

NIST Cloud Computing Forum and Workshop VIII

Predicting Global Failure Regimes in Complex Information Systems

Kevin Mills, NIST July 9, 2015

Project Research Goals

- Develop *design-time methods* that system engineers can use to detect existence and causes of costly failure regimes prior to deployment
- Develop *run-time methods* that system managers can use to detect onset of costly failure regimes in deployed systems, prior to collapse

Computing Forum and Wo

Topics

- Some past results on design-time methods
- Example → Applying one design-time method to seek failure scenarios in a cloud system

- Ongoing work on run-time methods
- Where to find more information

Some Past Results

State-space reduction techniques and their application to clouds

Directed and self-directed search techniques and their application to clouds

Kevin Mills, NIST

4

NIST Cloud Computing Forum and Workshop VIII

NIST Cloud

Computing

Program

Julv 2015

Method: Genetic Algorithm (GA) steers a population of simulators to search for parameter combinations that lead to system failure

In our following example, we use the *Koala* cloud simulator, and we define *anti-fitness* as the proportion of users not served, and we use differential probability analysis on the collection of tuples.

Julv 2015

NIST Cloud

Computing

Program

NIST Cloud Computing Forum and Workshop VIII

Summary of Koala Parameters to Search Over

Test Case – Can GA find VM Leakage *due to message loss and lack of orphan control*?

Failure scenario found manually by accident and described in C. Dabrowski and K. Mills, "VM Leakage and Orphan Control in Open-Source Clouds", *Proceedings of IEEE CloudCom 2011*, Nov. 29-Dec. 1, Athens, Greece, pp. 554-559.

Model					
Element	Behavior	Structure	Asymmetry	Failure	Total
User	28	2	4	0	34
Cloud Controller	21	4	5	0	30
Cluster Controllers	11	5	3	0	19
Nodes	6	0	0	14	20
Intra-Net/Inter-Net	4	11	2	9	26
Totals	70	22	14	23	129

Parameter Category

Average # values per parameter is about 6, so search space is $\approx 6^{129}$ i.e., $\approx 10^{100}$ scenarios are possible

- adapted 125-parameter Koala laaS simulator to be GA controllable
- added 4 Koala parameters to turn on/off logic to control (a) creation orphans,
 (b) termination orphans, (c) relocation orphans and (d) administrator actions

Kevin Mills, NIST

Koala GA Search over 500 Generations

7

GENETIC ALGORITHM CONTROL PARAMETERS

Generations	500
Population Size	200 Individuals
Elite Per Generation	16 Individuals
Reboot After	200 Generations
Selection Method	Stochastic Uniform Sampling
# Crossover Points	3
Mutation Rate	0.001 < Adaptive < 0.01

Kevin Mills, NIST

Differential Probability Analysis

Let C be the set of collected tuples, each containing a vector of parameter value (PV) pairs and a corresponding anti-fitness value, f

Segment **C** into high-pass (**H**) and low-pass (**L**) subsets, where: $H = \{x \in C \mid f_x > 0.70\}$ and $L = \{x \in C \mid f_x < 0.15\}$

For each PV estimate the probability of occurrence in **H** and **L**:

 $P(PV_i | f > 0.70 = | PV_i \in H | / | H | \text{ and } P(PV_i | f > 0.15) = | PV_i \in L | / | L |$

Then compute the estimated differential probability:

 $D = P(PV_i | f > 0.70) - P(PV_i | f < 0.15)$

Plot **D** for each PV pair

Kevin Mills, NIST

Program

Analysis of Results from *Koala* GA Search 1 – 500 Generations

Seeking Known Failure Scenario – search duration 30 days

Kevin Mills, NIST

9

NIST Cloud Computing Forum and Workshop VIII

Ongoing Work: Do published findings on the spread of congestion hold for realistic network models?

Y: Network Disruption

Clustering Analysis

Kevin Mills, NIST

10

To Learn More

Project Team (the core four)

- Kevin Mills, computer scientist <u>kmills@nist.gov</u>
- Chris Dabrowski, computer scientist <u>cdabrowski@nist.gov</u>
- Jim Filliben, statistician <u>jfilliben@nist.gov</u>
- Sandy Ressler, information visualization specialist <u>sressler@nist.gov</u>

Project Page

<u>http://www.nist.gov/itl/antd/emergent_behavior.cfm</u>

