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The National Institute of Standards & Technology (NIST) is a measurement laboratory
within the U.S. Government. Founded in 1901, NIST is a non-regulatory federal agency
within the Department of Commerce. NIST's mission is to promote U.S. innovation and
industrial competitiveness by advancing measurement science, standards, and technology
in ways that enhance economic security and improve quality of life. NIST is a
multidisciplinary organization operating across many scientific domains, including: physics,
chemistry, materials and information technology. | work within NIST’s Information
Technology Laboratory, which also directs the well-known NIST Cloud Computing program. |
base much of my talk on computational clouds, though the research applies more generally
to complex information systems of all kinds.

To illustrate my thesis, throughout this talk | identify a number of companies offering cloud
computing services. While those references encompass a broad cross-section of the
industry, | do not identify every cloud-computing company in the market. The fact that |
identify certain cloud-computing companies does not imply endorsement by the U.S.
Government or NIST, nor does such identification suggest that those companies are the
best available.
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There is an undeniable trend away from corporate-owned data centers and toward
adoption of cloud-computing services. The trend appears no matter how it is measured: (1)
number of objects stored in the cloud, (2) number of cloud customers or (3) dollars spent
on cloud computing. This trend means that our information-based economy exhibits
growing dependence on large data centers deployed and managed by a handful of
information technology companies. This also implies that enterprises move from paying
capital + operating expenses to just paying operating expenses. On the other hand, failures
within a handful of large cloud-computing infrastructures can have widespread effects,
when compared with failures distributed across a large number of corporate data centers.
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Over the past five years, many cloud outages and performance degradations have
occurred, and the consequences have been costly. These cloud failures and degradations
have been spread widely across the cloud industry rather then being concentrated in one
or two cloud vendors. These cloud failures and degradations stem from various root
causes, including: power outages due to storms, failures in backup generators, software
bugs, configuration errors and insufficient reliability in applications designed for
deployment on clouds. Assuming that the rate of such problems stays the same over the
coming decade, the growing reliance on cloud services will increase the consequences of
failures and degradations, substantially increasing the cost to our information-based
economy. Bear in mind that the companies building and using cloud systems and services
are quite technically advanced, and very competent in designing and deploying large,
distributed systems. Despite this fact, reliability issues continue to plague large, distributed,
complex information systems.



Current best practices enable us to design and deploy
complex information systems
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KNOWLEDGE

But we lack scientific and engineering knowledge
necessary to understand, predict and control the
behavior of such systems
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My thesis is that failures and performance degradations in such systems do not arise from
any inability to design and deploy large-scale systems and distributed applications, but
rather from a knowledge gap. We lack the scientific and engineering knowledge needed to
understand, predict and control behavior in complex information systems, such as clouds,
the Internet and distributed systems deployed on them. This knowledge gap threatens to
undermine society’s growing reliance on the complex information systems that underlie
our modern economy.

While there are many reasons why complex information systems are difficult to understand
& predict, | am going to focus on three: (1) state-space explosion, (2) emergent behaviors
and (3) heavy-tailed distributions.



Why is it difficult to understand & predict
behavior in complex information systems?

Reason #1: System state space is immense!!
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For example, the NIST Koala simulator of laaS Clouds has about n =130
parameters with average k = 6 values each, which leads to a model
parameter space of ~10191 (note that the visible universe has ~10% atoms) and the
Koala response space ranges from m = 8 to m = 200, depending on the
specific responses chosen for analysis (typically m & 45).
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Complex information systems comprise a vast state space. This means that there are many
system states that could exist, and finding those that would lead to system-wide failures
and performance degradations is quite challenging. Even in an abstract simulation model of
a complex information system the state space is immense. For example, NIST has
developed Koala, a simulator of an infrastructure-as-a-service (laaS) cloud. Koala has about
130 parameters that one might wish to explore for failure scenarios and performance
degradations. Though each parameter could be represented by a floating-point number, we
can reduce the state-space by restricting the range of parameter values to search to a small
subset, say 6 values per parameter (613°). Even with such drastic restriction, the Koala
search space encompasses 101°! combinations, which exceeds the number of atoms (10%°)
in the visible universe. Further, simulations can produce myriad responses, some of which
are duplicative, others unique and essential. For example, the NIST Koala simulator can
exhibit 200 or more responses, which might in reality reflect around a dozen unique
behavioral dimensions. When searching the Koala state space, analysts must be sure to
measure all the unique behaviors and not to overweigh overlapping responses.



Why is it difficult to understand & predict
behavior in complex information systems?

Reason #2: Emergent behaviors are difficult to predict!!
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Many key, global properties of complex information systems appear as emergent behaviors, which
can be impossible to predict based on detailed analyses of the behavior of individual system
components. Such global properties can only be discovered by measuring macroscopic variables of
a system under an appropriate set of conditions that stimulate the spatiotemporal emergence of
the behaviors of interest. Changing system components in some way intended to create a particular
outcome can result in global emergent behavior that is quite different than expected. For example,
we simulated a distributed grid computing system, where a population of users attempted to
complete multitask, workflow jobs. The graph plots (y axis) the probability density function (pdf) of
the times (x axis) taken to complete jobs. The black curve represents baseline system performance.
Subsequently, we injected a domain-name system (DNS) spoofing attack, where some sites
pretended to be willing to execute user tasks, accepted user submissions and then did execute the
jobs. Affected users had to detect such events and then resubmit their jobs to other, real service
providers. As a result, the blue curve shows the effects of DNS spoofing on the pdf of job execution
times. We then imagined the developer of the grid client released a software update that contained
sensible behavior to combat DNS spoofing. Specifically, once an suspected spoofer is detected, the
client places the suspect in a penalty box and does not attempt to use the suspect until some
penalty period expires. As the red curve shows, the updated client software worsened rather than
improved system performance, causing a larger proportion of jobs to be later than before the patch
was released. This result occurred because the global schedule of task executions is an emergence
property of a grid system. By improving the ability of clients to combat DNS spoofing attacks, more
clients became competitive in the same time period for the limited processing resources in the grid,
and the schedule of task executions was shifted, causing more work-flows to be delayed in their
overall completion times.



Why is it difficult to understand & predict
behavior in complex information systems?

Reason #3: Highly improbable events are more
probable than we expect!!

Gaussian and Poissonian assumptions do not hold
in complex systems. Instead, the probability landscape
is better represented by heavy-tailed distributions,
ﬁ which means that highly improbably events occur

- more frequently than we assume. Such imprabable
mony N roBAL events often lead to very expensive system-wide
performance degradation or collapse.
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In a best-selling book, Nassim Nicholas Taleb dubbed rare events as black swans, which
appear infrequently in a world where swans are mainly white. In complex information
systems, large-scale system failures can often be attributable to such rare events, which can
lead to very costly outcomes. Most traditional analytical modeling of information systems
adopts Gaussian or Poissonian assumptions because the underlying probability
distributions are amenable to tractable mathematical analyses. In an effort to validate such
analytical models, simulations of information systems usually adopt the same assumptions.
In such probability distributions, the likelihood of improbable events, > 3 sigma from the
mean, is vanishingly small, thus rare, potentially costly, outcomes occur quite infrequently.
Taleb argues that Gaussian assumptions do not adequately represent the true probability
distribution of rare events in complex systems. Instead, Taleb proposes that heavy-tailed
distributions, such as Pareto and log-normal more closely represent reality. In such heavy-
tailed distributions, the occurrence of rare events is more highly probable thanin a
Gaussian distribution. In other words, rare events that can lead to system-wide failures are
more likely then assumed in the usual approach to systems modeling. By adopting
optimistic assumptions when simulating system behavior, analysts obtain a biased and
erroneous view about the potential for unexpected rare events to cause disruptions.

For the past six years, my colleagues and | at NIST have been investigating techniques that
can be used to understand & predict behavior in complex information systems. Next | will
give a high-level overview of our research. Then, | will focus on one particular research
objective that | have been pursuing over the past year.



National Institute of Eae)e) NIST
Standards and Technology NIST Res‘earCh Mtonal Instiue of

Standards and Technology

2006-2010 — Past NIST research investigating and evaluating methods
to understand the influence of distributed control
algorithms on global system behavior and user

experience.
Computer science: C. Dabrowski, K. Mills, E. Schwartz & J. Yuan
Inherently Mathematics: D. Genin, F. Hunt & V. Marbukh
Multidisciplinary Statistics: J. Filliben

Data Mining & Visualization: D. Cho & C. Houard

2011-present — Ongoing NIST research investigating and evaluating
methods to increase reliability of complex information

systems.
Computer science: C. Dabrowski, K. Mills & D. Santay
Inherently Mathematics: D. Genin & B. Rust
Multidisciplinary Statistics: J. Filliben

Data Mining & Visualization: open (collaboration possible) & S. Ressler
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From 2006-2010, my colleagues & | investigated and evaluated methods to understand the
influence of distributed control algorithms on global system behavior and on user
experience. We focused on two case studies: (1) comparing proposed replacements for the
TCP congestion-control algorithm and (2) comparing alternative algorithms for allocating
virtual machines to physical machines in infrastructure clouds. The work was general and
inherently multidisciplinary, spanning computer science, mathematics, statistics, data
mining and information visualization. As you will see, this work was quite successful.

Beginning in 2011, we turned our attention to investigating and evaluating methods to
increase reliability in complex information systems. Our focus to date has been on
infrastructure clouds, where we could leverage the Koala simulator developed under our
previous research. The work remains inherently multidisciplinary, though at the present
time we have an opening for data-mining expertise, because one of my colleagues, Dong
Yeon Cho, left NIST for NIH, where he now works on data mining for biological research. Dr.
Cho’s data-mining expertise proved invaluable, which means we have a need, but also
means we have a possibility to collaborate with someone who has interest and expertise in
data mining. If you are interested please let me know, either at the conference or later via
email.
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How can we understand the influence of distributed control algorithms
on global system behavior and user experience?

What to measure

= Mills, Filliben, Cho, Schwartz and Genin, Study of Proposed
Internet Congestion Control Mechanisms, NIST SP 500-282 (2010).

= Mills and Filliben, "Comparison of Two Dimension-Reduction
Methods for Network Simulation Models", Journal of NIST
Research 116-5, 771-783 (2011).

= Mills, Schwartz and Yuan, "How to Model a TCP/IP Network using
only 20 Parameters", Proceedings of the Winter Simulation
Conference (2010).

= Mills, Filliben, Cho and Schwartz, "Predicting Macroscopic T ——
Dynamics in Large Distributed Systems", Proceedings of ASME
(2011).

= Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis
Method for Large Cloud Simulations", Proceedings of the 4th
International Cloud Computing Conference, |IEEE (2011).

= Mills, Filliben and Dabrowski, "Comparing VM-Placement
Algorithms for On-Demand Clouds", Proceedings of IEEE CloudCom,
91-98 (2011).

~ Under what conditions ~—

Study of Proposed Internet
Congestion Control Mechanisms

For more see: http://www.nist.gov/itl/antd/emergent behavior.cfm

http://www.nist.gov/itl/antd/Congestion Control Study.cfm

At an affordable cost
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The primary focus of our past research was on: (1) state-space reduction methods (for parameters
and responses) and (2) measuring global system behaviors. Regarding state-space reduction, we
employed a combination of model restriction, factor clustering and 2-level orthogonal fractional
factorial experiment design to reduce the experiment parameter space for a TCP/IP network model
from 10°3° to 2°. Using correlation analysis and clustering, we reduced the response space of the
model from 22 responses to only 7 unique behaviors.

These reductions enabled us to compare TCP with 7 proposed replacements under only 32
conditions, requiring 256 simulations for a given experiment scenario. Such parsimony allowed us
to investigate 5 scenarios, with (8 x 32 x 5 =) 1280 simulations, leading to the most comprehensive
study to date of proposed TCP replacements. As our report shows: (1) we found that the proposed
replacements would not significantly change global network behavior, and we were able to explain
why, (2) we identified 5 conditions that must hold for a user to gain advantage from any of the
proposed TCP replacements, (3) we identified one of the proposed TCP replacements as most
suitable for deployment and (4) we raised cautionary notes about another proposed TCP
replacement. To demonstrate generality, we applied the same methods to compare alternative
VM-placement algorithms for on-demand clouds. In summary, our research from 2006 to 2010
focused mainly on methods to determine what to measure under what conditions at an affordable
cost when comparing competing distributed control algorithms for complex information systems.

While our state-space reduction methods allow us to characterize global system behaviors under a
wide range of parameter combinations, these approaches do not address directly the search for
low-probability, highly costly failure scenarios and performance degradations. That is the focus of
our ongoing research.
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How can we increase the reliability of complex information systems?

Research Goals: (1) develop design-time methods that system engineers can use
to detect existence and causes of costly failure regimes prior to system
deployment and (2) develop run-time methods that system managers can use to
detect onset of costly failure regimes in deployed systems, prior to collapse.

Ongoing Investigation of Design-Time Methods:
= State-space reduction techniques (transferred from previous research)
= Markov chains + cut-set analysis + perturbation analysis
= Anti-optimization + genetic algorithm (1 WILL ILLUSTRATE THIS ONE)

Planned Investigation of Run-Time Methods:
= Techniques (e.g., autocorrelation analysis) to measure critical slowing down,
which may provide early warning signals for critical transitions in large

systems (e.g., Scheffer et al., “Early-warning signals for critical transitions”,
NATURE, 461, 53-59, 2009)
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To increase reliability in complex information systems, we are investigating two general classes of
methods: (1) design-time methods and (2) run-time methods. We aim for design-time methods that
system engineers can use to detect existence and causes of costly failure regimes prior to system
deployment. In that way, black swans can be identified and planned for. Since all design-time
failure scenarios cannot be uncovered a priori, we also seek run-time methods that system
operators can use to detect onset of costly failure scenarios in deployed systems, prior to system
collapse.

We are investigating three design-time methods. First, we hope to exploit state-space reduction
techniques from our previous research to narrow the parameter combinations that need to be
considered. Second, we are constructing Markov chain models, with probabilities determined by
instrumenting systems or models operating under nominal conditions, and then treating those
models as graphs, which can be subjected to cut-set analysis to determine subsets of edges that
would disconnect the graph if removed. These subsets represent potential failure scenarios. We
then use perturbation analysis on these subsets to determine numeric thresholds at which the
system fails, and also collapse trajectories. We have published preliminary work on this approach.
We are also investigating the use of genetic algorithms to drive system models into anti-optimal
behavioral directions, | will focus on this throughout the rest of my talk.

For run-time methods, we are motivated by a Nature article, where an examination of natural
systems, fro cell signaling pathways to ecosystems and the climate, found that such complex
systems exhibit a critical slowing down in response to perturbations, as those systems near a critical
point between two behavioral regimes. We are investigating whether complex information systems
exhibit similar traits, and whether various signal-analysis techniques could identify critical slowing
down in such systems. Let me turn now to the use of genetic algorithms in design-time methods.

10



Example Design-Time Method: Anti-Optimization + Genetic Algorithm
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Historically, genetic algorithms (GAs) have been used to search for optimal solutions to various,
challenging problems. In our application, we invert the use of GAs so that they search for anti-
optimal solutions, which may indicate system failure scenarios or performance degradation. To
accomplish this, we define some measure of anti-fitness, e.g., the proportion of un-served users,
and then deploy a GA to search for model parameter combinations that maximize anti-fitness.
Classic GAs encode parameters as bit strings, which can be manipulated through various
operations, e.g., selection, recombination and mutation, mimicking genetic reproduction, which,
when carried out in populations over many generations, also mimics evolution. For our application,
we identify a set of parameters to search, and then define the bounds and granularity of each
parameter, which can then be represented as bit strings. We write some code that transforms bit
strings into simulator parameter files. The GA begins by generating a random set of parameters for
a parallel population of simulators. The simulators then execute until finished (or time expires) and
report their anti-fitness measures. The GA uses these measures to select a candidate set of
parameters on which to base the next generation. The GA then applies crossover-recombination
operators to pairs of the selected candidates, followed by probabilistic mutation of the recombined
pairs. The resulting bit strings are used to re-parameterize the population of simulators, which
again execute until finished (or time expires). This continues until a preset number of generations
has been completed. At the end of each generation, the GA records a collection of tuples that each
report (one per simulation) the parameter settings and anti-fitness achieved. Off-line, using various
data mining techniques, the tuple collection is analyzed to create clusters of parameter
combinations that could be interpreted to represent categories of reasons why a system might fail
or degrade. Next, | will discuss four specific aspects of this application of GAs, as illustrated in the
context of the Koala cloud simulator.
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Example Design-Time Method: Anti-Optimization + Genetic Algorithm
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| will begin with an overview of the Koala cloud simulator.

12



(1)

User User User User User
#1 #2 #3 #4 #5

=

3)
RESOURCE
ALLOCATION

CLOUD CONTROLLER

User
s oo o

Cluster

(4) INTERNET

—
=

User User
#n-2 #n-1

Schematic of Koala laaS Cloud Computing Model

DEMAND LAYER

User
#n

B
S—

Cluster Cluster
- LAYER Controller #¢- ag—— = |
Controller #1 L e L Controller #¢ L
: : -
NODE CONTROLLER #k [ NODE CONTROLLER #p [ NODE CONTROLLER #g —
NODE CONTROLLER skt pd (2) NODE CONTROLLER #p-1 | -z NODE CONTROLLER 101 |8 2.
NODE CONTROLLER sz - SUPPLY NODE CONTROLLER #p-2 |‘"1— - NODE CONTROLLER g2 | ~=| —
NODE CONTROLLER #3 LAYER NODE CONTROLLER #3 || =] NODE CONTROLLER #3 |~t—|
NODE CONTROLLER #2 I NODE CONTROLLER #2 | NODE CONTROLLER #2 “_—
NODE CONTROLLER #1 MODE CONTROLLER #1 |~ NODE CONTROLLER #1 |~——
NODE RESOURCES NODERESOURCES | NODE RESOURCES ¥
—_— e _—
1 e | [ (5) _\'m T e | | Vs A |
NER. Ba Shown for BEHAVIOR wi Shown for oy Shown for
One Nade Only LAYER L One Node Only ~~ | One Node Only

5-8, 2012 uccao12 13

Koala simulates virtual-machine placement in an infrastructure-as-a-service (laaS) cloud.
The model consists of five layers: (1) demand, (2) supply, (3) resource allocation, (4)
internet/intranet and (5) virtual-machine behavior. We use only layers (1)-(4) in the current
experiment, which focuses on virtual-machine placement. The simulated cloud offers a set
of physical nodes that may be shared among users by placing one or more virtual machines
on each node. The simulated cloud offers only a limited set of virtual-machine types. Users
can request multiple instances of one or more virtual-machine types. Through the Internet,
users contact a cloud controller to request virtual machines. The cloud controller consults
subordinate cluster controllers to see if any cluster can accept the user’s request. Koala
maps all virtual machines for a single user onto the same cluster, in order to benefit from
cluster-local communications. The cloud and cluster controllers communicate over either
the Internet or an intranet, depending on how the model is configured. Cluster controllers
decide on which physical nodes to place each virtual machine that is assigned by the cloud
controller. Cluster controllers interact across an intranet with nodes, via a node controller
that can boot, reboot, terminate and monitor the execution of virtual machines. The
virtual-machine behavior layer allows virtual machines to consume node resources and
allows node controllers to monitor resource usage by executing virtual machines. The user-
cloud interface is modeled after Amazon EC2, while the internal structure of the cloud is
patterned loosely after the public-domain version (1.6) of Eucalyptus.
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(2) SUPPLY LAYER
Virtual Machine (VM) Types Simulated in Koala

Virtual Virtual Block
Cores Devices # Virtual
# Speed # Size (GB) Network Memory Instruct.
VM Type (GHz) of Each Interfaces (GB) Arch.
M1 small 1 1.7 1 160 1 2 32-bit
M1 large 2 2 2 420 2 8 64-bit
M1 xlarge 4 2 4 420 2 16 64-bit
C1 medium 2 2.4 1 340 1 2 32-bit
C1 xlarge 8 24 4 420 2 8 64-bit
M2 xlarge 8 3 1 840 2 32 64-bit
M4 xlarge 8 3 2 850 2 64 64-bit

Four of 22 Physical Platform Types Simulated in Koala

Platform Physical Cores Memory # Physical Disks by Size #Network | Instruct.
Type # Speed (GB) 250 | 500 | 750 | 1000 Interfaces Arch.
(GHz) GB | GB | GB | GB
Cc8 2 24 32 0 3 0 0 1 64-bit
C14 4 3 64 0 4 0 3 2 64-bit
C18 8 3 128 0 0 4 3 4 64-bit
C22 16 3 256 0 0 0 7 4 64-bit
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The supply layer has two different views. In one view, the cloud offers users a small number
(7) of virtual-machine types, which define the number and speed of virtual cores, the
number and size of virtual disks, the number of virtual network interfaces, the amount of
memory and the instruction-set architecture. In the second view, the supply layer consists
of physical nodes that can assume a range of types (22). Here, we show only four of the 22
Koala platform types. Physical nodes are defined by the number and speed of physical
cores, the amount of memory, the number and size of physical disks, the number of
physical network interfaces and the instruction-set architecture. In general, physical nodes
may be much bigger than virtual machines, so multiple virtual machines may share a single
physical node. The virtual-machine-placement problem involves allocating virtual machines
to physical nodes in such a way as to minimize the amount of idle capacity in physical
nodes. The problem can be mapped mathematically to a bin-packing problem.

14



(1) DEMAND LAYER
Description of User Types Simulated in Koala
We created different classes of demand, such as processing users (PU), distributed
simulation users (MS), peer-to-peer users (PS), Web service users (WS) and
data search users (DS)
User Max-Min  Max-Max User Max-Min  Max-Max
Type VM Type(s) VMs VMs Type VM Type(s) VMs VMs
PS1 3 10
PU1 10 100
PS2 | c1 medium 10 50
PU3 100 500 PS3 50 100
M1 small
M1 large
PU5 500 1000 | WS1 | M2xlarge 1 3
C1 xlarge
M1 large
PU2 10 100 WS2 | M2 xlarge 3 9
C1 xlarge
M1 large M1 large
PU4 100 500 Ws3 | M2 xlarge 9 12
C1 xlarge
PU6 500 1000 Ds1 10 100
Ms1 M1 xi 10 100 DS2 | M4 xlarge 100 500
Xlarge
Ms3 9 100 500 Ds3 500 1000
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Koala allows users to assume any of 21 different types, of which | show 17 here. A user
type defines a class of simulated demand, such as processing users, distributed simulation
users, P2P users, Web service users and data-search users. Any user type is defined by one
of more virtual-machine types that is required. For each virtual-machine type the user
requests a minimum number of virtual-machine instances needed to compute a job, along
with a maximum number needed. Under one parameterization, users select the minimum
number of instances uniformly distributed from 1 to max-min and the maximum number of
instances uniformly distributed from max-min to max-max. Under another
parameterization, users simply set the minimum to max-min and the maximum to max-
max. If a user cannot obtain at least the minimum number requested for each virtual-
machine type, then the user receives a NERA, not enough resources available, fault and
must retry later.
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(1) DEMAND LAYER - USER BEHAVIOR

Finite-State Machine of Simulated User Behavior in Koala
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Each user executes a lifecycle, as show in this finite-state machine, which has two main paths: (1)
the user succeeds in obtaining virtual machines (green) and (2) the user cannot obtain the
requested virtual machines and must retry (red). Let me start with the green path. The user arrives,
probabilistically selects a type, a geo-location, a persistence (i.e., # of rest periods) and think time,
then enters the reflecting state. When the think time expires, the user probabilistically selects a # of
retries, a minimum and maximum number of virtual machines of each type needed by the user’s
type, sends a run-instance request to the cloud and enters the requesting state. Assuming the cloud
allocates either the maximum number of virtual machines requested (FULLY LAUNCHED) or at least
the minimum number (PARTIALLY LAUNCHED), the user probabilistically selects a holding period
and enters the holding state. While holding, the user may probabilistically describe, reboot and
terminate virtual-machine instances, which may also crash or be removed by the cloud. When the
number of virtual-machine instances falls below the minimum needed, the user may also attempt
to obtain additional virtual machines. A user may also decide to increase or decrease the required
number of virtual-machine instances during the holding period. When the holding period expires
the user sends a terminate-instances request to the cloud controller and enters the terminating
state. When the user’s instances have been terminated, the user morphs into a new user with a
probabilistically selected type, geo-location and so on.

If a user fails to obtain the minimum number of instances, then a number of retries can occur,
simulating retries during a business day. If those retries don’t succeed, the user can enter a resting
period, simulating going home for the day, only to return the next day and try again. If the user’s
patience is completely exhausted, then the user gives up and morphs into a newly arriving user.
Users who give up are considered to be un-served. So the proportion of un-served users is the
number of users who gave up over the number of users who arrived during the course of a
simulation.
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SYSTEM BEHAVIOR — ENCOMPASSING LAYERS (1) - (4)
Koala Simulated Cloud State from a 9-D Animation
(6 Metrics for each of 10 Clusters x 100 Nodes/Cluster after 90 Hours)
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Nov. 5-8, 2012 uccao12 17

To give a sense of Koala’s dynamic behavior this slide depicts that 90t hour from a 9-
dimensional Koala animation. The panel on the left represents the utilization of three
different resources on each node in a cloud comprising 10 clusters each with 100 nodes.
The color scale for the panel is just to the right. The first column shows virtual core
utilization with the 10 clusters on the x axis and the 100 nodes on the y axis, so each cell
represents one of 1000 nodes. The second column in the first panel shows memory usage
and the third column shows disk space usage. Clearly, this system is constrained by the
availability of virtual cores, which are all nearly 100% utilized. The second panel (which
uses a different color scale) represents the load on three different resources on the same
1000 cloud nodes at the same time. In this simulation, physical cores were configured not
to allow multiple virtual cores, so the maximum physical core load is one virtual core. The
most overloaded resources are the network interfaces, where as many as four virtual
network interfaces are mapped to a single physical network interface. This behavior occurs
because the cluster algorithms do not consider network interfaces when making a decision
about virtual machine allocations. The 9 dimensions of the animation consist of 3
utilization metrics + 3 load metrics + cluster + node within cluster + time.

We have animated Koala simulations with up to 100,000 nodes (100 clusters of 1000 nodes
each). Some of these larger animations show an interesting unexpected behavior that we
have yet to investigate fully. Likely this will turn out to be an emergent property
representing an inherent trait of the system that could not be predicted from analyzing the
behavior of the individual components. But that remains to be determined.
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Example Design-Time Method: Anti-Optimization + Genetic Algorithm
MULTIDIMENSIONAL ANALYSIS TECHNIQUES
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Next, | will outline the Koala parameter space that we will search over: first, giving a
general idea of the number and nature of the parameters, and then showing how the GA
encodes this information into a chromosome map.
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Summary of Koala 130 Parameters to Search
with a Genetic Algorithm

Model Parameters by Category

Element Structure Dynamics Failures Asymmetries Total

Users 1 29 0 4 34

Cloud

Controller 3 23 2 : 22

Cluster

Controllers 4 14 0 & e

Nodes 0 7 13 0 20

Intra-Net/

Inter-Net 5 12 10 2 29
Total 130

8, 2012 Ucc2012

Setting aside simulation control parameters, we can focus on parameters associated with
each of the five Koala components: (1) users, (2) cloud controller, (3) cluster controllers, (4)
nodes and (5) the networks. We selected 130 parameters to search over. We can categorize
the parameters by general function. A handful specify structure, such as the distribution of
user types, the number of clusters in a cloud, the number of nodes in a cluster, the physical
locations of components and the general topology of the simulated Internet. Most
parameters relate to dynamics, such as thinking times, retry intervals, back-off periods,
number of retries and so on. Most dynamics parameters are associated with the user and
the cloud. Some dynamics parameters also appear for other components; for example, to
establish network delays, node startup delays and virtual-machine boot times. A few dozen
parameters define failures, such as mean-time to failure and failure durations for nodes,
node components and communication interfaces, as well as packet-loss probabilities,
virtual-machine crash probabilities and so on. The final category of parameters introduce
various asymmetries into the model. For example, the distribution of user types may
periodically cycle between a small number and a larger number, creating periods of
demand that are quite different from each other. Similarly, a cloud may be constructed
from a few very large clusters coupled with many very small clusters, rather than the usual
assumption of uniform cluster sizes.

Given this selection of 130 parameters, assuming a parameter size of 32 bits, the search

space encompasses 10%2°1 states, which is infeasible to search. To reduce the search space,
we define the bounds and granularity of each parameter, as | show on the next slide.
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Sample Chromosome Specification for Koala Simulator
Koala Parameter Genetic Algorithm Computed
Space (Size = 10!%)  Chromosome Map (Size = 2334
PARAMETER MIN MAX  PRECISION} #VALUES LOW_BIT HIGH_BIT  #BITS
P_CreateOrphanControlOn 0 1 1 2 36 36 i
P_TerminationOrphanControlOn 0 1 1 2 58 58 1
P_RelocationOrphanControlOn 0 1 1 2 11 11 1
P_AdministratorActive 0 1 1 2 330 330 1
P_clusterAllocati [gorithm 0 5 1 6 31 33 3
P_describeResourcesinterval 600 3600 600 6 81 83 3
T Timeout 30 90 30 3 210 211 2
P_TerminatedinstancesBackOffThreshold 3 6 1 4 56 57 2
P_TerminationBackOffinterval 180 360 60 4 88 89 2
P_TerminationRetryPeriod 600 1200 300 3 316 317 2
P i I val 600 3600 600 6 242 244 3
P_cloudAllocationCriteria 0 3 1 4 321 322 2
P_clusterShadowPurgeLimit 1 21 5 5 290 292 3
P_instancePurgeDelay 180 600 60 8 98 100 3
P_cluster! i K Timeout 60 120 30 3 14 15 2
P_MaxPendingRequests 1 10 1 10 72 75 4
P_CloudTerminatedinstancesBackOffThreshold 3 6 1 4 169 170 2
P_CloudTerminationBackOffinterval 180 360 60 4 40 41 2
P_CloudTerminationRetryPeriod 3600 10800 1800 5 297 299 3
P_ClusterShutdownGracePeriod 86400 | 2.59E+05 | 43200 5 147 149 3
] o o [ ] [ J e o
P_| Eval WaitProportion 0.1 0.4 0.1 4 145 146 2
P_RequestEvaluatorCluster i 0.6 0.9 0.1 3 269 270 2
P_MaxRelocationDuratonProportion 0.65 0.95 0.1 4 90 91 2
P_MaximumRelocateDescribeRetries 4 16 2 7 254 256 3
P_AverageCloudAdministratorAttentionLatency 28800 86400 14400 S 308 310 3
P_AverageCloudAdmini orShutdownDelay 300 900 300 3 a5 46 2
P_avgTimeToClusterCc icationCut 2.88E+06 2‘83107 2.&«35 10 217 22_0 4
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Here | show an elided list of the 130 Koala parameters over which we will search. Notice
that for each parameter, | defined a minimum and maximum value and a precision. These
decisions lead to an average of about 6 values per parameter, which means the search
space is reduced to (a still formidable) 1010, Once all parameters and associated range and
granularities are listed, the GA computes the number of values required for each
parameter, which translates into a specific number of bits. The GA then orders the
parameters randomly and creates a chromosome map assigning each parameter to specific
bit positions. In this example, the chromosome consists of 334 bits, and so the GA’s view of
the search space size is 2334,
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Example Design-Time Method: Anti-Optimization + Genetic Algorithm
MULTIDIMENSIONAL ANALYSIS TECHNIQUES
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Now, | will describe the general behavior of the GA we used, and illustrate an experiment
where the GA explores the Koala parameter space.



Genetic Algorithm Flow Chart
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The GA can be viewed as a process with 7 steps: one initialization step and 6 cyclic steps, conducted
once per generation. Step 1: the GA generations a random chromosome string for each individual in
the population. This ensures the starting point of the search is unbiased. Step 2: the GA evaluates
the (anti-)fitness of each individual in the population. Here this is accomplished by executing a
population of Koala simulations in parallel. When all simulations have finished, fitness evaluation is
complete. Step 3: the GA decides whether or not the population needs to be rebooted (i.e., re-
randomized), which can occur after a specified number of generations, as determined by the
settings of a GA control parameter. If the GA is using elitism, then a specified number of elite
individuals (the most fit) are placed unchanged into the next generation, while the remainder are
randomly generated. Step 4: the GA decides whether or not to terminate. In our application this
occurs after a designated number of generations, but it could be defined to occur when the GA has
discovered an answer within a specified tolerance of some target value. Step 5: the GA selects
candidate individuals from which to form the next generation. Step 6: the GA randomly selects pairs
of individuals from the selected set and recombines them. Our GA uses crossover recombination. A
specified number of crossover points is chosen randomly and the bits in the chosen pair of
individuals are swapped at those points. Step 7: the GA iterates over each bit in the chromosome of
each recombined individual, inverting the bit with some probability, known as the mutation rate.

In general, a GA aims to balance exploitation (implemented via elitism and selection) with
exploration (implemented through recombination and mutation). Exploitation tends to emphasize
the best solutions found to date, while exploration allows the GA to search in portions of the search
space that represent modifications of the best solutions found to date. In the literature, GAs are a
form of guided random search. Next, | will show you an example of a GA searching over the
parameter space of the Koala simulator.
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This slide shows three graphs depicting the dynamics of the Genetic Algorithm (GA) when
steering a population of Koala simulators toward failure scenarios. The table defines the
control parameters used for the GA. Given a population of 200 individuals iterated over 500
generations, the GA & Koala explored 10° parameter combinations from among the 101
possible. Each graph plots generation (x axis) vs. anti-fitness (y axis), where anti-fitness is
the proportion of un-served users. One plot shows the average anti-fitness, which oscillates
around 0.55, while showing a gradual upward trend. Since the search starts with a random
set of parameters, the average anti-fitness for the first generation is low (just under 0.20).
The non-elite population is rebooted twice, at generations 200 and 400, which causes the
population’s average anti-fitness to drop and then climb back up during the search. The
standard deviation in anti-fitness oscillates round 0.20, while exhibiting a gradual
downward trend. As the average anti-fitness increases, the standard deviation in anti-
fitness decreases, and vice versa. The third plot shows the maximum anti-fitness
discovered over all scenarios searched. This starts out at about 0.75 in generation 1 and
reaches 0.82 in generation 4. Apparently, the constraints of the problem ensure that at
least 18% of the users will be served under any combination of parameters.

Unlike most searches we have done with this GA the search peaks very early, in generations
6-12, where the population diversity is rather low (standard deviation 0.05). We are
investigating whether this outcome is a statistical rarity or whether there is some error.
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Example Design-Time Method: Anti-Optimization + Genetic Algorithm
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Finally, | will use the 100,000 anti-fitness values from the tuples collected during the Koala
experiment to show that using a GA appears to provide a feasible approach to search for
failure scenarios. Since this experiment was completed only recently, we have not
undertaken clustering analysis of the data.



500 GENERATIONS (200 Koala SIMULATIONS/GENERATION)
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This slide plots a frequency distribution of anti-fitness values found in all the scenarios
searched. As shown, the preponderance of these scenarios exhibit anti-fitness values above
0.50, which is exactly the range of the scenarios that we hoped to explore. From this, we
conclude that using a GA to search the Koala model for failure scenarios appears to be
feasible.

We still need to analyze the resulting collection of anti-fitness tuples in order to identify the
classes of scenarios that the Koala model exhibits.
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tandards and Technology

Image credit— http://: om/2011/11/ducati-wants-you/uncle-sam-we-want-you

WE WANT YOU!

L
Over the past six years, our small team of NIST researchers has made significant
contributions to understanding & predicting behavior in complex information systems, and
to methods for identifying performance degradation and failure scenarios. But much work
remains. There are many other methods that could be investigated, and on a wide range of
systems, both existing and planned. Society needs a wide community of researchers to
form around the issues such as those identified in this keynote. That community should
include academics & practitioners, as well as government researchers. | am advocating for
researchers to join together to develop, investigate and evaluate applied methods that can
provide a scientific and engineering understanding of dynamic behavior in the world’s
complex information systems. The importance of such research will only grow over the
near future.
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WHAT COULD WE ACCOMPLISH THROUGH A NEW RESEARCH COMMUNITY?
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FOSTERING A COMMERICAL MARKET IN MODELING & ANALYSIS METHODS & TOOLS

Nov. 58, 2012 — Y

| am advocating formation of a new, multidisciplinary, research community (shown in blue
here) that aims to provide evaluated methods & guidelines, model code & data analysis
software, experiment designs & data and case studies. The methods & guidelines and
model cods & data analysis software would feed a community of commercial tool
developers & consultants who would serve a commercial community of system designers &
operators. All of this work would aims to improve our understanding of designs and
deployments of complex information systems. The research community would be informed
by problems, models & design information from system designers and operators and also
by needs & requirements form tool developers & consultants. The research community
would also be informed by ideas & methods from academe, who would benefit from
research challenges identified by the new research community. Over time, as this research
community and its stakeholders iterate, the net result would be improved understanding
and reliability of complex information systems, and a commercial market for related
modeling & analysis methods & tools.
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Standards and Technology

© Thanks for Listening ©

Contact information about studying Complex Information Systems:
{kmills, ifilliben, cdabrowski@nist.gov}

National Institute of Questions?

Contact information about the NIST Cloud Computing program:
{dawn.leaf, robert.bohn@nist.gov} ®

Contact information about ) T L.
Information Visualization for 1
Complex Systems:

sressler@nist.gov

Image shows one frame from a 5-Dimensional
animation of a Genetic Algorithm (GA)
searching for an optimal combination of oven
temperature, quench temperature and carbon g

concentration in a production process, where il * l - ’ ™
fitness is measured as the percentage of non- - queriann
defective springs produced.

oventemp

Fitness

More @: http://www.nist.gov/itl/antd/emergent behavior.cfm
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Thanks for coming today, and for listening to my address.

Any additional questions?

28



