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We are investigating methods to predict macroscopic dynamics
in large distributed systems.

 Modern networking technology allows components in large
distributed systems to be updated easily.

* Will any given update radically change macroscopic system
dynamics?

e Can we predict how such updates will influence system-
wide behavior?

Here, we demonstrate some of our methods applied to predict
how various proposed replacements for the transmission
control protocol (TCP) will affect macroscopic dynamics in the
Internet.
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Outline

* Introduction to the Problem

e Methods to Reduce Stimulus and Response
State Spaces

e Methods to Analyze Multidimensional
Datasets

e Application to Predict Macroscopic Dynamics
of Proposed TCP Replacements
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Introduction to the Problem
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Internet Congestion Control & TCP

Phases in a TCP Flow
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Figure 1 from Li et al. 2007. Experimental Evaluation of TCP Protocols
for High-Speed Networks. Transactions on Networking. 15:5, 1109-1122.

TCP Flows Achieve 89 % Utilization

So Researchers Proposed
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Proposed TCP Replacements Well-Studied on Bottleneck Path
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What would be the macroscopic dynamics if these proposed
TCP replacements were deployed in the Internet?
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Four-Tier Topology (based on the Abilene Network) with 11 Backbone Routers (A-K), 22 Point of Presence
Routers (A1-K2) and 139 Access Routers (Ala-K2d) — 6 red and 28 green Access Routers may operate at
different speeds from the 105 others — not shown is a fourth tier of hundreds of thousands of attached
computers
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Stimulus and Response State Spaces Are Large for
Network Simulation Models

Vi, ¥z = f(X1|[1,...,e] ce Xp|[1,...,e])
\ ]\ J
Y Y

Response State-Space Stimulus State-Space

e.g., z =500 e.g., p = 1000 and ¢ = 232
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Methods to Reduce the Scale of the Stimulus and
Response Spaces
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We Employ Stimulus State-Space

NIST MesoNet Simulator

Category Identifier Name
. . X1 Network Speed
Reduction Techniques voworc | xz|Propagatan ey
Configuration X3 Buffer Provisioning
X4 Topology
X5 Web Object Size for Browsing
X6 Proportion & Size of Larger Files
32,1000 9633 80 _ . . User X7 | Think Time
(2 ) éO(lO ) [108° = atoms in visible universe] Behavior <6 | Patience
X9 Selected Spatiotemporal Congestion
Discard parameters not germane to study- reduce by 944 parameters X10 | Long-lived Flows
32 56 539 X11 | Source & Receiver Interface Speeds
(2 ) ’ O ( 10 ) Sources & X12 Number of Sources & Receivers
Receivers X13 | Distribution of Sources
Group related remaining parameters-reduce by 36 parameters %14 | Distribution of Receivers
Parameter 32 20 192 — X15 | Congestion Control Procedures
Reduction (2 ) ’ 0(10 ) Protocols X16 Initial Congestion Window
X17 Initial Slow Start Threshold
Select only 2 values for each parameter Simulation X18 |Measurement Interval Size
Level / 20 Control & X19 | Simulation Duration
2 e () ( 106) Measurement ™50 | Startup Pattern
Reduction
Use experiment design theoryto reduce
a parameter cor?(s)irﬁtions to 256
Orthogonal — 2 > 256 .
. i Use sensitivity analysis
Fractional-Factorial Sensitivity to identity six most
(OFF) Experiment . significant parameters
) Analysis 26-1
Design — 3
OFF / Use experiment design theory again to reduce
Expe riment parameter combinations to 32
Design
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We Employ Response State-Space Reduction Techniques
(here we demonstrate correlation analysis & clustering)
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Decide Which Pairs of Correlated Responses to Analyze

25 —

20 —

15 —

10 —]
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|Correlation (Y(i),Y(j))|

Frequency distribution of |r| for pair-wise correlations — bins highlighted for |r| > 0.65
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Cluster Retained Correlated Responses
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Index for Response Y(j)

Index-Index Plot Sorted by Increasing Count of Correlated Pairs to Indentify Clusters of
Mutual Correlations that Represent Seven Behavioral Dimensions

July 18-19, 2011
Innovations in Measurement Science 13



Methods to Analyze Multidimensional Datasets
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Even with Response State-Space Reduction Combinatorial
Comparisons Can Yield Large, Multidimensional Datasets

For example, comparing 7 congestion control algorithms with respect to 48
responses under 32 conditions over three time periods with a mixture of
competing TCP flows yields a multidimensional dataset with > 64,000 numbers

We used a range of multidimensional data analysis
techniques, including:

Main-Effects Analysis [a, b, C]

Cluster Analysis [a, b]

Primary Principal Components Plots
Condition-Response Summaries [a, b, c]
Biplots

Colored Bar Graphs

Rank Analysis

NGk E
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e Main-Effects Analysis on One Response

Effect
Rel.Eff. (%)

Main effects plot showing absolute and relative influence of each MesoNet parameter (x axis) on mean (y axis)
number of sources transmitting (y1) and identifying six statistically significant parameters — network speed (X1),

topology (X4), file size (X5), think time (X7) and number (X12) and distribution (X13) of sources
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1 (b) Summary of Main-Effects Analyses Across 18 Responses

Significance of influence of 20 MesoNet parameters (columns) on 18 macroscopic responses (rows) during 2"9 time
period: blue cells indicate significance p < 0.01 and orange cells indicate significance p < 0.05, where a—or +in
highlighted cells indicates the parameter setting that causes an increase in the corresponding response

Sim. Control &

Network User Behavior Source/Receiver Protocol M
Metric eas.
Class X5 | X6 | X7 | X8 | X9 | X10 [ X11 | X12 | X13 | X14 [ X15 | X16 | X17 {J X18 | X19 | X20

Congestion

Delay

Long-Lived
Flow TP

Other Flow
TP

T
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1 (c) Summary of Parameter Influence on Responses for Three
Time Periods and Two Congestion Control Algorithms

¥=({y|p<0.01}] +*2{y | p <0.05}]) / {y}|

Source/Receiver Protocol Control & Meas.

User Behavior

Network

X2 | X3 X6 X8 X16
Period #1 75 | 67 010
Period #2 0 | 75| 64 | 11 6 | 0|0
Period #3 0 [75 |67 | 11 M0 |0
TCP 0| 21|67 0 4 | 010
CTCP 0 |46 | 67 | 8 0 0] 0
Weighted Average o4 B 0 54__51 8 51010

Parameters with largest influence: network speed (x1), distribution of sources (x13),
propagation delay (x2), user think time (x7), buffer size (x3) and file size (x5) and
number of sources (x12)
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2 (a) Cluster Analysis

Compute normalized Euclidian distance between a
pair of congestion-control algorithms in 45
dimensional space (45 responses used in this case)

Compute linkage between clusters of D(r) = —— S ST Distl ey, B s
congestion-control algorithms TR
Condition 4
15
. S —
Plot as dendrogram and color when the linkage = 10
value for a pair of clusters falls below 70 % of B s W
the maximum linkage value Q.
4612573
Algorithm

Note that congestion-control algorithms may only be compared under the
same conditions (i.e., parameter combinations) because the conditions are
very different from each other — this leads to the need to plot one
dendrogram for each condition (32 here)
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2 (b) Dendrograms for Each of 32 Conditions

Identical under no congestion; Similar under low congestion; algorithm 3 distinct under heavy congestion

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 Condition 7 Condition 8
15 15 e . 15 15 15 15 15 e .

3 Similar 3 3 3 Similar
10 10 10 10 10 10 10

ﬂ 5 5 5 5 5 5 5

0 0 0 0 0 0

4725163 EET3I214 2346175 4612573 1247563 2574163 4726513 26137564

Condition 9 Condition 10 Condition 11 Condition 12 Condition 13 Condition 14 Condition 15 Condition 16
15 15 15 15 15 15 « . 15

3 3 3 3 3 Similar 3
10 10 10 . 10 10 10 10

Identical

g 5 g 5 5 H ﬂz 5 g
0 0 P 0 0 0 0

1642573 27456173 2561473 1234567 24716583 4517623 27641573 1457623

Condition 17 Condition 18 Condition 19 Condition 20 Condition 21 Condition 22 Condition 23 Condition 24
15 15 15 « e 15 15 15 15

3 3 3 Similar 3 3 3 3
10 10 10 10 10 10 10
0 0 0 0 0 0

1627453 2745163 2745163 1662437 14276563 2546713 4521763 2475613

Condition 25 Condition 26 Condition 27 Condition 28 Condition 29 Condition 30 Condition 31 Condition 32
15 S|mi|ar 15 15 15 15 15 15

3 10 10 10 3 10 3 10 3 10 3 10

’JTW 5 5 5 5 m 5 5 5
0 0 0 0 0 0

1627543 3751462 1723546 2461573 2461753 2465713 2574613 2375146
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3 Primary Principal Components Plots
Higher Network Speed

)X 10 & Longer Propagation Delay
T T T ‘l T T
° \ e BIC
« CTCP
Here, L:5p Smaller . past |
congestion- ] Network File Size o FAST-AT
control o qf JOWErNeworc .l HSTCP |-
. S . * HTCP
L e L
algorithm £ (3 Scalable
does not = o I
make a S : E_rlnag_er
difference & Larger o g% € lze
z File Size ___:*__i__*_
; 3
Larger '.
File Size s Higher Network Speed
\ ¥ & Shorter Propagation
i Delay
o
-1.5 1 :’ 1 / J
-3 = 1 0 1 S 4
Principal Component 1 <10

PC1 (x axis) vs. PC2 (y axis) from a multivariate dataset containing average throughput achieved on network connections
using seven different congestion control algorithms under 32 different parameter combinations. Circles identify groupings
of points and lines within circles distinguish additional subgroups.
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4 (a) Condition-Response Summaries: Underlying Analyses

- Plot Character-AIgonthm
0.05 — (Min, Max) Raw Responsefor YG (00520089) :
0.04 — E E — 18] -
Plot shows that : : : : E : : _ri 13
retransmission i : ; ; : HEIE
rate for congestion- T | ; ; L oERE
control algorithm 3 3 { : | | e inluiE
is an outlier under R Sat= : :
conditions with 2 1 | sl |1 1L lsld:l] L)
condions with  § ,@@@@@@@@@@@@@@@@ ot
igh congestion, an E - ‘ -25%'!!:3*55
the higher the level of & -0.01 — ; A L
congestion, themore g | 5 e ;8
. . ' : : . . Fact x
thea|90”thmlsan 3 - X1z ++ + F - -4 -+-++----++---%-—a%?l*flsesgl,ag
li é’ X2: ! # # 4+ = 4 + 4+ = 4 ¢ = & + + T S T T S 2: ThTi (2.5,
outlier, X3: ! = 4 = = & 4 - = = L 4 4 4 - F =4 = =4 4+ - =4+ 44+ + -+ 4+ + +| 3:S0Di(S,V)
X4: # = = = 4 3+ =+ F A FFFFF = E == d o= o= E o= 4: PrDe (1,2)
X5: R B B I I T N T I S 5: FiSi (50,100)
X6: ++++++-++7+-+-¢----:----:+++-1--+ 6: BSAI (Sq,1)
441116 63 16333 3333333333333 3333 3 3 3 ExtremeAlgorithmiD
A A 1. A K B 5 5 4 4 4 4 4 4 -4 4 3 3222222l 2 222 Log10(|Effect]) *
1, -1, -1. -1. &5 68 51 43 63 41108 48 B6 66 198 35 13 11 26 1 18 27 15 9 17 42 22 43 15 30 7 62| [Rel. Ettect| (%)
-1 -1 -1 1171622121822 2122 2 22 21122212121 21222222121 2223232222 2322 2.3| Grubbs Stat (Cul = 2.08)
I 12 8 20 2 i 32 4 26 27 1b 14 16 15 28 * 11 6 1 18 dﬂi 7 19 25 13 i 2 5 17 3 43 21 29
* 2:(.01,.09)
:(1,9)
1:(1,9)
. max| |¥; — mean | 2 2:(10,99) etc
Grubbs’ test of outliers &= |4 @ Condition (1 to 32)
s

Sample plot analyzing the influence of condition and congestion control algorithm on the segment retransmission rate (in
this experiment retransmission rate was designated as y6) — y axis gives residuals around the mean value for each
condition and x axis gives conditions ordered by increasing range of residuals
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4 (b) Condition-Response Summaries: Rollup Outliers from

]
Underlying Analyses
Factor Response Variable
123456 123 4567 8 9101M11213141516171819202122232425262728293503132333435363738304041 42434445
1 - - - - - - 3 3 3 3 3 3 3 3 3 3 3 3 33
2 + - - +
3 -+ - +
4 +
5 + +| 3 3 3 3 3 33 3 3 3 33|13 33 31 3
6| + + 3 3 3 3 33 3 33 3 3 3 33 3 1 33
7 + - 3 3 3 3 33 3 3 3 3|3 3 1 33
8 + + o+ +
q + +
10| + + 3
1 + + - 3 3 3 3 3 3
12 + + + +
13 - + o+ 3 3 3 3 3 3 1 33
S M|+ 33 3 3 3
:"E 15 - + o+ +
E 16 + + o+ o+ 1
q_D_: 17 + +| 3 3 33 33 3 3133 3 3 3 3 1 33
18| + + 3 3 3 3 3 3 3|3 3 3 33 3
19 + + - 3 3 3 3 3 3 3 3 3 3 33 33
20 + + +
21 - + + 3 3 3 3 3 33
22| + + + +| 3 3 33 3 33 3 3 3|33 33 3
23 - + « +| 3 3 3 33 3 3 33333 3
24| + + + -+ 3 3 3 3 3 3 3 3|3 33 1 33
25 + o+ 3 3 3 3 3 3 3 33 3 3 3 3 3 33 33
26 + + 2 1
27 + + o+ ] 1
28 | + + o+ 3 1 3
29 . + + + +| 3 5 3 3 33 33 3 1 3 3
| o+ + + o+ 3 3 3 3333 3 33
H - + o+ o+ 3 3 3 3 3 33
32 + + + o+

Condition-response summary identifying any statistically significant outliers among congestion control algorithms for
each of 45 responses measured over 32 different conditions in this particular experiment
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4 (c) Condition-Response Summaries: Apply Filters

Factor Response Variable

123456 123 45[6]7 8 910111213 14151617 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 36 30 40 41 42 43 44 45
1 - - - - - 3
2 + -
3 + - +
4 + o+ -
5 - + + 3
6 + -+ 3
7 + o+ 3
8 + + + - +
9 + +
10 + - +
11 A -
12 + + - o+ +
13| - -+ + 3

S 14|+ o r e s 3

B L

E 16 + + + + -

e 17 + 3
18] + - - -+ 3
1] -+ - oo+ 3 3
20| ++ - -+ =
21 R 3
2 + -+ -+ =+ 3
23] -+ + -+ + 3
24|+ ++ -+ 3
25 - - + o+ - 3 3
26 + - -+ + o+
27 T S
28 + + - o+ o+
29 - + + + o+ 3
30 + -+ + o+ 3
31 T S 3
32 + + + + + o+

Filtered condition-response summary identifying any congestion control algorithms that are statistically significant
outliers and that exhibit at least a 10 % relative effect for each of 45 responses measures over 32 different conditions
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Under these conditions,
Scalable TCP, BIC and
HSTCP appear to give
higher throughputs at
the expense of TCP
flows

Seven biplots, where each biplot compares throughput (in units of 100 segments per second) for large flows transferred
over very fast paths with fast interface speeds using a proposed TCP replacement (x axis) with throughput on identical
competing flows using standard TCP — here a high initial slow-start threshold is used
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6 Colored Bar Graphs

FAST & FAST-AT provide best throughput, while CTCP provides second best
: . . Legend

0| | Rl
| -2 CTCoP
- ] 3: FAST
4: FAST-AT
04l 5. HSTCP
| B = HTCP
05 -T: Scalzbla
e
Note that TCP flows achieve only 20 % of available
0 throughput, as was measured empirically by other

v2{u) 16{u)

researchers

Fraction (y axis) of maximum available throughput achieved when transferring movies over uncongested paths with a
maximum rate of 1 Gbps — each of the leftmost seven bars —y2(u) — represents flows using one of the proposed
replacements for TCP (see legend), while each of the rightmost seven bars —y16(u) — represents flows using standard TCP
and competing with flows using one of the proposed TCP replacements (see legend) — here a low initial slow-start
threshold is used.
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7 Rank Analyses

CTCP leads high ranking throughputs under a wide range of conditions

high initial slow-start threshold low initial slow-start threshold
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Average throughput rank (x axis) vs. standard deviation in throughput rank (y axis) for flows using each proposed TCP
replacement and for competing flows using standard TCP

July 18-19, 2011
Innovations in Measurement Science 27



Application to Predict Macroscopic Dynamics of
Proposed TCP Replacements
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Experiments Conducted

How do the proposed TCP replacements react to
and recover from spatiotemporal congestion?

How do the proposed TCP replacements improve flow
throughputs and affect competing TCP flows?

Experiment #la

Compared seven proposed
TCP replacements (excluded
FAST-AT) in a large (up to
278,000 sources), fast (up to
192 Gbps backbone) network;
Web browsing users; 25
minutes simulated; three 5-
minute time periods; large (> 1
billion segments) initial sst; all
sources use the same
congestion control algorithm

Experiment #1b

Same as #la, except; smaller
(up to 27,800 sources) and

slower (up to 28.8 Gpbs
backbone) network and low
(100 segments) initial sst.

(Added FAST-AT)

Experiment #2a

Compared eight proposed TCP
replacements in a small (up to
26,085 sources), slow (up to 38.4
Gpbs backbone) network; Web
browsing users and interspersed
users who download software and
movies; 60 minutes simulated; large
(> 1 billion segments) initial sst;
some sources use standard TCP
congestion control procedures and
some sources use one of the
proposed TCP replacements

Experiment #2b

Same as #2a except for low (100
segments) initial sst.

Experiment #2c

Same as #2a except for a larger (up
to 261,792 sources) and faster (up to
384 Gbps backbone) network.
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What distinguishes among proposed TCP replacements?
Will they be useful? Will they be safe?

1. Increase rate: How quickly can the maximum transmission rate be achieved?

2. Loss/Recovery processing:
a. How much does the protocol reduce transmission rate upon a loss?
b. How quickly does the protocol increase transmission rate after a
reduction?

3. TCP Fairness: How well do standard TCP flows do when competing with
proposed TCP replacements?

4. Utility bounds: Under what circumstances can proposed TCP replacements
provide improved user throughputs?

5. Safety: Will widespread deployment of proposed TCP replacements induce
undesirable macroscopic dynamics into the Internet?
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Increase Rate

» Assuming low congestion, setting of initial sst is a key factor
= High initial sst — all algorithms (standard TCP included) achieved maximum
transmission rate with the same (exponential) quickness
* Low initial sst — proposed TCP replacements achieved maximum transmission rate
more quickly than (linear) increase of standard TCP

» Under heavy congestion, setting of initial sst matters little because initial
slow start terminates upon first packet loss and a flow enters congestion
avoidance, where loss/recovery processing determines throughput
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Loss/Recovery Processing

» One group of algorithms (Scalable TCP, BICt and HSTCP) reduce transmission

rate less than standard TCP after a packet loss
=  Unfair to TCP flows and to new flows using alternate algorithms

» Another group of algorithms (CTCP, FAST and FAST-AT) reduce transmission

rate by % following a loss (HTCP is a hybrid with reduction between 20 and 50 %)
= These algorithms seek to obtain higher throughput by increasing transmission rate
more quickly than standard TCP (the rate of increase varies with the algorithm)
=  HTCP reverts to TCP congestion avoidance for 1 s after each loss, which
can lead to lower throughputs than other alternate algorithms

» Under extreme spatiotemporal congestion, most proposed TCP replacements have
a low-window threshold and revert to standard TCP congestion avoidance

procedures (giving no advantage to alternate procedures)
= FAST and FAST-AT do not use TCP congestion avoidance under any
conditions, which can lead to oscillatory behavior and increased loss rates

INote that on repeated losses occurring close in time, BIC can reduce cwnd substantially more than
standard TCP —thus, on paths with very severe congestion TCP can provide higher throughput than BIC
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TCP Fairness

» All proposed TCP replacements take steps to provide improved throughput over TCP —
thus comparing fairness must consider relative performance of TCP flows when
competing with flows using each proposed replacement

» We found CTCP, HTCP and FAST-AT to be most fair to TCP flows
= Under low initial sst FAST-AT is more unfair because of its quick increase in rate
= |njecting more FAST-AT packets induced more losses in TCP flows, which could
recover only linearly

» We found Scalable TCP, BIC and FAST to be most unfair to TCP flows
= Established Scalable and BIC flows (on large files) tended to maintain higher
transmission rates than TCP flows after losses, while FAST recovered more quickly,
and these proposed TCP replacements induced more losses in TCP flows

» HSTCP appeared moderately fair to TCP flows, especially under conditions of
lower congestion and under low initial sst — HSTCP appeared unfair under
conditions of heavy congestion

» We found that Scalable TCP, BIC and HSTCP are also unfair to competing
flows that are newly arriving
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Utility Bounds

» We found that proposed TCP replacements could provide increased
utility (throughput) for users — however, this utility would arise only under

a specific combination of circumstances
=  Flow’s rwnd must not be constraining flow transmission rate
=  Flow’s initial sst must be relatively low
*  Flow must be transferring a large file
= Flow’s packets must be transiting a relatively uncongested path (i.e., experiencing
only sporadic losses) or else users must be willing to tolerate marked unfairness
in trade for increased throughput

» How likely is this combination of circumstances on a given Internet flow?
= Certainly possible to engineer a network, or segments of a network, to provide
specific users with improved throughput compared with TCP
= \We suspect a rather low probability for such circumstances to arise generally
in the Internet

» We conclude that proposed TCP replacements can provide improved

user throughput — however, most users seem unlikely to benefit very often
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Safety

» We can answer this only in part — additional cautionary findings may be possible
=  We simulated either homogeneous networks where all flows used one
congestion control algorithm or mixes of TCP flows competing with flows
using one proposed TCP replacement at a time
= The real Internet could contain a mix of many different types of congestion algorithm

» For most algorithms we studied, under most conditions, we found little
significant change in macroscopic network characteristics

» FAST and FAST-AT are exceptions to this general finding

= Under high spatiotemporal congestion, where there were insufficient buffers to
support flows transiting specific routers, FAST and FAST-AT entered an oscillatory
behavior where the flow cwnd increased and decreased rapidly with large
amplitude

=  Under such conditions the network showed increased loss and retransmission rates,
a higher number of flows pending in the connecting state and a lower number
of flows completed over time

» We recommend the need for additional study of FAST and FAST-AT prior to
widespread deployment and use on the Internet
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