Minutiae Interoperability Exchange Test

(MINEX 04)

C. L. Wilson NIST

Exchange of Fingerprint Data

Images or Templates

Factors To Consider:

•Accuracy

•Processing time

•Size on card

Minutiae Example

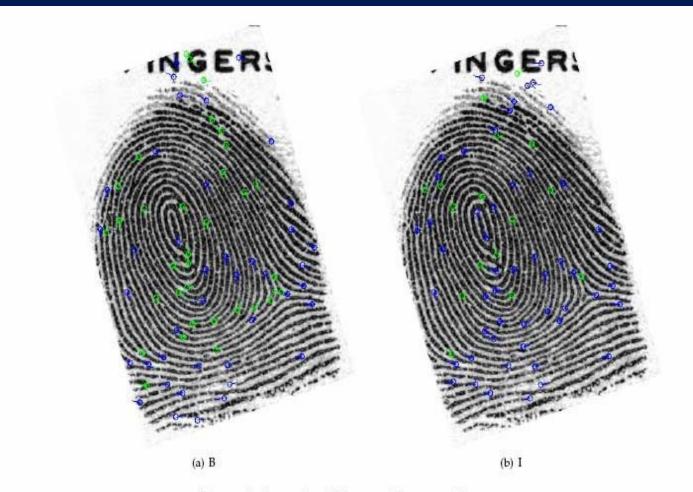


Figure 1: Examples of Minutiae Placement Variation

A NIST Special Database 29 image annotated with the $(x, y, \theta, type)$ minutiae points of the MIN:A template generators. Red indicates type "other", green indicates "ridge ending", and blue labels "bifurcation".

Fingerprint Matching

1. Enrollment

Non-Match

2. Subsequentattempts atidentityverification

3. Matching

Types of Templates

- Proprietary templates

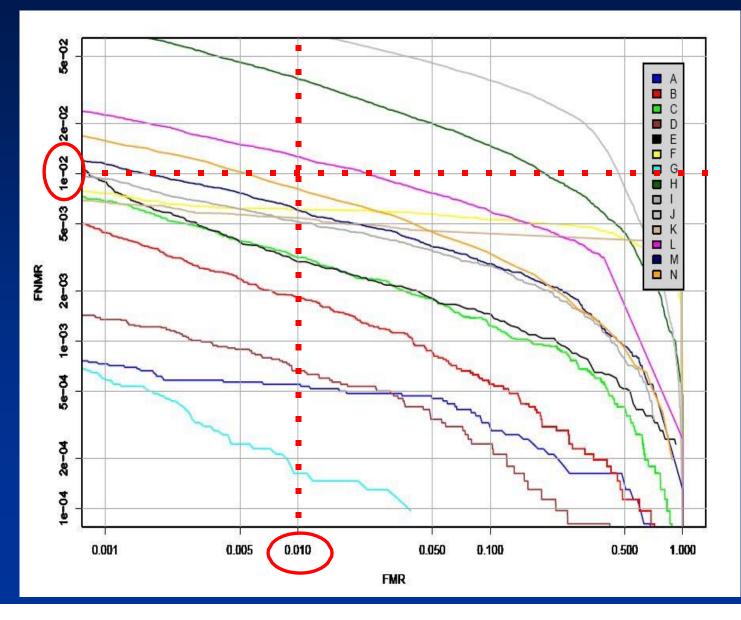
 Individual vendor's representation of images
- Standard templates: INCITS 378 format
 - MIN:A templates
 - codes minutiae coordinates (x, y), angle (θ), type,
 & quality
 - MIN:B templates
 - MIN:A data plus ridge count, core, and delta information

Largest Biometric Test to Date...

- 4 datasets:
 - POEBVA, DHS2, POE, and DOS
- Number of Samples
 - >60,000 matched fingerprint pairs
 - >120,000 non-match fingerprints
- 14 vendors
 - Six participants in MIN:B testing
- 4.4 billion comparisons resulting in >45 GB of scores & >1 terabyte of data in total

Vendors

- A. Cogent Systems Incorporated
- B. Dermalog Identification Systems GMBH
- C. Bioscrypt Incorporated
- D. Sagem Morpho Incorporated
- E. Neurotechnologija
- F. Innovatrics
- G. NEC Corporation

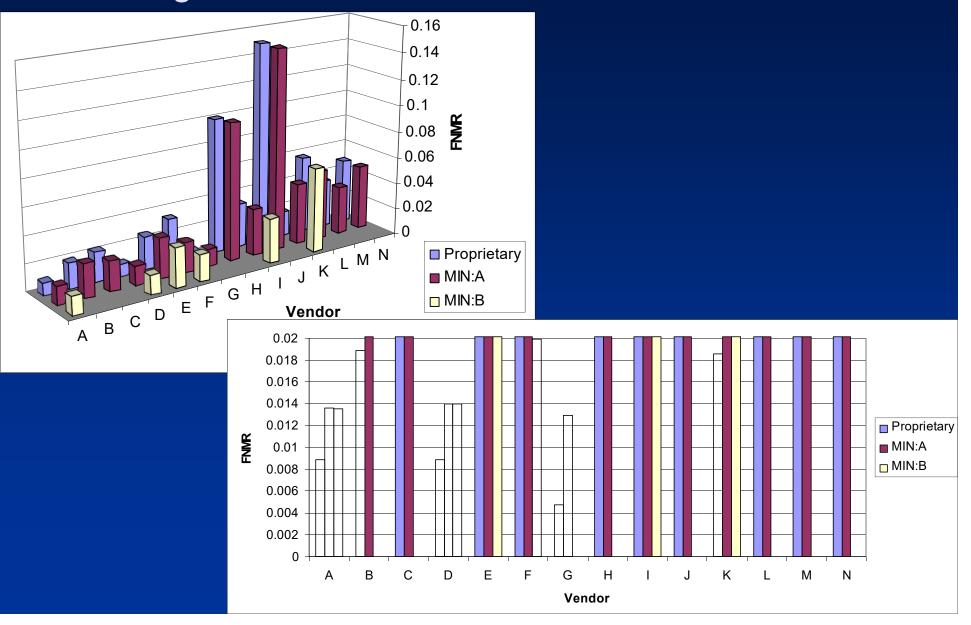

- H. Technoimagia Corporation
- I. Identix Incorporated
- J. Biologica Sistemas
- K. SPEX Forensics
- L. Secugen Corporation
- M. NITGen Corporation
- N. Cross Match Technologies

MINEX Questions

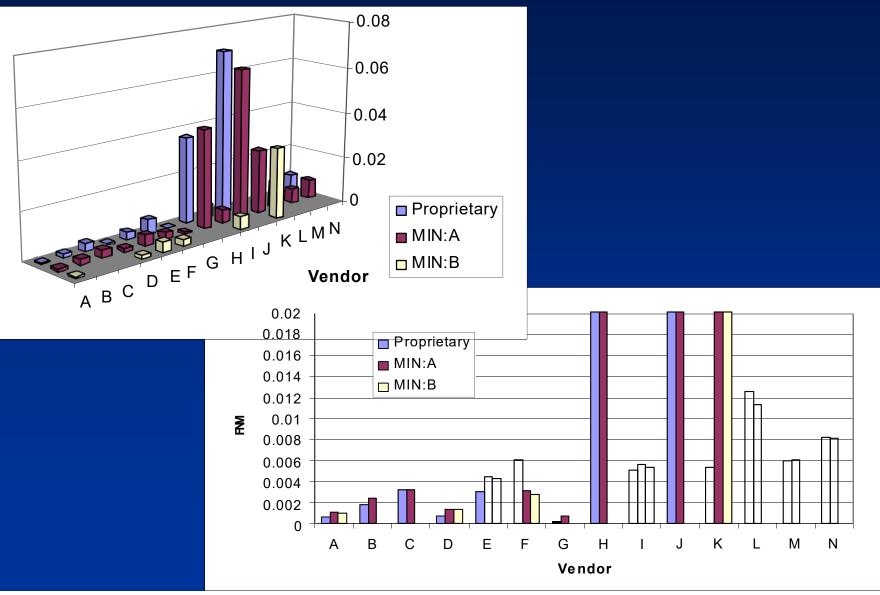
 Do standard templates give accuracy comparable with proprietary (imagebased) implementations?

 Can template data be generated and matched by different vendors without increase in error rates?

Detection Error Tradeoff Curves

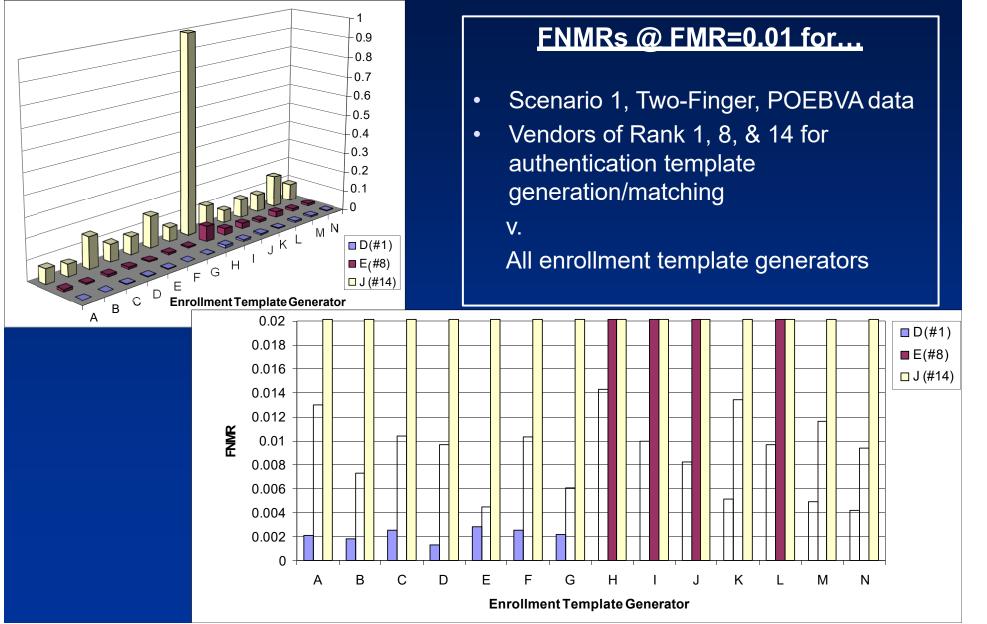

Types of Tests

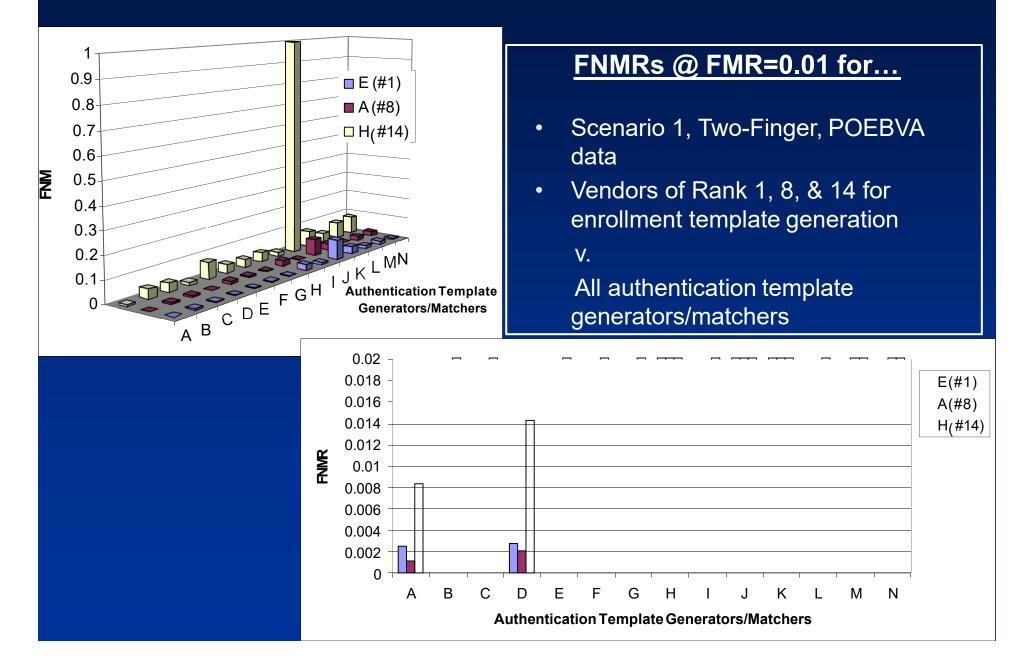
- Single- v. Two- Finger
- Proprietary v. Native
- Native v. Interoperable (Scenario 1)
- Scenarios 2,3,&4
- Four datasets of different quality


Results 1

- The best proprietary templates are superior to the MIN:A & MIN:B templates in accuracy.
- The enhanced MIN:B template performed similarly to the basic MIN:A template.

Proprietary and Native Performance for Single-Finger Test at FMR=0.01 for POEBVA data


Proprietary and Native Performance for Two-Finger Test at FMR=0.01 for POEBVA data


Results 2

- As with most recent tests (by NIST and others), the error rates between matching algorithms vary by at least an order of magnitude.
- Two-finger authentication with standard templates can achieve the accuracy of single-finger authentication with proprietary templates.

Interoperability Example 1

Interoperability Example 2

Results 3

- The leading vendors in template generation are not always the leaders in matching and vice-versa.
 - Some template generators produce standard templates that are matched more accurately than others. Some combination of templates fail completely.
 - Some matchers compare templates more accurately than others.

Finding the Largest Interoperable Group

NF = 2	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	Mean	Rank	Med.	Rank
Α	0.0011	0.0092	0.0080	0.0021	0.0130	0.0079	0.0049	0.0248	0.0049	0.0755	0.0292	0.0161	0.0213	0.0210	0.0171	4	0.0111	8
В	0.0027	0.0024	0.0072	0.0018	0.0073	0.0071	0.0017	0.0456	0.0049	0.0589	0.0588	0.0105	0.0083	0.0096	0.0162	1	0.0072	2
С	0.0052	0.0057	0.0032	0.0025	0.0104	0.0031	0.0039	0.0851	0.0081	0.1571	0.1048	0.0177	0.0099	0.0133	0.0307	8	0.0090	6
D	0.0021	0.0046	0.0045	0.0013	0.0097	0.0044	0.0035	0.0325	0.0062	0.0877	0.0442	0.0154	0.0126	0.0103	0.0171	5	0.0080	4
E	0.0025	0.0061	0.0056	0.0028	0.0045	0.0054	0.0035	0.0280	0.0102	0.0900	0.0362	0.0163	0.0147	0.0053	0.0165	2	0.0059	1
F	0.0054	0.0060	0.0032	0.0025	0.0103	0.0031	0.0038	0.0855	0.0081	0.1597	0.1058	0.0177	0.0097	0.0131	0.0310	9	0.0089	5
G	0.0040	0.0032	0.0085	0.0022	0.0061	0.0085	0.0007	0.0308	0.0068	0.0715	0.0693	0.0116	0.0074	0.0084	0.0171	3	0.0079	3
Н	0.0084	0.0421	0.0393	0.0143	0.0767	0.0395	0.0384	0.0422	0.0210	0.9999	0.0724	0.0413	0.0753	0.0831	0.1139	14	0.0417	14
I	0.0073	0.0184	0.0252	0.0100	0.0333	0.0249	0.0083	0.1137	0.0056	0.1206	0.1170	0.0207	0.0313	0.0415	0.0413	12	0.0250	12
J	0.0077	0.0119	0.0259	0.0082	0.0276	0.0257	0.0070	0.1572	0.0103	0.0640	0.5736	0.0198	0.0296	0.0297	0.0713	13	0.0258	13
K	0.0018	0.0130	0.0108	0.0051	0.0134	0.0109	0.0049	0.0280	0.0068	0.0929	0.0275	0.0270	0.0313	0.0234	0.0212	7	0.0132	10
L	0.0115	0.0109	0.0218	0.0097	0.0258	0.0213	0.0066	0.0795	0.0105	0.0861	0.1123	0.0113	0.0267	0.0254	0.0328	10	0.0216	11
M	0.0099	0.0096	0.0106	0.0049	0.0116	0.0108	0.0039	0.1007	0.0134	0.1573	0.1929	0.0247	0.0061	0.0211	0.0413	11	0.0112	9
N	0.0063	0.0077	0.0086	0.0042	0.0094	0.0087	0.0056	0.0368	0.0104	0.0862	0.0353	0.0169	0.0157	0.0081	0.0186	6	0.0090	7
Mean	0.0054	0.0108	0.0130	0.0051	0.0185	0.0129	0.0069	0.0636	0.0091	0.1648	0.1128	0.0191	0.0214	0.0224				
Rank	2	5	7	1	8	6	3	12	4	14	13	9	10	11				
Med.	0.0053	0.0084	0.0086	0.0035	0.0110	0.0086	0.0044	0.0439	0.0081	0.0889	0.0709	0.0173	0.0152	0.0171				
Rank	3	5	6	1	8	7	2	12	4	14	13	11	9	10				

FNMRs at FMR=0.01 for Scenario 1, Two-Finger, POEBVA data

Finding the Largest Interoperable Group

NF = 2	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	Mean	Rank	Med.	Rank
A	0.0011	0.0092	0.0080	0.0021	0.0130	0.0079	0.0049	0.0248	0.0049	0.0755	0.0292	0.0161	0.0213	0.0210	0.0171	4	0.0111	8
В	0.0027	0.0024	0.0072	0.0018	0.0073	0.0071	0.0017	0.0456	0.0049	0.0589	0.0588	0.0105	0.0083	0.0096	0.0162	1	0.0072	2
C	0.0052	0.0057	0.0032	0.0025	0.0104	0.0031	0.0039	0.0851	0.0081	0.1571	0.1048	0.0177	0.0099	0.0133	0.0307	8	0.0090	6
D	0.0021	0.0046	0.0045	0.0013	0.0097	0.0044	0.0035	0.0325	0.0062	0.0877	0.0442	0.0154	0.0126	0.0103	0.0171	5	0.0080	4
E	0.0025	0.0061	0.0056	0.0028	0.0045	0.0054	0.0035	0.0280	0.0102	0.0900	0.0362	0.0163	0.0147	0.0053	0.0165	2	0.0059	1
F	0.0054	0.0060	0.0032	0.0025	0.0103	0.0031	0.0038	0.0855	0.0081	0.1597	0.1058	0.0177	0.0097	0.0131	0.0310	9	0.0089	5
G	0.0040	0.0032	0.0085	0.0022	0.0061	0.0085	0.0007	0.0308	0.0068	0.0715	0.0693	0.0116	0.0074	0.0084	0.0171	3	0.0079	3
H	0.0084	0.0421	0.0393	0.0143	0.0767	0.0395	0.0384	0.0422	0.0210	0.9999	0.0724	0.0413	0.0753	0.0831	0.1139	14	0.0417	14
I	0.0073	0.0184	0.0252	0.0100	0.0333	0.0249	0.0083	0.1137	0.0056	0.1206	0.1170	0.0207	0.0313	0.0415	0.0413	12	0.0250	12
J	0.0077	0.0119	0.0259	0.0082	0.0276	0.0257	0.0070	0.1572	0.0103	0.0640	0.5736	0.0198	0.0296	0.0297	0.0713	13	0.0258	13
K	0.0018	0.0130	0.0108	0.0051	0.0134	0.0109	0.0049	0.0280	0.0068	0.0929	0.0275	0.0270	0.0313	0.0234	0.0212	7	0.0132	10
L	0.0115	0.0109	0.0218	0.0097	0.0258	0.0213	0.0066	0.0795	0.0105	0.0861	0.1123	0.0113	0.0267	0.0254	0.0328	10	0.0216	11
M	0.0099	0.0096	0.0106	0.0049	0.0116	0.0108	0.0039	0.1007	0.0134	0.1573	0.1929	0.0247	0.0061	0.0211	0.0413	11	0.0112	9
N	0.0063	0.0077	0.0086	0.0042	0.0094	0.0087	0.0056	0.0368	0.0104	0.0862	0.0353	0.0169	0.0157	0.0081	0.0186	6	0.0090	7
Mean	0.0054	0.0108	0.0130	0.0051	0.0185	0.0129	0.0069	0.0636	0.0091	0.1648	0.1128	0.0191	0.0214	0.0224				
Rank	2	5	7	1	8	6	3	12	4	14	13	9	10	11				
Med.	0.0053	0.0084	0.0086	0.0035	0.0110	0.0086	0.0044	0.0439	0.0081	0.0889	0.0709	0.0173	0.0152	0.0171				
Rank	3	5	6	1	8	7	2	12	4	14	13	11	9	10				

FNMRs at FMR=0.01 for Scenario 1, Two-Finger, POEBVA data

Finding the Largest Interoperable Group

NF = 2	A	В	С	D	Е	F	G	H	I	J	K	L	N	1	N	Mean	Rank	Med.	Rank
A																0.0171	4	0.0111	8
B C																0162	1 8	0.0072	2
D																	5	0.0090	6
E																	2	0.0059	1
F																	9	0.0089	5
G																		0.0079	3
H																		417	14
1								C										250	12
K								C							_			258 132	13 10
L															~-	~		216	10
М				B				0.00)72				<u> </u>).()	07	3		112	9
Ν			2															090	7
Mean	<u>b.</u>		11.2																
Rank Med.	0.0053		2	F				0.00)32				C).()	10	3			
Rank	0.0003		0	•											. •	-			
			-	_															
				N				0.00)86				() ()	09	4			
				IN											50	•			

FNMRs at FMR=0.01 for Scenario 1, Two-Finger, POEBVA data

Largest Group for 2-Finger POEBVA s.t. the max FNMR≤0.01 @ FMR=0.01

NF = 2	Α	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	Mean	Rank	Med.	Rank
4	0.0011	0.0092	0.0080	0.0021	0.0130	0.0079	0.0049	0.0248	0.0049	0.0755	0.0292	0.0161	0.0213	0.021	0.0171	4	0.0111	8
13	0.0027	0.0024	0.0072	0.0018	0.0073	0.0071	0.0017	0.0456	0.0049	0.0589	0.0588	0.0105	0.0083	0.007	0.0162	1	0.0072	2
q	0.0052	0.0057	0.0032	0.0025	0.0104	0.0031	0.0039	0.0851	0.0081	0.1571	0.1048	0.0177	0.0099	0.0133	0.0307	8	0.0090	6
D	0.0021	0.0046	0.0045	0.0013	0.0097	0.0044	0.0035	0.0325	0.0062	0.0877	0.0442	0.0154	0.0126	0 0103	0.0171	5	0.0080	4
Е	0.0025	0.0061	0.0056	0.0028	0.0045	0.0054	0.0035	0.0280	0.0102	0.0900	0.0362	0.0163	0.0147	0.0453	0.0165	2	0.0059	1
F	0.0054	0.0060	0.0032	0.0025	0.0103	0.0031	0.0038	0.0855	0.0081	0.1597	0.1058	0.0177	0.0097	0.0131	0.0310	9	0.0089	5
G	0.0040	0.0032	0.0085	0.0022	0.0061	0.0085	0.0007	0.0308	0.0068	0.0715	0.0693	0.0116	0.0074	0 0084	0.0171	3	0.0079	3
Н	0.0084	0.0421	0.0393	0.0143	0.0767	0.0395	0.0384	0.0422	0.0210	0.9999	0.0724	0.0413	0.0757	0.0831	0.1139	14	0.0417	14
I	0.0073	0.0184	0.0252	0.0100	0.0333	0.0249	0.0083	0.1137	0.0056	0.1206	0.1170	0.0207	0.0313	0.0415	0.0413	12	0.0250	12
J	0.0077	0.0119	0.0259	0.0082	0.0276	0.0257	0.0070	0.1572	0.0103	0.0640	0.5736	0.0198	0.0296	0.0297	0.0713	13	0.0258	13
K	0.0018	0.0130	0.0108	0.0051	0.0134	0.0109	0.0049	0.0280	0.0068	0.0929	0.0275	0.0270	0.0313	0.0234	0.0212	7	0.0132	10
L	0.0115	0.0109	0.0218	0.0097	0.0258	0.0213	0.0066	0.0795	0.0105	0.0861	0.1123	0.0113	0.0267	0.0254	0.0328	10	0.0216	11
М	0.0099	0.0096	0.0106	0.0049	0.0116	0.0108	0.0039	0.1007	0.0134	0.1573	0.1929	0.0247	0.0061	0.0211	0.0413	11	0.0112	9
N	0.063	0.0077	0.0086	0.0042	0.0094	0.0087	0.0056	0.0368	0.0104	0.0862	0.0353	0.0169	0.017	0.0081	0.0186	6	0.0090	7
Mean	0.0 054	0.0108	0.0130	0.0051	0.0185	0.0129	0.0069	0.0636	0.0091	0.1648	0.1128	0.0191	0.0714	0.0224				
Rank	2	5	7	1	8	6	3	12	4	14	13	9	10	11				
Med.	0.0053	0.0034	0.0086	0.0035	0.0110	0.0086	0.0044	0.0439	0.0081	0.0889	0.0709	0.0173	0.0152	0.0171				
Rank	3		6	1	8	7	2	12	4	14	13	11	9	10				

	А	В	C	D	F	G
А	0.0011	0.0092	0.0080	0.0021	0.0079	0.0049
В	0.0027	0.0024	0.0072	0.0018	0.0071	0.0017
С	0.0052	0.0057	0.0032	0.0025	0.0031	0.0039
D	0.0021	0.0046	0.0045	0.0013	0.0044	0.0035
Е	0.0025	0.0061	0.0056	0.0028	0.0054	0.0035
F	0.0054	0.0060	0.0032	0.0025	0.0031	0.0038
G	0.0040	0.0032	0.0085	0.0022	0.0085	0.0007
Ν	0.0063	0.0077	0.0086	0.0042	0.0087	0.0056

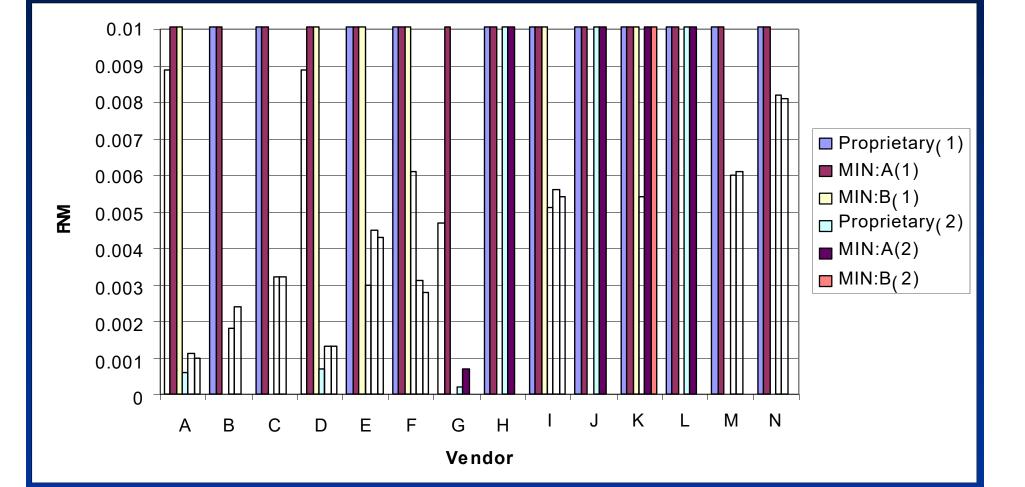
Interoperable Template Generators and Matchers

<u>Dataset</u>	<u>Criterion</u> (s.t. FNMR≤0.01 @ FMR=0.01)	<u>Value of</u> <u>Criterion</u>	<u>Temp.</u> <u>Gen's</u>	<u>#</u>	<u>Temp.</u> <u>Matchers</u>	Ħ
POEBVA	group max	0.0087	A,B,C, D,E,F, G,N	8	A,B,C,D,F,G	6
POEBVA	group mean	0.0094	A,B,C, D,E,F, G,K,L, M,N	11	A,B,C,D,E,F, G,I,L,M,N	11
DHS2	group max	0.0081	B,D,N	3	A,D	2
DHS2	group mean	0.0095	B,D,K N	4	A,C,D,F,G	5

Results 4

- Certification of an interoperable group of products requires some prior specification of the required accuracy.
 - More products will interoperate when the accuracy requirement is low and vice versa.
 - More products can be certified if the group's mean error rate is below a threshold than if their worst interoperable pair is used for certification.

Results 5


- Performance is sensitive to the quality of the dataset.
 - Applies to both proprietary and interoperable templates.
 - Two higher quality datasets (POEBVA and POE) provide reasonable interoperability.
 Two lower quality datasets (DOS and DHS2) do not.

For more information

 See the report online <u>http://fingerprint.nist.gov/minex04/</u>

Contact
 Charles Wilson
 <u>cwilson@nist.gov</u>
 (301) 975-2080

Proprietary and Native Performance

