface

3.3 Sensor and Impression Types

All images used for testing in MINEX III come from the POEBVA data set described in NISTIR

7296, Appendix B, Table 23, and thus have been obtained from live-scan sensors (Smiths-Heimann

ACCO 1394 and Cross Match 300A). All images tested in MINEX III are plain impression type

images.

4 NIST SP 800-76-2 Compliant Templates

To be considered MINEX III-compliant templates, all templates created must be compliant with

NIST Special Publication 800-76-2, Annex A, Table 18.

Participants in MINEX04 may note that the requirements for templates specifed by the MINEX III

test are identical except for the felds listed below. These requirements are identical to those from

Ongoing MINEX.

• In MINEX04, the feld Finger Quality feld had a range of values resulting from re-mapping

the NIST NFIQ quality values (1 through 5) to the values 100, 75, 50, 25, and 1 respectively.

However, NIST SP 800-76-2 re-maps these same NFIQ quality values to 100, 80, 60, 40, and

20 respectively. MINEX III uses NIST SP 800-76-2 Finger Quality values.

• In MINEX04, the feld Impression Type had a range of 0–3. However, NIST SP 800-76-2 limits

the range of values to 0 and 2. MINEX III uses NIST SP 800-76-2 Impression Type values.

3

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=150619
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=150619
http://dx.doi.org/10.6028/NIST.SP.800-76-2

MINEX III Test Plan and Application Programming Interface

5 Application Programming Interface

5.1 Predefned Constants

Constant Explanation

0 MINEX_RET_SUCCESS Success

1
2
3
4
5
6

MINEX_RET_BAD_IMAGE_SIZE
MINEX_RET_FAILURE_UNSPECIFIED
MINEX_RET_FAILURE_BAD_IMPRESSION
MINEX_RET_FAILURE_NULL_TEMPLATE
MINEX_RET_FAILURE_BAD_VERIFICATION_TEMPLATE
MINEX_RET_FAILURE_BAD_ENROLLMENT_TEMPLATE

Image size not supported

Unspecifed failure

Bad impression type

Null template used

Verifcation template error

Enrollment template error

Table 1: MINEX III return codes.

Constant Explanation

0 MINEX_FINGER_UNKNOWN Unknown or unspecifed position

1 MINEX_FINGER_RIGHT_THUMB Right thumb

2 MINEX_FINGER_RIGHT_INDEX Right index

3 MINEX_FINGER_RIGHT_MIDDLE Right middle

4 MINEX_FINGER_RIGHT_RING Right ring

5 MINEX_FINGER_RIGHT_LITTLE Right little

6 MINEX_FINGER_LEFT_THUMB Left thumb

7 MINEX_FINGER_LEFT_INDEX Left index

8 MINEX_FINGER_LEFT_MIDDLE Left middle

9 MINEX_FINGER_LEFT_RING Left ring

10 MINEX_FINGER_LEFT_LITTLE Left little

Table 2: MINEX III fnger positions.

Constant Explanation

0 MINEX_IMP_LIVESCAN_PLAIN Live-scan, plain

2 MINEX_IMP_NONLIVESCAN_PLAIN Non live-scan, plain

Table 3: MINEX III impression types.

Constant Explanation

20 MINEX_QUALITY_POOR
40 MINEX_QUALITY_FAIR
60 MINEX_QUALITY_GOOD
80 MINEX_QUALITY_VERYGOOD

100 MINEX_QUALITY_EXCELLENT

Equivalent to NFIQ 5
Equivalent to NFIQ 4
Equivalent to NFIQ 3
Equivalent to NFIQ 2
Equivalent to NFIQ 1

Table 4: MINEX III quality values.

4

MINEX III Test Plan and Application Programming Interface

5.2 Identifcation

int32_t
get_pids(

uint32_t *template_generator,
uint32_t *template_matcher);

Figure 2: Obtain CBEFF PID information.

5.2.1 Parameters

• template_generator (out): PID that identifes the participant’s template generator.

• template_matcher (out): PID that identifes the participant’s template matcher.

5.2.2 Description

This function retrieves the CBEFF Product Identifer (PID) information that identifes the software

library’s core template generator and (if applicable) template matcher.

• The PID output for template_generator shall be identical in both format and value to the

CBEFF Product defned by ANSI INCITS 378-2004, §6.4.4.

• If the software library does not support matching, the value in template_matcher shall be set

to 0.

• Submissions will not be eligible for client program compliance if the CBEFF PIDs are not set.

• In the event of errors during the test, the version number portions of the CBEFF PID shall be

incremented between di˙erent revisions of the software libraries sent to NIST.

5.2.3 Return Code

This method should return MINEX_RET_SUCCESS when successful. It is not expected to return

anything other than MINEX_RET_SUCCESS.

5

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+378-2004

MINEX III Test Plan and Application Programming Interface

5.3 Template Creation

int32_t
create_template(

const uint8_t *raw_image,
const uint8_t finger_quality,
const uint8_t finger_position,
const uint8_t impression_type,
const uint16_t height,
const uint16_t width,
uint8_t *output_template);

Figure 3: Create a MINEX III compliant template from a raw image.

5.3.1 Parameters

• raw_image (in): The uncompressed image data.

• finger_quality (in): Quality of fngerprint depicted in raw_image (Table 4).

• finger_position (in): Position of the fngerprint depicted in raw_image (Table 2).

• impression_type (in): Impression of the fnger depicted in raw_image (Table 3).

• height (in): Number of rows in raw_image.

• width (in): Number of columns in raw_image.

• output_template (in, out): A pre-allocated memory location where the template shall be

written.

5.3.2 Description

This function takes a raw image as input and outputs a corresponding MINEX III-compliant

template.

• Memory for output_template will have been allocated by NIST before the call. Implementa-

tions of create_template() shall not allocate output_template, but should simply write to it

starting at o˙set 0.

• The software library shall always write to output_template, even if the software library cannot

extract features. In failure conditions, a 32-byte template (a 26-byte ANSI INCITS 378-2004

record header, a 4-byte fnger view header, and a 2-byte extended data block length) with

zero minutiae might be created.

5.3.3 Return Code

This method should return MINEX_RET_SUCCESS when successful, or another approved return code

on failure. Regardless of failure, output_template shall be set to a valid MINEX III-compliant

template. All templates will be used during matching, even templates with zero minutiae.

6

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+378-2004

MINEX III Test Plan and Application Programming Interface

5.4 Template Matching

int32_t
match_templates(

const uint8_t *verification_template,
const uint8_t *enrollment_template,
float *similarity);

Figure 4: Compare two MINEX III-compliant templates.

5.4.1 Parameters

• verification_template (in): A template returned from create_template(), though not

necessarily this software library’s implementation.

• enrollment_template (in): A template returned from create_template(), though not nec-

essarily this software library’s implementation.

• similarity (out): A score representing the similarity of the original fngerprint images

represented by templates verification_template and enrollment_template.

5.4.2 Description

This functions compares two MINEX III-compliant templates and outputs a value indicating their

similarity. enrollment_template shall be compared to the verification_template, in that precise

order (in the event that the underlying matcher is order-dependent). The similarity score returned

is a foating-point number that represents the similarity of the original fngerprint images from

which the templates were created. Scores should not be quantized.

• Memory for similarity will be allocated by NIST.

• similarity shall always be modifed, even in the event of a failure.

• NIST Special Publication 800-76-2, Annex A, §3.2 does not permit the match operation to

fail. A failure or refusal to compare the inputs shall in all cases result in the modifcation of

similarity, ideally setting similarity to a low value.

• Minutiae quality values in templates will always be set to 0 when passed to this function,

even if create_template set the values.

• This method should set similarity to −1 if a template matcher is not implemented (template

generator submission only).

5.4.3 Return Code

This method should return MINEX_RET_SUCCESS when successful, or another approved return code

on failure. Regardless of failure, similarity shall be modifed, and all similarity will be used

when calculating false non-match rate (FNMR) regardless of return code.

7

http://dx.doi.org/10.6028/NIST.SP.800-76-2

MINEX III Test Plan and Application Programming Interface

6 Software and Documentation

6.1 Software Library and Platform Requirements

The functions specifed in Section 5 shall be implemented exactly as defned in a software library.

The header fle used in the MINEX III test driver is provided on the MINEX III website in the

MINEX III validation package. The symbols for these functions shall be exported as C symbols for

the backwards compatibility of previous tests in the MINEX family.

6.1.1 Restrictions

Individual software libraries provided must not include multiple modes of operation or algorithm

variations. No switches or options will be tolerated within one library. For example, the use of two

di˙erent encoding algorithms by a minutiae extractor would be split across two separate software

libraries (though the MINEX III application indicates that NIST will only accept one submission

every 90 days).

Participants shall provide NIST with binary code in the form of a software library only (i.e., no

source code or headers). It is preferred that the software libraries be submitted in the form of

a single dynamic/shared library fle (i.e., “.so” fle), however static libraries (i.e., “.a” fles) are

permitted if technically required.

The software library shall not make use of threading. The NIST test driver operates as a Mes-

sage Passing Interface (MPI) job over multiple compute nodes, and then forks itself into many

processes. In the test environment, there is no advantage to threading. It limits the usefulness of

NIST’s batch processing and makes it impossible to compare timing statistics across MINEX III

participants.

6.1.2 External Dependencies

It is preferred that the API specifed by this document be implemented in a single “core” library.

Additional libraries may be submitted that support this “core” library fle (i.e., the “core” library

fle may have dependencies implemented in other libraries if a single library is not feasible).

Note that dependencies on external software libraries such as compiler-specifc development en-

vironment libraries are discouraged. If absolutely necessary, external libraries must be provided

to NIST upon prior approval by the MINEX III Liaison.

Use of processor optimizations is allowed and encouraged, but software libraries must be able to

run on the following processor types:

• AMD Opteron 8376HE

• Intel Xeon E5405, X5680, X5690, X7560

• Intel Xeon E5-2680

8

http:processes.Inthetestenvironment,thereisnoadvantagetothreading.It

MINEX III Test Plan and Application Programming Interface

6.1.3 Naming

The “core” software library submitted for MINEX III shall be named in a predefned format. The

frst part of the software library’s name shall be libminexiii_. The second piece of the software

library’s name shall be a non-infringing unique identifer that matches the regular expression

[A-Za-z0-9]+ (likely your organization’s name), followed by an underscore. The fnal part of the

software library’s name shall be a version number, followed by a fle extension. Supplemental

libraries may have any name, but the “core” library must be dependent on supplemental libraries

in order to be linked correctly. The only library that will be explicitly linked to the MINEX III test

driver is the “core” library, as demonstrated in Section 6.1.4.

In the event that the software library is being submitted for client program compliance, the version

number shall match the CBEFF PID version number of the template generator, as returned by

get_pids(). Otherwise, the number shall be an integer, starting with 1, and shall be incremented by

1 for all subsequent submissions, including later unrelated submissions by the same organization.

With this naming scheme, every “core” library received by NIST shall have a unique flename.

Incorrectly named or versioned software libraries will be rejected.

Example
Initech submits a MINEX III shared library named libminexiii_initech_0001.so with version

1.0 of their algorithm for client program certifcation. This library assigns 0x12340001 to the

parameter template_generator in get_pids(). NIST determines that Initech’s validation fails and

rejects the library. Initech submits version 1.0.1 to fx the bug in 1.0. The new name of their library

is libminexiii_initech_0002.so and they updated the CBEFF PID in their implementation of

get_pids() to 0x12340002. For anonymity to evaluation administrators during testing, Initech may

have elected to name their library libminexiii_1234_0002.so, using the CBEFF Product ID as their

unique identifer.

6.1.4 Testing Procedure

The software library will be tested in non-interactive “batch” mode (i.e., without terminal support)

in an isolated environment (i.e., no Internet connectivity). Thus, the software library shall not

use any interactive functions, such as graphical user interface calls, or any other calls that require

terminal interaction (e.g., writes to stdout).

NIST will link the provided library fles to a C++ language test driver application using the compiler

g++ (version 4.8.5 20150623) under CentOS 7.2.1511. For example:

g++ -o minexiii minexiii.cpp -L. -lminexiii_initech_0001

Participants are required to provide their software libraries in a format that is linkable using g++
with the NIST test driver. All compilation and testing will be performed on 64-bit hardware running

CentOS 7.2.1511. Thus, participants are strongly encouraged to verify library-level compatibility

with g++ on CentOS 7.2.1511 prior to submitting their software to NIST to avoid unexpected

problems.

9

http:libminexiii_initech_0002.so
http:libminexiii_initech_0001.so

MINEX III Test Plan and Application Programming Interface

6.2 Usage

The software library shall be executable on any number of machines without requiring additional

machine-specifc license control procedures, activation, hardware dongles, or any other form of

rights management.

The software library usage shall be unlimited. No usage controls or limits based on licenses,

execution date/time, number of executions, etc., shall be enforced by the software library. Should

a limitation be encountered, the software library shall have all client program certifcations re-

voked.

6.3 Validation and Submitting

NIST shall provide a validation package that will link the participant “core” software library to a

sample test driver. Once the validation successfully completes on the participant’s system, a fle

with validation data and the participant’s software library will be created. After being encrypted,

only this fle and a public key shall be submitted to NIST. Any software library submissions

not generated by an unmodifed copy of NIST’s MINEX III validation package will be rejected.

Any software library submissions that generate errors while running the validation package on

either the participant’s or NIST’s hardware will be rejected. Any software library submissions not

generated with the current version of NIST’s MINEX III validation package will be rejected. Any

submissions of successful validation runs not created on CentOS 7.2.1511 will be rejected.

6.4 Speed

A template match operation shall take no more than 10 milliseconds on average to complete. A

template creation operation shall take no more than 500 milliseconds on average to complete.

Timing tests will be run, enforced, and reported on a sample of the MINEX III dataset prior to

completing the entire test. These speeds are based on the current processor being used, which is

the Intel Xeon E5-2680, and are based on the values present in NIST Special Publication 800-76-2,

§4.5.2.

7 Client Programs

The MINEX family of tests were created to serve as a benchmark for the biometric specifcations

of FIPS 201 as a part of the U.S. Government’s PIV program. Over the years, the test’s results

have been used by others for a multitude of di˙erent initiatives. Adding enhanced reporting

on these algorithms will make it easier to apply the results of MINEX III to organizations and

programs requiring a compliance threshold for interoperable fngerprint template generators and

matchers.

To facilitate this, MINEX III will introduce the concept of “client programs.” A client program

refers to a biometric program defning a set of guidelines that encompass compliance, with the

U.S. Government’s PIV program serving as just one example. If other well-defned client programs

whose operational protocol is in line with MINEX III are encountered, adherence to that program

may be reported. Please note that MINEX III will remain unaÿliated with any organization

10

http://nigos.nist.gov:8080/evaluations/minexiii/validation/latest.tar.bz2
http://dx.doi.org/10.6028/NIST.SP.800-76-2
http://dx.doi.org/10.6028/NIST.SP.800-76-2
http://www.idmanagement.gov/ficam-testing-program

MINEX III Test Plan and Application Programming Interface

other than the U.S. Government, and posted results should not be considered oÿcial, except for

PIV.

8 MINEX III Compliance

In an e˙ort to reduce complexity and modernize the test, participation guidelines have been

enacted in MINEX III which will form “MINEX III Compliance.” A MINEX III submission must

meet these criteria in order to be used during the interoperable test. Once a submission fails to

adhere to one or more of the guidelines, it will be removed from the test. Compliance requirements

for client programs are maintained separately. NIST may update these guidelines from time to

time. A visual representation is available in Figure 5.

MINEX III compliance shall be determined by:

1. Functionality: the submission passes MINEX III validation, which includes limits on algo-

rithm speed, memory consumption, runtime, etc.,

(a) An exemption is made for template generators that successfully passed the Ongoing

MINEX validation prior to the start of MINEX III.

2. Interoperability: all MINEX III-compliant template matchers match templates from the sub-

mitted template generator with a FNMR ≤ 10
−2

at FMR ≤ 10
−2

(PIV Level 1),

3. Interoperability: a template matcher is submitted and it matches templates from all MINEX

III-compliant template generators with a FNMR ≤ 10
−2

at FMR ≤ 10
−2

using two fngers (PIV

Level 1),

4. Accuracy at operationally-typical FMR: a template matcher is submitted and it matches its

corresponding template generator’s templates with a FNMR ≤ (2 × 10
−2) at FMR ≤ 10

−4

using one fnger (PIV Level 2),

(a) An exemption is made for PIV-compliant template generators from Ongoing MINEX.

5. Compliance with minutia placement standards: minutiae density plots derived from gener-

ated templates do not exhibit a periodic, grid-like, or geometric structure without reasonable

justifcation,

6. History: the validation package was submitted within the last 5 years,

(a) An exemption is made for PIV-compliant template generators from Ongoing MINEX.

7. Diversity of operating points: a template matcher is submitted and produces at least 512
unique scores over the entire dataset when comparing fngerprint templates from two di˙er-

ent subjects,

8. Availability: the submission is one of two submissions from the submitting organization,

or its subsidiaries, acquisitions, or mergers, by frst replacing submissions with the same

CBEFF Product IDs and older version numbers, followed by replacing submissions with

older acceptance dates.

(a) A deviation is made for submissions exempted by 1a, 4a, or 6a. Once any MINEX III sub-

mission is received by an organization or the organization’s subsidiaries, acquisitions,

11

MINEX III Test Plan and Application Programming Interface

or mergers, all exempted submissions from the submitting organization, and the orga-

nization’s subsidiaries, acquisitions, and mergers will lose their exemption, regardless

of the submission’s compliance status.

MINEX III

Compliance

Validated within

past 5 years

Participant & CBEFF

Product ID unique

within last 2 uses

MINEX III

Generator

Compliance

MINEX III

Matcher

Compliance

≥ 512 unique

impostor scores

NIST SP 800-76-2

Level 1 Matcher

Compliance

NIST SP 800-76-2

Level 2 Matcher

Compliance

Matches with

FNMR ≤ 10
−2

@

FMR ≤ 10
−2

Mean runtime

≤ 10
−2

s

Generator matches

native templates with

FNMR ≤ 2 × 10
−2

@

FMR ≤ 10
−4

NIST SP 800-76-2

Generator

Compliance

Matched with

FNMR ≤ 10
−2

@

FMR ≤ 10
−2

Mean runtime ≤ 0.5 s

Meets minutia

placement standards

No duplicate minutia

New constraint

in MINEX III

New constraint in

NIST SP 800-76-2

Ongoing MINEX

constraint

Figure 5: Visual representation of the MINEX III compliance constraints defned in Section 8.

Disclaimer

Certain commercial equipment, instruments, or materials are identifed in this paper in order

to specify the experimental procedure adequately. Such identifcation is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor is it

intended to imply that the materials or equipment identifed are necessarily the best available for

the purpose.

12

MINEX III Test Plan and Application Programming Interface

Revision History

13 July 2016 Changed operating system from CentOS 7.0.1406 to CentOS 7.2.1511.

12 May 2016 Requirement for number of unique impostor scores increased from 256 to 512.

07 July 2015 Processor used for timing was updated.

11 June 2015 Initial revision.

13

	Overview
	What's New
	Fingerprint Image Data
	Format
	Resolution and Dimensions
	Sensor and Impression Types

	NIST SP 800-76-2 Compliant Templates
	Application Programming Interface
	Predefined Constants
	Identification
	Parameters
	Description
	Return Code

	Template Creation
	Parameters
	Description
	Return Code

	Template Matching
	Parameters
	Description
	Return Code

	Software and Documentation
	Software Library and Platform Requirements
	Restrictions
	External Dependencies
	Naming
	Testing Procedure

	Usage
	Validation and Submitting
	Speed

	Client Programs
	MINEX III Compliance

