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Traveling Waves and 
Power Waves

Building a solid foundation for microwave circuit theory

M 
icrowave equivalent-circuit theory 
is like a grand old building: elegant, 
carefully crafted, passed from gen-
eration to generation, and rooted in 
history. Traveling waves, the mea-

sureable electromagnetic field solutions of Maxwell’s 
equations in a transmission line, form the foundation 
of the theory. You must descend into the basement to 
see them; not many people do so. It is in this “base-
ment” that I have had the privilege of working on 
the foundations of the microwave circuit theory with 
Roger Marks, Bradley Alpert, and others. Together, we 
explored the underpinnings of the theory and worked 
toward building a better understanding of microwave 
equivalent-circuit theory and how it can be applied 
to the lossy printed transmission lines ubiquitous in 
modern microwave electronics.

The first floor of this grand old structure houses 
the retail establishments. Clean, neat, and welcoming, 
here you find the equivalent-circuit voltages and cur-
rents of the theory. These voltages and currents are hot 
items; a steady stream of clients happily snap them up. 
They mimic low-frequency voltages and currents in 
lossless transmission lines so well that most clients are 

not able to distinguish the real article from the micro-
wave equivalent. 

On the second floor of the building, you find the 
commodities exchange and business offices popu-
lated by the pseudowaves. The pseudowaves can also 
be referred to as “power-normalized and impedance-
transformed scattering waves.” They are all about 
commerce. Pseudowaves do the buying, selling, and 
converting, making sure that the equivalent-circuit 
voltages and currents get into the hands of customers 
who need them. Pseudowaves mimic traveling waves 
in a lossless transmission line. 

Atop the building, there is a 1960s-style addition 
that raises the ire of the Historical Society, but is seen 
as a sign of progress by the young architects of the 
town. The power waves live here. But we get ahead 
of ourselves. To understand power waves, we have 
to understand the microwave circuit theory that lies 
underneath.

So let us take a short visitor’s tour of this edifice. If 
you opt for a more in-depth tour later, [1]–[3] outline 
conventional microwave circuit theory. I suggest that 
you then look through [4] and [5] to find out more about 
how the theory can address lossy printed transmission 
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lines. You might also look at [6] if you fancy lossy multi-
mode transmission lines.

Traveling Waves
Let us descend into the basement and take a look at 
the foundation: Maxwell’s equations lurk in the cor-
ners. Microwave circuit theory is often referred to as 
an “equivalent-circuit” theory because it constructs 
equivalent-circuit voltages and currents from electric 
and magnetic fields in a microwave circuit that mimic 
as closely as we can the properties of low-frequency 
voltages and currents. The first step in this process is 
to simplify the solutions for the electric and magnetic 
fields in the circuit itself. Otherwise, it would not be 
possible to describe what is going on in the circuit with 
a few voltages and currents.

We simplify the field solutions in a microwave cir-
cuit by forcing all of the devices in the circuit to com-
municate with each other via transmission lines that are 
uniform in their directions of propagation. We cannot 
construct a microwave equivalent-circuit theory with-
out these transmission lines. Microwave equivalent-
circuit theory is more than just a theory—it is also part 
of a very old and successful microwave design strategy 
based on the use of transmission lines to guide, mea-
sure and control electromagnetic energy as it propa-
gates from device to device within a microwave circuit. 

The solutions of Maxwell’s equations simplify in 
a transmission line because they form a discrete set 
of separable modes there. In the classic approach, 
which we will follow here, the transmission lines are 
designed to support only one propagating mode, and 
are made long enough that any evanescent modes gen-
erated at the interface of a device and an interposing 
transmission line die out before reaching the device at 
the other end of the line. These are significant restric-
tions and correspond to the conditions assumed in [4]. 
Yet almost all microwave designs apply these restric-
tions at their input and output ports to make the cir-
cuits usable by others. Most designers apply them 
inside the circuit as well to simplify the design, mea-
surement, and optimization of the circuit.

With these restrictions, the total transverse electric 
and magnetic fields Et  and Ht  of the single propagat-
ing mode in a transmission line can be written as

; ,E e e H h hc e c e c e c et
z

t
z

t t
z

t
z

t= + = -c c c c+ - - + + - - +

where, following the notation of [4], et  and ht  are 
the unnormalized electric and magnetic fields of the 
modal solution of Maxwell’s equations in the trans-
mission line, ic a b= +  is the complex propagation 
constant of the mode, z  is in the direction of propa-
gation, and c+ and c- are the unnormalized forward 
and backward amplitudes of the modes. We call these 
propagating modes traveling waves. The power of the 
simplifications we have required is that the total field 

due to the traveling waves in the transmission lines we 
use can be described by the two complex quantities c+ 
and c- at each frequency, and these are the only fields 
that communicate energy between the various devices 
in our circuit.

Notice that we have placed no restrictions on the 
behavior of the mode itself other than it be the sole 
propagating solution of Maxwell’s equations in a uni-
form transmission line. You can connect the devices 
in your circuits with microstrip, coplanar waveguide, 
stripline, slotline, coaxial transmission line, rectan-
gular waveguide, and a variety of other single-mode 
waveguides. You can also use thin metals and lossy 
dielectrics in their construction, and the traveling 
waves need not be transverse electromagnetic (TEM), 
or even quasi-TEM.

The traveling waves are the foundation of microwave 
circuit theory not only because they are real (travel-
ing waves are the only waves that I will talk about that 
actually exist), but also because they can be measured 
directly. For example, traveling-wave reflection coeffi-
cients can be measured by observing the peaks and val-
leys of the electric fields of the standing wave created 
by the beating of incident and reflected traveling waves 
in a slotted-line experiment. The through-reflect-line 
(TRL) vector-network-analyzer calibration, a modern-
day analogy of the slotted line, also measures travel-
ing waves [4], [7], [8]. This explains why the microwave 
metrologist starts with a TRL calibration when he or she 
works to establish measurement traceability.

I also imagine that it did not escape your notice 
that there are only two complex quantities c+ and c- 
required to describe the forward and backward trav-
eling waves in a transmission line. It is no accident 
that there are exactly two of them, just as there are 
two complex quantities, an equivalent-circuit volt-
age and an equivalent-circuit current, that we wish to 
construct in the line. Let us now proceed up the stairs 
to the first floor to study the microwave engineer’s 
most prized commodity, equivalent-circuit voltages 
and currents. 

Equivalent-Circuit Voltage and Current
The equivalent-circuit voltage ( )v z  and current ( )zi  in 
a transmission line can be conveniently defined with

( )
( )

; ( )
( )

,E e H hz v
v z

z i
i z

t t t t
0 0

= =

where v0  and i0  are normalization constants that 
define v  and i  and allow them to take units of root-
mean-square voltage and current [4]. For instance, 
to achieve a conventional voltage normalization 

,Ev dlt $= #  the normalization constant v0  is set to the 
integral of the modal electric field over the same path 
with ev dlt0 $= # . The trick to constructing equiv-
alent-circuit voltages and currents that mimic low-
frequency voltages and currents as closely as possible 
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is to understand the implications of the choice of the 
normalization constants v0  and i0 . 

If we set the total fields in a uniform transmission 
line equal to the modal fields (i.e., E et t=  and ),hHt t=  
we see that v0  and i0  correspond to the voltage and 
current carried by a forward traveling wave. Thus, the 
characteristic impedance Z0  (see Tables 1 and 2) of the 
traveling wave is

.Z i
v

0
0

0/

To ensure that the total power p  transmitted in the 
guide is given by ,vi)  we must set v0  and i0  so that vi)  
is equal to the integral p0  of the Poynting vector over 
the transmission line’s cross section S . Therefore, we 
must impose the constraint dSze hp v i tt

S
0 0 0 # $= =) )##

on v0  and i0 .

<au: Please add to text a citation 
for this poem. The picture will be 
removed in the production process 
and the formatting here fixed.>

Brews first recognized in [9] 
that meeting the power condition 
requires setting the phase angle of 
Z0  in the equivalent-circuit theory 
equal to the phase of ,p0  which 
also places a constraint on v0  and 
i0 . In lossy guides, the electric and 
magnetic fields are generally out 
of phase and typically approach  
-45° at low frequencies when 
metal resistance dominates the 
loss. And here we begin to see the 
physical significance of the charac-

teristic impedance Z0  in microwave circuit theory. If 
we are to calculate power correctly from the voltages 
and currents, the phase of the characteristic imped-
ance Z0  of the traveling wave must reflect the actual 
difference in the phase of the electric and magnetic 
fields as they propagate down the waveguide.

However, the frequency-point-by-frequency-point 
power constraint of [4] is not enough to complete the 
theory; this is because [4] does not consider the tem-
poral behavior of v  and .i  For example, [4] does not 
completely fix the phases of v0  and ,i0  which leaves 
ambiguity in reciprocity and other conditions, and 
the magnitude of the characteristic impedance is 
left undetermined. Most significantly, the theory 
of [4] does not guarantee that driving-point imped-
ances (which include Z0 ) are minimum phase, i.e.,  

,argln Z ZH =^^ ^hh h  where H  is the Hilbert trans-
form [10], and are, therefore, causal. This is a require-

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes—and ships—and sealing-wax—
Of power—Lorentz—and vectors Poynting—
And why we use pseudo-waves—
And whether pigs have wings.”

“But wait a bit,” the Oysters cried,
“Before we have our chat,...

Adapted from Lewis Carroll’s
Through The Looking-Glass and
What Alice Found There, 1872.

The Walrus and the Carpenter

Table 1. Equivalent-Circuit Theory Terminology

Concept Physical Smith Chart Continuous Role

Traveling waves Solutions of Maxwell’s 
equations; measurable

Equivalent voltage and current Related to Et  and ,Ht  
mimic low-frequency v  
and i

Pseudowaves Mimic S-parameters in a 
lossless line

Power waves Tool for achieving 
maximum power transfer
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ment for stable temporal circuit simulators, which find 
it very upsetting when passive devices in the circuit 
start responding before the stimulus is applied.

It is the causality constraint of [5] that completes the 
theory. The causality constraint fixes not only v0  and ,i0  
but also the magnitude of the characteristic impedance 
to within a single real frequency-independent constant. 
In quasi-TEM transmission lines, this final constant 
is usually chosen to set the units of the characteristic 
impedance Z0  to ohms at low frequencies and thus 
the units of the voltage v  to volts and the current i  to 
amperes. In TEM or quasi-TEM guides, intuitive power-
voltage and power-current normalizations meet the 
power and causality constraints by construction, and 
suitable normalizations are not difficult to find for more 
complex guides such as metal-insulator-semiconductor 
transmission lines and rectangular waveguides [11], 
[12].

Here we see that the characteristic impedance Z0  
of the traveling waves plays a critical role in deter-
mining the equivalent-circuit voltages and currents in 
microwave circuit theory. This explains why fixing the 
characteristic impedance of coaxial transmission lines 
and rectangular waveguides with precise dimensional 
control and measuring the complex amplitude and 
phase of the characteristic impedance of lossy printed 
lines with vector-network-analyzer calibration meth-
ods such as [13] and [14] are so important: the theory 
cannot be completed and correctly applied without 
first determining Z0 .

Now let us visit the second floor of our historic 
structure, where the real commerce takes place. Here 
we find the pseudowaves hard at work answering 
phones, talking with their clients, and filling large 
orders. Converting traveling-wave scattering param-
eters to 1, 50, and 75 X scattering parameters is big 
business.

Pseudowaves
Pseudowaves and pseudoscattering parameters have 
long been a cornerstone of microwave circuit theory 
and are often referred to as impedance-normalized 

traveling waves and scattering parameters with a fixed, 
real and frequency-independent reference impedance. 
Scattering parameters with a 50 X reference imped-
ance have long been used in coaxial metrology, for 
example, and scattering parameters with a reference 
impedance of 1 X are often used in rectangular wave-
guide metrology. 

Roger Marks and I coined the term pseudowaves in 
[4] when we were working to extend microwave circuit 
theory to lossy printed transmission lines. We chose 
the term pseudowaves to emphasize that power-nor-
malized and impedance-transformed waves, unlike 
traveling waves, are just a construction, not actual 
propagating solutions of Maxwell’s equations.

We also used the term pseudowaves to empha-
size that impedance-normalized waves and traveling 
waves in lossy printed transmission lines have very 
different properties. This was something that was not 
so apparent in the low-loss coaxial and rectangular 
waveguides used back when microwave circuit theory 
was first constructed.

In fact, microwave engineers have become so accus-
tomed over the years to measuring scattering param-
eters in low-loss guides, that most of us have forgotten 
how peculiar traveling waves can be. And I, for one, 
cannot point to a single microwave textbook that does 
not sidestep this issue by assuming, either implicitly or 
explicitly, lossless transmission lines in its scattering-
parameter formulation.

For example, we commonly assume that the power 
transmitted across a reference plane is equal to the dif-
ference of the power carried by the forward wave and 
the power carried by the backward wave. We also usu-
ally assume that the forward and backward transmis-
sion coefficients of reciprocal devices are equal. How-
ever, the transverse electric and magnetic fields of the 
propagating modes are usually out of phase in lossy 
transmission lines, and thus neither of these condi-
tions is satisfied in general by lossy traveling waves. If 
we blindly insert traveling waves and traveling-wave 
scattering parameters into our circuit simulators, as 
Roger Marks and I tried to do in the early days of on-

TablE 2. Impedances in Microwave Circuit Theory

Impedance Symbol Role

Characteristic impedance Z0 Ratio of voltage to current carried by forward wave; equal to /v i0 0

Reference impedance Zref Sets the relationship between the pseudowave amplitude
and v  and i ; usually set real (e.g., to 50 X)

Complex port number Zt Defines relationship between power-wave amplitude and v
and ;i  usually set to impedance of generator or load

<au: Size of X and checks will be fixed in production; the text size is per magazine style for tables and cannot be 
changed.>
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wafer microwave measurements, we get some very 
strange results indeed [15], [16].

Pseudowaves offer a solution to the complexity 
of traveling waves in lossy transmission lines. Pseu-
dowaves with a real reference impedance are con-
structed from the voltages and currents in lossy lines 
with the same formula we use to construct power-
normalized traveling waves from the voltages and 
currents of a lossless transmission line. While pseu-
dowaves do not actually exist, they obey the same 
rules and formulas that apply to the lossless transmis-
sion lines most of us are accustomed to.

Pseudowaves allow us to continue the tradition 
in the microwave community of reporting results as 
impedance-transformed traveling waves, reflection 
coefficients, and scattering parameters. This is a prac-
tice that has been going on for decades; it is ingrained 
in the Smith chart [17], in fundamental concepts like 
conjugate matching, and in our circuit simulators 
and most other tools we use for microwave design. 
This small artifice allows microwave engineers the 
world over to continue to use wave representations 
and scattering parameters as we did in low-loss coax-
ial transmission lines and rectangular waveguide, 
even when the characteristic impedance of the lossy 
printed transmission lines we are using is complex 
and far from 50 X.

We define the forward and backward pseudowave 
amplitudes a  and b  as

( )
( )

( ),

( )
( )

( ),

Re

Re

a Z
v
v

Z
Z

v iZ

b Z
v
v

Z
Z

v iZ

2

2

ref
ref

ref
ref

ref
ref

ref
ref

0

0

0

0

= +

= -

=

=

G

G

where Zref  is the reference impedance of the pseu-
dowave. This formulation was developed so that 
when Zref  is set real, a  and b  mimic traveling-wave 
amplitudes in a lossless transmission line. On the 
other hand, when Zref  is set equal to the characteris-
tic impedance of the guide, a  and b  become power-
normalized versions of the traveling-wave amplitudes 
c+  and c- . Now we see another important advantage 
of pseudowaves: their built-in impedance transforma-
tions allow us to easily convert from the measurable 
and calculable traveling waves to the pseudowaves 
used by most microwave engineers.

Pseudowaves are defined by their reference imped-
ance Zref . The power p  transmitted by a pseudowave 
through the guide is given by

.( )
( )
( )

Re
Im

p a b Im ab
Z
Z

2
ref

ref2 2= - + )

The condition on the forward and backward trans-
mission coefficients through a reciprocal junction is 

( )/ ( )
( )/ ( )

,
Im Re
Im Re

S
S

K
K

j Z Z
j Z Z

1
1

,ref ,ref

,ref ,ref

ij

ji

j

i

j j

i i
=

-

-

where Z ,refi  is the reference impedance at the ith port. 
After applying the causality constraints of [5] to elimi-
nate the phase ambiguities of [4], it is easy to see that 
the Ki  are close to one in most guides and account for 
the difference between the power normalization used 
in microwave equivalent-circuit theory and the inte-
grals used in deriving the Lorentz reciprocity condi-
tion (see [4, Appendix D] and [18]). 

The pseudowaves are equal to the traveling waves 
when we set Zref  equal to ,Z0  the characteristic imped-
ance of the transmission line. A look at the two pre-
vious equations for a complex reference impedance 
equal to Z0  makes it clear why traveling waves in lossy 
lines are so difficult to use.

However, pseudowaves with a real reference imped-
ance do behave just like traveling waves in a lossless 
transmission line with a real characteristic imped-
ance. For example, if we set Zref  real, we see that the 
resulting pseudowave amplitudes a  and b  are normal-
ized so that the power is just the difference between 
the power in the forward wave and the power in the 
reverse wave. That is, the power .p a b2 2= -  Fur-
thermore, for reciprocal junctions, we have /S S 1ji ij c  
[4], [18]. (Keep in mind that equivalent-circuit theories 
that set /S S 1ji ij =  cannot always satisfy p a b 22= -  
perfectly, and vice versa.)

Thus, pseudowaves and pseudowave scattering 
parameters mimic quite well (but not always per-
fectly) what traveling waves and their scattering 
parameters would do in a lossless line with a real 
characteristic impedance. Also, pseudowaves defined 
with a real reference impedance (often called waves 
with a 50 X reference impedance) are exactly what are 
reported by the measurement community, (see “On-
Wafer Measurement”) and they are what our circuit 
simulators, microwave designers, and product manu-
facturers use on a day-to-day basis.

Power Waves
The last tour stop is the new addition on the roof, 
where the entrepreneurial family of power waves can 
be found. The name “power waves” evokes an image 
of substance.

The power waves at  and bt  are defined with respect 
to frequency-dependent “complex port numbers” Zt  as 
[19], [20]

( )
( )

; ( )
( )

.
Re Re

a Z
Z

v iZ Z
Z

v iZb
2 2

= + = - )

t t
t

t t t
t

t

The family of power waves are designed to sat-
isfy the power relation p a b2 2

= -t t  for any ,Zt  not 
just when Zt  is set real. Pseudowaves do not have this 
property. In practice, we are told, power waves can 
be applied by setting Zt  equal to either the complex 
impedance of a generator or a load. This helps us visu-
alize power flow, and it simplifies obtaining maximum 
power transfer between the source and the load. With 
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power waves, you can dispense with conjugate match-
ing and just iterate until the power-wave reflection 
coefficient is zero and you have matched your devices 
for maximum power transfer. These appear to be use-
ful properties. Why would anyone settle for less?

But do the power waves make sense only as a lim-
ited tool for simplifying matching problems, or do 
they play a greater role in microwave circuit theory? 
Let’s consult the Smith chart.

The Smith chart is based on a ratio of the impedance 
of the load and the reference impedance that defines 
the center of the chart. There are no conjugates in the 
Smith-chart formulation, and it cannot be used to find 
impedances from power-wave reflection coefficients. 
This is easily seen by considering the power-wave 
reflection coefficients of an open and a short. While 
the open resides at one, by setting the voltage equal to 
zero we see that the power-wave reflection coefficient 
of a short is found at /Z Z- )t t  [21]. This point lies on the 
edge of the unit circle but is not on the real axis, even 
though a short circuit clearly cannot not store reactive 
energy. This unexpected behavior is the result of the 
appearance of Z)t  in the definition of the amplitude of 
the reverse power wave and shows just how different 
power waves really are from anything we studied in 

school. In particular, the Smith chart does not apply. 
Neither do the sets of rules we learned in college about 
how reflection coefficients translate along circular 
paths inside the Smith chart when we add series or 
shunt reactive elements to a matching circuit as illus-
trated in Figure 1.

And what about simple tasks such as cascading 
linear circuits? The voltages and currents at a refer-
ence plane in a transmission line connecting two cir-
cuits are continuous. Thus, you can set the amplitude 
of a pseudowave or a traveling wave emanating from 
the circuit on one side of a reference plane equal to 
the amplitude of the wave entering the circuit on the 
other side of the reference plane. This is the basis of 
signal-flow-graph theory. Without it, the transmission 
matrix of a cascade of circuits could not be determined 
from the products of their individual transmission 
matrices.

However, power waves are directional. Whenever 
Z Z! )t t  (i.e., whenever Zt  is complex), the definitions 
of the forward and backward power waves differ. 
This is illustrated in “Cascading Power Waves.” As a 
result, the amplitude of the power wave leaving one 
circuit is not equal to the amplitude of the power wave 
entering the other [21]. Transmission matrices no lon-

On-Wafer Measurement

Traveling waves are the propagating solutions of 
Maxwell’s equations in a transmission line. While the 
through-reflect-line (TRL) calibration algorithm [7], 
[8] is not the only way of measuring traveling-wave 
amplitudes, it is the most well-known and widely 
used approach and thus plays a fundamental role in 
microwave metrology. Figure S1 illustrates how the 
TRL calibration is usually applied in quasi-transverse 
electromagnetic (TEM) transmission lines printed on 

a low-loss substrate.
First, the vector network analyzer is calibrated with 

the TRL algorithm and measurements of a through, 
a pair of unknown but symmetric reflects, and a line 
(or multiple lines to allow averaging). This calibration 
sets the reflection coefficient of the lines to zero and 
measures traveling-wave amplitudes [4]. 

Then, in coaxial, microstrip, and coplanar 
waveguides constructed with low-loss dielectrics 
so that the conductance of the line is small, the 
characteristic impedance Z0  of the transmission line 
may be estimated with the formula in Figure S1 [13] 
using the low-frequency capacitance C  of the line 
[14] and the line’s propagation constant determined 
by the TRL calibration. The final step is to transform 
the traveling waves and their scattering parameters 
with a reference impedance of Z0  to pseudowaves 
and pseudowave scattering parameters with a real 
reference impedance (e.g., 50 X). The pseudowaves 
and their scattering parameters mimic waves in a 
lossless transmission line and can be used directly in 
computer-aided design tools.

j~C
Z0 .

c

C Z0 c

Transform
Traveling
Waves

50 X  Pseudo-
Waves and S-
Parameters

<au: Please note that figure and formatting will be fixed in the production process.>

Figure S1. Transforming traveling waves to 50 Ω 
pseudowaves.



IE
EE

Pr
oo

f

8  November/December 2013

ger cascade, and power waves cannot be used in many 
commonly used microwave-circuit design strategies. 
Much like a lava lamp, the power waves are comfort-
ing to look at, but do not offer the engineer the tools 
required for analytic design.

This ends our tour. The traveling waves in the base-
ment turned out to be more complex than we might 
have imagined, but the voltages and currents on the 
first floor lived up to all of our expectations. The sheer 
volume of the commerce performed by the pseu-
dowaves on the second floor was impressive. There 
we saw pseudowaves handling large bulk orders all 
day long, rapidly converting between impedances and 
serving the needs of industry. And in the end, the new 
addition on the roof did not add much to the grand old 
building.

A Product of Its Time
My father once told me that philosophers become great 
not because they think beyond their time, but because 
they address the important social and political problems 
of their day. To be useful, microwave equivalent-circuit 
theory must also adapt to the problems of our time.

During my career, this has meant exploring how 
microwave circuit theory can be applied to lossy 
printed transmission lines. Choosing equivalent-circuit 
voltages and currents that mimic as closely as possible 
the properties of low-frequency voltages and currents 
is of fundamental importance. Perhaps one of the most 
intriguing aspects of this exploration has been a shift in 
focus from the means of constructing equivalent-circuit 
voltages and currents to a focus on understanding the 

properties of those voltages and currents. This has led 
to a greater understanding of the physical meaning of 
the characteristic impedance of traveling waves [4], [13], 
power flow and reciprocity in lossy printed transmis-
sion lines [16], [18], temporal behavior [5], [11], [12], [22], 
and the extent to which the behavior of equivalent-cir-
cuit voltages and currents deviate from the ideal behav-
ior we expect. These advances in our understanding 
have been keys to the establishment of traceable and 
well-understood on-wafer calibrations in the last two 
decades.

I expect that our understanding of microwave 
equivalent-circuit theory will continue to grow as we 
push the frontiers of microwave technology. I have 
certainly found my studies of microwave equivalent-
circuit theory over the years to be extremely reward-
ing, and I look forward to watching the theory evolve. 
It is, after all, microwave circuit theory that distin-
guishes us, as microwave engineers, from the rest of 
the profession. 
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Cascading Power Waves and the Smith Chart

While traveling waves and pseudowaves are always 
continuous at the interface between circuits, power 
waves are not. Figure S2 illustrates a transparent 
interface between two identical guides, and shows 
the formulas for the power-wave amplitudes on 
each side of the junction. From the figure we see 
that the power wave b1

t  exiting the circuit on the 
left is not equal to the power wave a2t  entering 

the circuit on the right, for example, unless Zt  is 
real (in which case the power waves are equal to 
pseudowaves with the real reference impedance 
Zt ). Thus we see that, except in special case in 
which Zt  is real and the power waves reduce to the 
pseudowaves, the power waves are discontinuous 
across even a transparent junction between two 
identical transmission lines.

:2 :2
v+ iZc*

Re(Zc)
bc1(Zc) =

v- (-i)Zc*

Re(Zc)
=

:2
v-iZc*

Re(Zc)
bc2(Zc) == ac1(Zc)!

:2
v+ iZc

Re(Zc)
ac2(Zc) == bc1(Zc)!

:2 :2
v+ iZc*

Re(Zc)
ac1(Zc) =

v+ (-i)Zc

Re(Zc)
=

-i i

v

Figure S2. Power waves are discontinuous.
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Callouts

Pseudowaves mimic traveling waves in a lossless transmission 
line.

The traveling waves are the foundation of microwave circuit 
theory not only because they are real but also because they 
can be measured directly.

If we blindly insert traveling waves and traveling-wave 
scattering parameters into our circuit simulators, we get some 
very strange results.

Much like a lava lamp, the power waves are comforting to look 
at, but do not offer the engineer the tools required for analytic 
design.


