Documentation of the Microphone Array Mark 111

Information Access Division
National Institute of Standards and Technology *

September 25, 2003

*NIST, 100 Bureau Drive, Stop 3460, Gaithersburg, MD 20899-3460., www.nist.gov

Contents

I Historic]
L1 lheFirstGeneration,
L2 1he>second (Generation,
P_The Ideal
B__The Hardwarel
bl Microboard oo
b1l Anaoverviewl
b.1.2 Microphone amplificationstagg
b.l.o Digitalizationstagg
pb.1.4 Motherboard connectionstagg
B2 Motherboard oo L
BZT _AnQuerviewl oo v
p.22 lFowerstagg
BZ3 PROMstagd
b.2.4 Clockstageg
b.2.5 Data collectionstagd
BZ6 FPGAstagd
B.Z2Z7 Memorystagd oo
b.2.6 Ethernetstagg

i

I'he VHDL program for the FIFGA|

5| I'he VHDII

A.o lhe Main VHDL program|
g4 lhecapturemodulq.,

4.5 I’ he sram 1mntertace moduld

g.6 lhe capture_udp_framemodulq
g./ lhebootpmodulg.
g.so lhearpmodulg 0 L.
gY Theresponsestatusmodulg

g.15 The mncoming messagemodulg
A.14 The read iIncoming message moduleg
g.15 The Ml interface for configurationand statug

o~

O 0 0 ®

10
12
13
13
14
15
16
17
17
18
18

b The kit Microphone Array Mark 111
p.l The Microphone Array mark Ul ki
b.2 Hardwaresetup
b2 1 Moaotherboard Overview
b22 PROMsetup.
p.2.5 MACaddresssetupg
b.2.4 2-Finheadssetup
p.5 Cable Connectionssetup
bs 1l Mofherboard-Microboard connections
b.5.2 Synchronization connection§
b Linux luning/
BT _BOOTPserved
b.2 Kerneltuning
p.2.1 sysctlconf Lo
p.2.2 Minimum requirement
I/ The softwares on the computer|

/1 lThecommandandconfrol
V.2 lTheosculoscopd Lo
V.o lhelibraryl L o

37
37
39
39
43
43
44
45
45
45

46
46
47
47
48

1 Historic.

In this part we are going to see the previous models of microphone arrays
that were developed at NIST.

1.1 The First Generation

The first generation was very primitive. Each Ns microphones were put in
parallel. So the output signal was the sum of each microphone. The figure [
illustrates this.

N=
microphones

1
|
A) |
| |+ ! i 1 channel
i I]
N == g ey
Al Do L SmartFlow ||
[. ' D3P !
- : ey - System |
@] M=t [I
| i ! -
) | i
Audioc | H
Source i .:_-l- !
i

Figure 1: Microphone Array Mark I schematic.

In this case the beamforming was done analogically and at 90 deg of the
center. The result is a single output analogic signal as seen on the overview
of the microphone array first generation in figure P.

-.‘I..Il.lICll.......Ql.lII..'l.lllll.lllllll.l.llll.l;“'i o8

Figure 2: Microphone Array Mark L.

1.2 The Second Generation

The second generation is actually the one currently in use. At the beginning
of my internship, I had to build three second generation array to support
the construction of an advanced meeting room data acquisition facility . In
the same time I learned how the Smart Flow System works. As you can see,
on figure [, the system is relatively simple but efficient.

Pre-amplifiers
M=
microphones

o\\\

Figure 3: Microphone Array Mark II schematic.

Ns channels

Smart Flow

System

|

!

.:— pre-d '
El |

i

Fast and efficient, DSP is used in signal processing to acquire and pro-
cess data. It consists of an A/D converter with a processor, and interfaces.
The DSP hardware that will be used in this project has only 64 inputs. Thus,
we are restricted to use no more than 64 channels (i.e., 64 sensors).

ettt I PSS S S R E D B

Figure 4: Microphone Array Mark II.
As you can see on the figure @, the second generation array has a dis-

crete port and a preamplifier for each microphone. The second generation
microphone array used the analogical preamplifier shown on figuref.

5

Figure 5: Microphone Array Mark II Preamplifier.

While the second generation array allowed for digital phased array pro-
cessing, on this model there were many problems:

e This simple preamplifier is very sensitive to electromagnetic interfer-
ence because of the technology employed and the size of this card.

e In order to make the connection between the microphone array and
the DSP computer’s card we need a one hundred conductor cable
and connector set. The connections on the both sides of the cable
are very fragile and it can break the contact easily. On the DSP com-
puter’s card the 64 channels are multiplexed through eight analog to
digital converters, which introduce a fractional sample phase delay
in groups of eight channels. So, in order to clean the signal of each
microphone we designed digital codec band-pass filters.

e Also, intermittent loss of contact between some array channels and
the card occur

e On the cable all the channels are analogical fall prey to many electro-
magnetic interference(cf figure).

e Finally, the manufacturer,who made this DSP computer’s card, no
longer support it.

As a result, we had the necessity of building a new generation of micro-
phone array.

2 The Idea.

The objective of the third generation array is to place the preamplifier and
analog to digital converter close to the microphones in order to reduce any
noise due to the environment. So this new generation uses a completely
different design as shown in figure f§

Pre—amplifiers

s
microphones

\ |
| |
' Q:;l pre—A|— |
| OI;_'P“—’AF AN i Na/2 channels Ethernet Cable
i e IFe ! i v o o =
il | 54 LZ| SmartFlow ||
| : ; i FPGA-> Ethermet [Hmmm :
\ | : : e n System |
O | Tl (I il J
1 \ :
Audio ! ‘:g pre-4 |— L]
| - 1|l
|

Source

Figure 6: Microphone Array Mark III schematic.

In this new design, the DSP card on the computer becomes obsolete. In
order to reduce the complexity of design, I decided to separate the problem
in two different boards. The first one, the Microboard is in fact, a sound cap-
ture device. The second part is a Motherboard which sends, via an FPGA,
data from the Microboard to the Ethernet (cf figure).

s Motherboard

Figure 7: Microphone Array Mark III schematic.

Now we are going to see in more details these two boards.

3 The Hardware.

3.1 Microboard

3.1.1 An overview

National Institut

CONM

eyl plecqiayon

2}
=}
=
=
o
2
=1
=
m
L
g

)L

Figure 8: Microboard photo with presentation of the different stages.

On the figure § you can see clearly the disposition of the different stages
on the board.

In order to go deeper in the explanations, we are going to divide this
board into three parts:

e the microphone amplification stage,
o the digitalization stage,
e and the motherboard connection stage.

Our major objective is to reduce the noise factor and have the best per-
formances at the lowest cost for the converter.

We made the choice of working in SMT in order to have very small
traces. This will eliminate much electromagnetic interference particularly
since the microphones are high impedance and long conductor runs incur
noise penalty.

An other choice was to make the Microboard in four layers. This kind
of technology is far more better to get less interferences since the GND and
VCC planes are close to the signal planes. The difference of price between
a2 and a 4 layer board has been considered but the difference in big quan-
tities wasn’t sufficient to really reduce the overall price.

Another choice was to put 8 microphones on the same board. This is
based on the fact that 64 is a multiple of 8, 4 digitizers can share the same
clocks and power supply and the size of the board is reasonable.

Each microphone is spaced with 2cm. The value has been chosen by it’s
adequacy to human voice frequency range. So the width of the microphone
array is about 130cm.

3.1.2 Microphone amplification stage

In this part we are going to have a closer look of this stage.

+5%

+57
= £a +57
28K ﬁ VAN
Ul o.luF S
MICROL i = - f oUT to ADC
+ Bl —

b +1% ’
c1 luF + -
= YiNE
=
OFAZZZE|1/2 o be 1uF
OPA2Z2B|2/2

. =
E = R4 M

+57
30K 1K R7
6.8K
n’ §
(=4
100 S 1K
1K
o
] fad
1K 4

RE

Figure 9: Schematic of the amplification stage for the left channel.

How it Works

As you can see from the figure JJ, the microphone creates the sound
signal which after is amplified.

The sensors used for the previous microphone array genera-
tions are Panasonic WM-52B electret microphones (http://www.

http://www.mci.panasonic.co.jp/english/prdct/ecm/pdf/wm-53bs_{w}m-52b_{5}4b.pdf

mCci.panasonic.co.jp/engiish/prdctiecm/pdiiwm-53bs_

{wim-52b_{5}4b.pdf). They offer a good frequency response for
human voice frequency range.This microphone needs a phantom power of
1.5V made by the resistor R1.

The capacitor C1 is cutting the DC part of the signal entering the opera-
tional amplifier. I used an OPA2228 series op amps because it’s the combi-
nation of low noise and wide bandwidth with high precision. You can find
its specification here: http://www-s.ti.com/sc/psheets/sbos110/
sbos110.pdf . The OPA2228 is decoupled with the capacitor C4 (C4 and
C5 are the same capacitor). The R2 resistor is here to get the current out of
the entry of the OPA2228. The gain is done in two stages: the first one has
a gain of 100 done by R3 and R4 and the second one done by R6 and R7 has
a gain of 6.81.

Since the OPA is powered by the GND and the +5V, a phantom GND at
2.5V was created: it’s done by the resistor R9 and R8. The capacitor C2 and
C3 decoupled it.

The last capacitor C6 removes again the DC component of the signal
before entering the A/D.

This amplification stage is done in double for one stereo digitizer. So
you have a left (V7y L) and a right (V75 R) channel entering the digitizer.

3.1.3 Digitalization stage

The second stage of the Microboard is made mainly by the PCM1802 (cf
tigure [I0).

I have chosen the Analogic/Digital converter PCM1802 because of its
24-Bit Stereo capability, low-cost, single chip stereo Analog-to-Digital Con-
verter (ADC) with single-ended analog voltage inputs. The PCM1802
uses a delta-sigma modulator with 64x or 128x oversampling, a digital
decimation filter, and a serial inter-face which supports Slave mode op-
eration and two data formats. The reason of a low cost is his range of
work adapted to the sound. You can find its specification here: http:
[IWWW-S.Ti.com/scids/pcmi802Z.pdf

In that part, I just followed the indication given by the documentation
in the worst case scenario. So for more information you can refer to the
PDF file given previously except the 100(2 resistor for the signal integrity
of DOUT because of the transmission line between the PCM1802 and the
FPGA.

Three clocks LRCK, BCK and SCKI are given by the Motherboard:

10

http://www.mci.panasonic.co.jp/english/prdct/ecm/pdf/wm-53bs_{w}m-52b_{5}4b.pdf
http://www.mci.panasonic.co.jp/english/prdct/ecm/pdf/wm-53bs_{w}m-52b_{5}4b.pdf
http://www.mci.panasonic.co.jp/english/prdct/ecm/pdf/wm-53bs_{w}m-52b_{5}4b.pdf
http://www-s.ti.com/sc/psheets/sbos110/sbos110.pdf
http://www-s.ti.com/sc/psheets/sbos110/sbos110.pdf
http://www-s.ti.com/sc/ds/pcm1802.pdf
http://www-s.ti.com/sc/ds/pcm1802.pdf

{VINL |

{VINR |
—— —o—
Veeo VDD
PCM1802
L=
1K
§ : VinL moper }22
Pop— = VINR mopeo 2
durd f i
4. 7uF/16V | 10uF/16V 3 VEEE! - 18
¢ VREFZ2 FMTO 17
[
=} +| o | +tl1 S:: +;__—\ 2 Vee OSR 18
L e c
ST T % T | PSS oy L
Newm oo L
8 13 P
BYPAS DGND
Nesvnc pout 2
10 1 10uF/16V
LRCK BCK
LRCK >
BCK 100
{DATA M
SCKI

777

Figure 10: Schematic of the digitalization stage.

LRCK is the sampling frequency,

BCK is the bit clock,

SCKI is the system clock of the PCM1802.

DOUT is the data output of PCM1802 based on the three previous
clocks.

The setup of the digitizer is done so that it’s in a slave mode (MODE1=0,
MODEO0=0, FSYNC=1), left justified, 24 bit (FMT1=0 and FMT0=0). In this
model, I am not using the power-down mode controlled by the FPGA
(PDWN = 1) but I am putting the low-cut filter mode (BYPASS=0) and

11

the oversampling ratio at *128 Fs (OSR=1).

3.1.4 Motherboard connection stage

The connection to the Motherboard is done by a connector which pinout is
presented in the figure [[1].

V
Qo < DATA 1 DD
Qo < DATA 2 qu\;‘F LM2940IMP
- DATA. 3 ' IN ouTpE

V
Q9 DATA 4 +_L GND o] 22) cc
Qo LRCK > =y 7 EL ey REG1117-3.3
AR [BCK > 3N ouTh
N S T g Lewe | .
] 10uF
el T 1 10uFf[\
. 116V

] ,

Figure 11: Schematic of the Motherboard connection stage.

The four DATA lines are the outputs of the four PCM1802 of the board.

The Microphone amplification stage needs a 5V power supply but the
Digitalization stage needs a 5V power supply and a 3.3V power supply. So
after test I chose these two regulators:

e the LM2940 for the 5V hitp://www.national.com/ds/LM/
LMiZz940.pdf |,

e the REG1117 for the 3.3V http://lwww-s.tl.com/sc/psheets/
Sbvs001b/sbvs001b.pdf

The connector as been designed for a flat ribbon cable with a GND wire
between each signal or power supply wire.

12

http://www.national.com/ds/LM/LM2940.pdf
http://www.national.com/ds/LM/LM2940.pdf
http://www-s.ti.com/sc/psheets/sbvs001b/sbvs001b.pdf
http://www-s.ti.com/sc/psheets/sbvs001b/sbvs001b.pdf

B i

T,

G478

1Y
o
&
w

Figure 12: Photo of the Motherboard.

3.2 Motherboard
3.2.1 An overview

As you can see on the figure [[2, the FPGA is the gathering part of the
project.

The cables at the top of the figure [[7 are the data collection cables con-
nected to the 8 Microboards.

The red DIP is here to fix the MAC address of the microphone array.

The LEDs are here to give the status of the microphone array but we
will see that deeper later.

Form the figure [3 we can divide this board into seven parts:

o the power stage (2.5V, 3V, 5V),

13

Sound Data 3 clocks
for the digitalizers

Control
Signals
4 Bits TX

FPGA
Spartan Il

4 Bits
RU4S S e H1089 b

4 Bits RX

18 Bits Address Control

Signals

eeq sug g+

4512 kB
MEMORY

Figure 13: Motherboard schematic overview.

the PROM stage,
the clock stage (25MHz and 33.8688MHz),

the data collection stage,

the FPGA stage,
e the memory stage,

o the Ethernet stage (80225, H1089 and RJ45),

This board like the Microboard is done in 4 layers to reduce it’s size and
have a better signal integrity.
3.2.2 Power stage

At the level of the power supply, I didn’t use the 110V as main power sup-
ply because the project is open-source and safety considerations are im-
portant. So if our users make the same one, the DC 9V from an external

14

V Power Supply

—_0—
Enable
Vi In REG104 oOut
5V
L. Gnd NR
Tow L Lo
3 - :I:0.0'IuF
Enable
Vi In REG104 oOutl—%av >
33V
oL Gnd NR
0.1uF i
Lowr |
- = I0.0‘HIF
Enable
Vi In REG104 Out|—Vasv >
2.5V
1 Gnd NR
Tow [o,
- - :I:0.0'IuF

Figure 14: Schematic of the power stage.

transformer will be safer. The TOSHIBA memory used and the 2 oscillators
require a voltage of 5V.

But the FPGA needs 2.5V and 3.3V(I/Os). So after some research, I
found the Burr-Brown’s REG104. The REG104 is a family of low-noise,
low-dropout linear regulators with low ground pin current. The spec-
ification was better than everything else so I used it in 3 different ver-
sions for the 3 different voltage presented in the figure [[4.You can find its
specification here: http://www-S.ti.com/sc/psheets/sbvs025b/
Sbvs02Z5b.pdf

3.2.3 PROM stage

In order to have an automatic programming of the FPGA at startup, had a
PROM in which the VHDL program is burned. We will see later about this
program.

As told in the documentation of the FPGA, the PROM chosen was the

15

http://www-s.ti.com/sc/psheets/sbvs025b/sbvs025b.pdf
http://www-s.ti.com/sc/psheets/sbvs025b/sbvs025b.pdf

Spartan-Il
Master Serial 3y
Mo a3V aav
M1 f
? Ris SSK-‘ 3.3K i—|
= ’ Voo Voo
D DATA
COLK|— CLK spartan-Il
DONE| 4 CE PROM
INIT OE/RESET

Netes:
1. If the DriveDone configuration option is net active, pull up DONE with a 2 3K resistor.

Figure 15: Schematic of the PROM stage.

XC175200 because of its memory size of 2Megs. You can find its spec-
ification here: http://www.xilinx.com/bvdocs/publications/

ds078.pdi

3.2.4 Clock stage

This stage is used two times in the design as presented in figure [[§:

e to give the main clock for the digitalization to the FPGA which creates
three clocks form it (LRCK, BCK, SCKI),

e to give the 25MHz clock to the Ethernet as we will see later.

CLK

Figure 16: Schematic of the clock stage.

The RLC system is here to clean the bounce created by the oscillator.

16

http://www.xilinx.com/bvdocs/publications/ds078.pdf
http://www.xilinx.com/bvdocs/publications/ds078.pdf

3.2.5 Data collection stage

On the Motherboard there is 8 connectors and the clocks signals created by
the FPGA are amplified 8 times for the 8 Microboards (cf figure [[7).

Vee

o S 5

| I

, :

i 100 0.1UF |

! (ET LRCK = = I

: 100 ‘—C:j(\ . l‘dr:l“ —e 100K :

GG RCK—WA ¥ e i

v —]ivz OF F—|

PowerSupply | S Rok AN eHv cabm | (TReK] |

, .

, .

e e H i 100 B !

. | G [|

, :

| olag] ! ._E.:m‘ Tol—e 100K !

—— —] Vopa.av o F—I[—

L e : po=h T == A = :

De_ TR ! | i cLry F— BCK | | I(— FPGA
- = : ——>FPGA

Qor—|{ DATA ax i : 100 0.10F :

e oman! s I |

QO [~ LRCK % | : I—o:l:m Ghin r— 100K)

‘ == A ==om B
o —~<Eox] ! 1 3 sek | = e oo— :
oG | WS e | |
! . S |
| | X2

Figure 17: Schematic of the data collection stage.

The data lines are directly connected to the I/O pins of the FPGA.

The output of the FPGA is not appropriate to drive the clocks of 32
converters, so I used two clock drivers with a low-skew propagation delay:
the CDCV304. You can find its specification here: http://www-s.ti.
comj/scids/cdcv304.pdi

The six CDCV304 are decoupled with six 0.1,.F capacitors.

As previously the 10012 resistors are for the signal integrity of the clocks
because of the transmission line between the PCM1802 and the FPGA.

3.2.6 FPGA stage

My choice directly go to the Xilinx’s FPGA because of my good engineering
experience in the past with it. I oriented my research for the right FPGA to
the Spartan-II 2.5V FPGA Family.You can find its specification here: http:
[IWWW XilinX. ComlparllnTOIGSUUl ntm

The Spartan ® -II 2.5V Field- Programmable Gate Array family gives
users high performance, abundant logic resources, and a rich feature set, all
at an exceptionally low price. The six-member family offers densities rang-

17

http://www-s.ti.com/sc/ds/cdcv304.pdf
http://www-s.ti.com/sc/ds/cdcv304.pdf
http://www.xilinx.com/partinfo/ds001.htm
http://www.xilinx.com/partinfo/ds001.htm

ing from 15,000 to 200,000 system gates. System performance is supported
up to 200 MHz. Spartan-II devices deliver more gates, I/Os, and features
per dollar than other FPGAs by combining advanced process technology
with a streamlined Virtex-based architecture. Features include block RAM
(to 56K bits), distributed RAM (to 75,264 bits), 16 selectable I/O standards,
and four DLLs.

For soldering reason I chose the PQ208 package: the only package I can
solder without using a computer controlled machine.

3.2.7 Memory stage

The connection between the FPGA and the memory is quite simple (cf fig-
ure [[§).

The four memories are acting like one with 32 bits data width and with a
depth of 18 bits of address. This configuration gives us 2Mbytes of memory
as buffer. Compare to our actual computers it doesn’t seem a lot but it’s
quite enough for our real-time purpose.

The memory used is from TOSHIBA. It's speed of 70ns was exactly
what we where looking for. Here is the data-sheet: http://www.
toshiba. com/taeC/comoonenIS/L)atasneet/4001a DCIT

As you can see we are decoupling each memory with a 0. Ol,uF and a
10pF capacitors. Even though this memory is working in 5V, the FPGA
is 5V compliant and 3.3V output of the FPGA is more than the minimal
accepted by the memory.

3.2.8 Ethernet stage

In order to interface to the Ethernet, different circuit for the Ethernet LAN
Controller like the Quality Semiconductor QS6611, the National Semicon-
ductor DP83840A MII, ICS1890 MII, the Mitel Semiconductor’s NWK914,
the TDK Semiconductor 78Q2120 and the the SEEQ Technology 80225
10/100 BASE-TX physical layer were available. Finally, the last one was
chosen because of the price and quality of the documentation available.

The schematic on figure [9 comes from the documentation of the 80225:

The 80225 gets it’s 25 MHz clock form the clock stage that we spoke
about previously.

The 80225 is a highly integrated analog interface IC for twisted pair
Ethernet applications. The 80225 can be configured for either (100Base-
TX) or 10 Mbps (10Base-T) Ethernet operation. The 80225 consist of
4B5B/Manchester encoder/decoder, scrambler/descrambler, transmitter

18

http://www.toshiba.com/taec/components/Datasheet/4001a.pdf
http://www.toshiba.com/taec/components/Datasheet/4001a.pdf

P166
P167
P168
P172
P173
P174
P175
P176

FPGA

SPARTANII
XCsS200

P119
P120
P11
P122
P123
P125
P126
P127

P08
P09
P110
P11
P112
P13
P114
P15

PI63

P164

PI65
P162 P161,P160, P152,P151
P150,P143,P148 P147 P146

P141,P140,P139 P138,P136
P135,P134,P133 P132

A[180] RAW OF CE

GND
TC554001AF
110 [8:0]
vdd
A[18:0] RMW OE CE
GND
TC554001AF
110 [8:0]
Vdd
A[180] RAW OE CE
GND
TC554001AF
110 [8:0]
Vdd
A [180] RMW OE CE
GND
TC554001AF
10 [8:0]
Vdd

H% <+ Hﬂ% e HﬁL <+ 4 B!
i 4k 4 -

001

IT]

5
)

Figure 18: Schematic of the memory stage.

19

-

oo B
Fi7 TX CLK T
[2=:) (TR |5or§:<i <§ 1532 rm— ey
F&3 e S—) P11 j : 11 I
=) TXD1 TRO* T f T 1
il TX00 ! & | RJ45
PE3 T5 EN ! > !
FE7 1% FR e T t 2
FPGA Pad col 80225 ! ! +
SPARTANI P&0 RX CLK ! 2 ! 5
XC$200 Fa7 RxDs : T | !
Fag RXD2 : - : — 8
] RXD1 T J T 31l | I + 3
%) RXDO 3 i] 8 I
Pa Vit <25 1% ! j ‘-"—| !
Fa3 AX DV | ! | Ly &
Fa3 R ER o Ll e =8 i R
P38 Mo ()2:; ‘I%I i
Fos MDD <' 5 ;Z 5 <§ ':Z b
— = £ <‘
25 1%
RX_EM
SPEED 001
ANEG e T TRy

4% =
OPTIONAL 0
>

REXT
4
—
S0k é
- > 10K
‘7 i) N
[CLH 25 Mz O8CIH
= GND [G:1) BPLX

Figure 19: Schematic of the Ethernet stage.

20

with wave shaping and output driver, twisted pair receiver with on chip
equalizer and baseline wander correction, clock and data recovery, Auto
Negotiation, controller interface (MII), and serial port (MI).You can find its
specification here: http://www.lIsilogic.com/techlib/techdocs/
neworking/80225.pdf

With the 80225, it’s advised to use a pulse’s H1089. You can find its

specification here: http://www.pulseeng.com/pdi/4303.pdt

21

http://www.lsilogic.com/techlib/techdocs/networking/80225.pdf
http://www.lsilogic.com/techlib/techdocs/networking/80225.pdf
http://www.pulseeng.com/pdf/4303.pdf

4 The VHDL program for the FPGA.

In this section I am going to explain my software design in VHDL. But first
of all here is a summary description of this language.

4.1 The VHDL

The name of VHDL is the result of VHSIC(Very High Speed Integrated Cir-
cuits) Hardware Description Language. So the VHDL is not a program-
ming language but a hardware description language.It is a formal notation
intended for use in all phases of the creation of electronic systems. Because
it is both machine readable and human readable, it supports the develop-
ment, verification, synthesis and testing of hardware designs, the commu-
nication of hardware design data, and the maintenance, modification, and
procurement of hardware.
Historically, the VHDL is based on Ada(which is Pascal based) and was
develop by TI, IBM, Intermetrics in 1983 as and became IEEE Std 1076-1987
and 1993.

So I'm going to describe the different modules used in my design and
after we will have a gathering schematic of the modules. but first a descrip-
tion of UDP.

4.2 UDP

A frame on the Ethernet network is composed of different messages encap-
sulated each one in an other. So in order to send some data through the
Ethernet to a computer I have to respect some protocol.

PREAMBLE MALC header IP header UDP header

Figure 20: Different fields of an UDP message.

The preamble is 64 bits long (101010 10101 1) and corresponds
to the period of synchronization between the two physical layer devices.
This part of a message is taken care of in the tx_frame module.

The CRC32 is 64 bits long and has a value calculated form the rest of
the message except the preamble. This part of a message is taken care of in
the CRC32 module.

22

The main part of the message (MAC header, IP header, UDP
header and DATA) is taken care of in the modules capture_udp_frame,
bootp_frame and response_status_udp_frame. For more information
about the different fields, you can refer to the RFC’s or on this web-
site:http://www.networksorcery.com/enp/topic/ipsuite.htm

4.3 The Main VHDL program

CD:;;taure Bata Frame Data g
. B~
Sram interface module Capture udp frame module o
\Ask old data
e —— L — Bootp module —
Start Capture ™ Bootp Frame|
Capture \ Muxd 1
module Response to module
ARP request
/;—r_‘> Arp module e—=
(I Arp Frame
Read incoming 4‘) Resp status dul 41;
module Response to Response Statlis
N tatus Reques! Frame

Message

Frame
Recieved

Frame
Tx_frame module | — | Cre32 module

/ Data OUT 80225
I

|

{ Incoming message module

& Data IN 80225

Figure 21: Gathering schematic of all the modules.

In VHDL, there is one main module who contains all the other ones. The
tigure 1] represents an overview of the eleven submodules interactions.

In order to go deeper in the explanations, we are going to take each of
the eleven modules :

e capture module,
e sram interface module,

e capture_udp_frame module,

23

http://www.networksorcery.com/enp/topic/ipsuite.htm

e bootp module,

e arp module,

e response status module,

e mux4_1 module,

e CRC32 module,

e tx_frame module,

e incoming message module,

e read incoming message module.

In the main module, there is two sub-programs:

e Comptetemps: process to count time in seconds,

e state_machine: process used at startup to ask IP address as a starting
point to be completely operational.

The rest of this module is just the connection between the different sub-
modules like on figure [1].

4.4 The capture module

It is part of the design where the data coming from the converters are stan-
dardized in packets.
The figure P2 can be decomposed it in two parts:

o the interface with the converters and
e the interface with the rest of the design which is a memory.

In this module, there is two main clocks: cap_clk and cap_clk_slave. The
cap_clk is provided by the oscillator on the Motherboard. The cap_clk_slave
is provided by an other Motherboard through the synchronization cable.

First in master mode, start_capture is a signal used at the beginning to
tell when the capture shall start. The signal low_reset is used to initialize the
state machines in the module. The cap_clk is the clock on which everything
is synchronized.

The interface with the converters is composed of 3 clocks (BCK, SCKI
and LRCK) and 32 inputs(std01-std32). cap_clk (33.8688MHz) is the main

24

= cap_clk sync_vap_ch_master [—=

o—start_capture e "
o—double_irq_ad
o——=td01
o ftdoz bk —=
|
—1std |
|
a—ztd |
|
—std | start_capture_shy —s
1
e—=td |
I
e =td31

e—=td32

5 elk_capture_mam

data_capture_mem(15:0) ——

Figure 22: The capture module.

clock that builds the 3 others (for the hardware see the clock stage). In fact
these clocks depends of the sampling rate. For example for a sampling rate
of 22.050kHz in 24 bits: LRCK (sampling clock) value is 22.050kHz, BCK
(Bit Clock) value is 1.058MHz (22.050 * 24 * 2) and SCKI(System Clock)
is 11.289MHz (22.050 = 512). The signal double_frq_ad forces this module
to double the sampling frequency and in doing so doubles the volume of
data. The signal sync_cap_clk_master is the signal distributed to the slave
Motherboards and received as sync_cap_clk_slave. It is a succession of 3
tops:

e top to reset the clock divider in the FPGA,
e top to start capture,
e top to end capture.

The return of the converters, stdxx, is serial so this module take care of
placing the different streams like describes in the figure 3.

The advantage of using a memory is in the fact that it is using a dual
port ram memory. So the process of capturing the data clocked on cap_clk

25

8 bits width memory

o= Py
Data 1 Microphone 01 \
Data 2 Microphone 01
Data 3 Microphone 01
Data 1 Microphone 02
Data 2 Microphone 02
Data 3 Microphone 02

sauoydoniy N

Data 1 Microphone N
Data 2 Microphone N
Data 3 Microphone N j

Figure 23: Data organization in the memory.

is independent from the rest of the design like the Ethernet or storage
part. So the sram interface module is interacting with a simple mem-
ory: data_capture_mem(15:0), addr_capture_mem(8:0), enable_capture_mem,
clk_capture_mem. The signal packet_ready tells the rest of the design when
the memory is filled and can be read.

In slave mode, the clock cap_clk_slave is used as the main clock. The
slave mode is activated when sync_slave is up. The synchronization
signal is received through sync_cap_clk_slave and do the same thing as
in master mode except that it’s based on an outside signal. The signal
start_capture_slv goes up in slave mode to activate the sram interface
module, the capture_udp_frame module.

4.5 The sram interface module

In this module, we are storing the data from the capture module into 4
physical memory chips on a bus of 32 bits. The storage is used as a buffer
of about 0.5 seconds in the case that the packet is incorrect or dropped by
the computer.

First, start_capture is a signal used at the beginning to tell when the cap-
ture shall start. The signal reset_sram_interface is used at startup to initialize
the signals inside the module. In this module, there is 3 input clocks:

26

o clk_sram_intedace stam_r_wf—a
e olk_sram_interface®0 stam_oe E—
—— clkd2_sram_interface “stam_ce —=
o— reset_stam_interface select_request_old_packet—=
o stat_capture packet_ready_capture_udp [—=

—— request_old_pasket en_data_sapture —=

o—— capture_udp_buzzy sram_add18:0) —F
= en_data_capture_udp numero_pasket_capture_udpi10:0) —
o packet_ready_capture data_capture_udpi7 0 —%
= old_numero_packet(10:0) addi_captureti) =%
= addr_capture_udpia:0) sram_io0(T 0 =%
= data_capture(15:0) sram_i o027 —%

sram_{o0a7 10—}

sram_jo0T 0y ——%

Figure 24: The sram interface module.

o clk_sram_interface is the main clock through the module,

o clkd2_sram_interface is a just used to synchronize the division by 2 of
the main clock in this module and in the capture_udp_frame module,

o clk_sram_interface90 is used by the inner memory to compensate for
the delay in the data bus.

Basically, this module reads the data in the memory of the capture mod-
ule, transfers it to the external memory and then reads in the external mem-
ory the packet asked and put it in a memory that can be read by the cap-
ture_udp_frame module.

So the signals data_capture(15:0), addr_capture(8:0), enable_data_capture,
clk_sram_interface and packet_ready_capture are respectively connected
to data_capture_mem(15:0), addr_capture_mem(8:0), enable_capture_mem,
clk_capture_mem and packet_ready of the capture module.

As we have seen in the hardware, the signals sram_r_w (read/write
control), sram_oe (output enable), sram_ce (chip enable) are controlling the
external memory. The four 8 bits bus sram_io01, sram_io02, sram_io03,
sram_io04 are the data bus with the memory. The bus sram_addr(18:0) is
controlling the address of the external memory.

The capture_udp_frame module, connected to this module to get the
data out, is interacting with a simple memory: data_capture_udp(7:0),
addr_capture_udp(9:0), en_data_capture_udp, clkd2_sram_interface.

27

The signal packet_ready_capture_udp tells to the capture_udp_frame
module when the memory is filled and can be read. The bus nu-
mero_packet_capture_udp(10:0) gives the packet identifying number.

The signal capture_udp_buzzy tells when the memory is actually used by
the capture_udp_frame module.

To ask a missed packet, the mem_read_incoming_msg module sends
the information on the bus old_numero_packet(10:0) and put req_old_packet
to 1 until the information is used.

4.6 The capture_udp_frame module

This module is getting the data form the memory of the sram interface
module and put it in a UDP frame.

o elk_capture_udp buzzy [—
b—— ¢lkdZ_ capture_udp

e reset en_data_capture_udp_in b—=
—start_capture_udp

1—select_capture_udp_frame req_capture_udp_frame [—=
£ data_capture_udp_in(T 01

F—source_mag47:0) en_data_capture_udp_out —
F—— destination_mau47:0)

——=ource_ip(31:0) addr_capture_udp(:0) —=
] destination_ip(21:0)

] numero_padiets10:00 data_capture_udp_out7:0) ——

Figure 25: The capture_udp_frame module.

First, the clk_capture_udp is the main clock through this module. The
clock clkd2_capture_udp is a just used to synchronize the division by 2 of
the main clock in this module and in the sram interface module. the signal
reset is used at startup to initialize the state machine inside the module. The
signal buzzy tells to other modules that it’s making a frame while it is high.

The module builds the different UDP protocol fields from the inputs
destination_mac (MAC address of the destination provided by the main
module), source_mac (MAC address of the source provided by the main
module), destination_ip (IP address of the destination provided by the main
module), source_ip (IP address of the source provided by the main module).

The different protocols need more information than the few provided
by the main module but as they don’t really change from one message to

28

another, they are directly fixed in the software: the UDP port has been fixed
to 32767, the size of the packet to 964.

Figure 26: The data frame.

The data frame is constituted of different fields (cf figure P8) filled as
follow:

e type packet is on 1 byte: 86 (8 as response and 6 as response of type
6),

e numero packet is on 2 bytes in a range from 0 to 2048 (it’s correspond-
ing to the 11 highest bits of the sram memory address),

e reserved is on 1 byte,

e data is on 960 bytes: 64 channels * 3 bytes precision * 5 data frames.

This module is taking the data in the memory of the sram interface
module with the signals : data_capture_udp_in(7:0), addr_capture_udp(9:0),
en_data_capture_udp_in, clk_capture_udp (clock of the module).

And finally the module sends the complete message to the
mux4_1 module with req_capture_udp_frame, select_capture_udp_frame,
data_capture_udp_out(7:0) and en_data_capture_udp_out. For more informa-
tion, see the mux4_1 module.

4.7 The bootp module

This module is activated at startup in order to make a request IP address.

First, the clk_bootp is the main clock through this module. The signal
reset is used at startup to initialize the signals inside the module. The signal
buzzy tells to other modules that it's making a frame while it is high. The
signal start_bootp activates the module.

Since you can fix the source_mac (MAC address of the source provided
by the main module) by hand with the DIP switch, this value couldn’t be
implemented in advance.

The signal seconds(7:0) gives the elapsing time since startup.

And finally the module sends the complete message to the mux4_1
module with req_bootp_frame, select_bootp_frame, data_bootp_out(7:0) and
en_data_bootp_out. For more information, see the mux4_1 module.

29

o clk_bootp buzzy —o

s— reset
req_bootp_frame —=2
o—— start_bootp

o zelect_bootp_frame en_data_bootp_out —0n

] source_mac47:0)
data_bootp_out7 03—
= seconds7:0)

Figure 27: The bootp module.

4.8 The arp module

This module is activated to reply to an arp request to any computer placed
on the network.

s—— clk_arp buzzy [—=
— reset
stat_arp req_arp_frame —=a

v—— zalect_arp_frame

—— source_macd7m

f—— destination_mac47:00

en_data_arp_out}—on

£ source_ipa1:0)

dat 0
] destination_ip(21:00 ata_arp_sutr7 0) —%

Figure 28: The arp module.

First, the clk_arp is the main clock through this module. The signal reset
is used at startup to initialize the signals inside the module. The signal
buzzy tells to other modules that it’s making a frame while it is high. The
signal start_arp activates the module.

The module builds the different ARP protocol fields from the inputs
destination_mac (MAC address of the destination provided by the read in-
coming message module), source_mac (MAC address of the source provided
by the read incoming message module), destination_ip (IP address of the
destination provided by the read incoming message module), source_ip (IP
address of the source provided by the read incoming message module).

And finally the module sends the complete message to the

30

mux4_1 module with req_arp_frame, select_arp_frame, data_arp_out(7:0) and
en_data_arp_out. For more information, see the mux4_1 module.

4.9 The response status module

This module is activated to reply to any request made to the microphone
array and received and understood by the module read message.

o oll_response_status buzzy —a
n— reset

o start_response_status
o select_response_status_frame req_response_status_frame —a
= trpe_requesti20)
= data_request(@:0)
= sourse_masd7) en_data_response_status_out —a
] destination_mas7:0)
= source_ip(31:0)

= destination_ipi31:0) data_responze_status_out(7:00 ——F

Figure 29: The response status module.

First, the clk_response_status is the main clock through this module. The
signal reset is used at startup to initialize the signals inside the module. The
signal buzzy tells to other modules that it’s making a frame while it is high.
The signal start_arp activates the module.

The module builds the different UDP protocol fields from the inputs
destination_mac (MAC address of the destination provided by the read mes-
sage module), source_mac (MAC address of the microphone array), destina-
tion_ip (IP address of the destination provided by the read message mod-
ule), source_ip (IP address of the the microphone array), type_request(2:0)
(number given to identify the response) and data_request(9:0) (data of the
response).

Here is the different types of response implemented:

e request 02: status of slave/master mode,
e request 03: ID of the microphone array,
e request 05: status of the capture.

e request 08: status of the sampling frequency multiplier.

31

And finally the module sends the complete message to the mux4_1
module with req_response_status_frame, select_response_status_frame,
data_response_status_out(7:0) and en_data_response_status_out. For more
information, see the mux4_1 module.

410 The mux4 1 module

This module is a multiplexer of the bootp module output, arp module out-
put, response status module output and capture_udp_frame module that
sends the frame in the CRC32 module.

mux4_1

e— clh_mux select O —=

b— rezet
e—t: frame_ready
; select 1 —=
e——raq_in_0 =
——an_d_in_0
e—req_in_1
select 2 |—o
e—— en_d_in_1
b——raq_in_2
L — d_in_2
e select 3 —=

——— req_in_=

b——en_d_in_3

—— d_in_0F:0) en_data_mux_out|—=
T d_in_17:0)
——d_in_2Z(7:0
= d_in_3g09 data_mux_out(7 00—

Figure 30: The mux4_1 module.

First, the clk_mux is the main clock through this module. The signal reset
is used at startup to initialize the signals inside the module.

One of the four previous module makes a request with req_in_x. Then
when the multiplexer is ready to give him the right of passage to the CRC32
module, the mux4_1 module put the signal select_x to high. At the same

32

time the data entering made by the signals en_d_in_x and d_in_x(7:0) is di-
rectly connected to en_data_mux_out and data_mux_out(7:0) which is con-
nected to the entry of the CRC32 module.

The signal tx_frame_ready tells when the previous frame has been sent
completely to the 80225.

411 The CRC32 module
This module is adding the CRC32 value of the frame at the end of it.

a— clb_crc32 en_data_cre32_out —
o——raset

ob—— en_data_crc32_in

f——data_crc32_in(7:0) data_erc32_out7 01—

Figure 31: The CRC32 module.

This module is quite simple: it’s taking the data in data_crc32_in(7:0)
when en_data_crc32_in is high, adding the value of the computation of the
CRC32 at the end and sending the data through data_crc32_out(7:0) and
en_data_crc32_out to the tx_frame module.

4,12 The tx_frame module

This module is adding the preambule to the frame and changing from 8bit
wild to 4 bits wild to enter the 80225.

e—f clb_t= en_data_t«_outf—-sa

e—— en_data_t¢_in

—— data_t<_in(7:0) data_t«_ouliZ:00 ——

Figure 32: The tx_frame module.

Like the previous one, this module is quite simple: it’s taking the data
in data_tx_in(7:0) when en_data_tx_in is high, adding the preamble in front
and sending the whole message to the 80225 through data_tx_out(3:0) and
en_data_tx_out.

33

4.13 The incoming message module

This module takes any message coming form the Ethernet physical layer
device, filters the messages with the right MAC address , verify the CRC32
of it and put it in the memory of the FPGA to put read.

o cli_incoming_message_mem recv_packet|—s

o enable_incoming_message_mem

o ne_olke

—— ey data_incaming_message_mem(15.0) —=
f—— addr_incoming_message_mem(7:0)

=] satar .0y

= ned3:0) end_addn7 01 =

Figure 33: The incoming message module.

The data from the 80225 are coming from the signals rx_clk,
rx_dv and rxd(3:0). The message MAC address destination is com-
pared to the signal sa(47:0) and if everything is right recu_packet
goes high. Then the module read_incoming_message reads it in the
memory with clk_incoming_message_mem, addr_incoming_message_mem(7:0),
data_incoming_message_mem(15:0) and enable_incoming_message_mem until
end_addr(7:0).

4.14 The read incoming message module

This module is one of the most complex of the design because it’s reading
the memory in the incoming message module and takes action based on
the message.

The data read from the incoming message module is passing by
clk_mem_read, addr_incoming_msg_mem(7:0), data_incoming_msg_mem(15:0)
and enable_incoming_msg_mem until end_addr_msg(7:0) when the signal
recv_packet_msg went high.

In any case it stores the MAC and IP address of the sender
mac_sender(31:0), ip_sender(47:0)) and tests if the IP address of destination is
correct. In our case the one of the microphone array, my_ip(31:0).

As the message is read along, the module determines the kind of mes-
sage depending of the protocol used:

o ARP: req_arp goes high and the IP source is src_ip_arp_req(31:0),

34

— cl_mem_read enable_incoming_msg_mem —=

req_arp [—=2

reest B e L

syme_slave_on —e
o— arp_frame_buzzy
double_frq_ad —=

sart, it
| select_request_old_packet art_capture

tequest_old_packet
o— response_request_buzzy feq_response_request|—=

pririty_sender |—=

S— reov_pasket_msg addr_incoming_msg_memi7 0) —%

ste_ip_atp_req(31:0) —=
£ data_inceming_msa_mem(15:0)

bootp_ip31:0) —

st old_numers_packet10:0) =4
type_response_requestiz:0) —

@10 data_requesta:0) —
Ip_sendarz o =4

=] end_addi_msgi7:0) mac_senderd? o) —

Figure 34: The read incoming message module.

BOOTP: req_bootp goes high and the IP is given with bootp_ip(31:0)
after verification of the "random" number ID(31:0),

request 01: slave/master mode. the output is sync_slave_on,

request 02: ask the status of the slave/master mode. The
output are req_response_request=1, type_response_request(2:0)= "010",
data_request(9:0)="0x00000000x" (x=1 means slave mode activated),

request 03: ask the ID of the microphone array. The out-
put are req_response_request=1, type_response_request(2:0)= "011",
data_request(9:0)=MAC address microphone array(9:0),

request 04: capture on/off. the output is start_capture,

request 05: ask the status of the capture. The output
are req_response_request=1, type_response_request(2:0)= "101",
data_request(9:0)="0000000000x" (x=1 means capture mode acti-
vated),

request 06: ask the packet in memory with the number
old_numero_packet(10:0) and request_oldpacket goes high.

35

If the microphone is not in capture mode, it will send back an er-
ror with the output req_response_request=1, type_response_request(2:0)=
"110", data_request(9:0)="0001101110" (binary for 'n’).

e request 07: sampling frequency is doubled or not. The output is dou-
ble_frq_ad and up when doubled.

e request 08: ask the status of the sampling frequency multiplier. The
output are req_response_request=1, type_response_request(2:0)= "111",
data_request(9:0)="0000000000x" (x=1 means sampling frequency dou-
bled),

e request 09: ask a range of packets in memory through the
number old_numero_packet(10:0) and request_old_packet goes high.
old_numero_packet(10:0) is increasing by one at each request_old_packet
until it meets the end value of the range. Be careful in using this func-
tion because it won't stop the normal data packet traffic but will insert
the packets asked in the middle of the data traffic... The activation of
this option on range more than 5 packets can overload your network
card under to much traffic... Remember that at normal operation the
traffic on the line is about 4.4MBytes per second.

If the microphone is not in capture mode, it will send back an er-
ror with the output req_response_request=1, type_response_request(2:0)=
"110", data_request(9:0)="0001101110" (binary for n’).

If one of the signals arp_frame_buzzy or response_request_buzzy is high
then if an other frame come along the current one is ignored.

The signal priority_sender permits to differentiate the IP and MAC ad-
dress of the computer receiving the data of the capture from another one
making a request.

415 The MI interface for configuration and status

The MI(Media Interface) is the interface with the 80225 registers.

The 80225 has a MI serial port to access the device’s configuration in-
puts and read out the status outputs.the MI serial port consists of 8 lines:
MDC, MDIO, MDINT, and MDA[3:0]. However, only 2 lines, MDC and
MDIO, are needed to shift data in and out. So this permits the engine of the
design to configure the 80225. But since everything is in auto-negotiation
there is no real use of it.

36

5 The kit Microphone Array Mark III.

This section is dedicated to the kit industrialized by the company Bench-
mark Electronics, Inc. (BEI) located in Manassas, Virginia.

5.1 The Microphone Array mark III kit
The kid is composed of:

e one 9V power supply (a) figure B3,

75 feet of CAT5-R]45 cable(b) figure BY,

8 connection cables between the Microboards and the Motherboard(a)
tigure 3@,

1 synchronization cable(b) figure B§,

1 Motherboard(a) figure B7.

8 Microboards(b) figure 37,

(a) 9V power supply (b) 75 feet RJ45 cable

Figure 35: The inputs cables.

37

(a) 8 connection cables (b) 1 synchronization cable

Figure 36: The inside cables.

(a) 1 Motherboard (b) 8 Microboards

Figure 37: The boards.

38

5.2 Hardware setup
5.2.1 Motherboard Overview

|
|
ES1 |
|
a1

GAJTAC.connectals §ynéhrdnii fon 1nn
i b TES
L]k - : i

bt

1

voy

\
RdJ 45 Connector

Figure 38: Motherboard detailed overview.

The following tables presents the description of each named object on

the figure B8.

39

Name

Description

Power LED

Indicate if power is ON or OFFE.
0 = OFF
1=0ON

Link+Activity
LED

Indicate the occurrence of link or Activity on the Ether-
net.

0 = Link Detect

Blink = Link Detect and Activity

1 = No Link Detect

Collision LED

Indicate the occurrence of a collision on the Ethernet.
0 = Collision Detect
1 = No Collision

Full Duplex LED

Indicate if the Motherboard is in Full Duplex Mode on
the Ethernet.

0 = Full Duplex Mode Detect with Link Pass

1 = Half Duplex

Full Duplex LED

Indicate if the Motherboard is in Full Duplex Mode on
the Ethernet.

0 = Full Duplex Mode Detect with Link Pass

1 = Half Duplex

Link LED

Indicate a 10/100 Mbps Detect on the Ethernet.
0 = 100Mbit Mode Detected with Link Pass
1 = 10Mbit Mode Detected

IP OK LED

Indicate if the Microphone Array Mark III has an IP ad-
dress Ethernet.

0 = No IP address and waiting an BOOTP reply

1 = Has an IP address

Capture LED

Indicate if the Microphone Array Mark III is capturing
sound.

0 = No capture

1 = Capturing

Request LED

Indicate if the Microphone Array Mark III is sending old
packets.

0 = Not sending old packets

1 = Sending old packets

40

‘ Name

Description |

Doubler LED

Indicate if the Microphone Array Mark III is capturing
in 22050Hz or 44100Hz.

0 =22050Hz mode

1 =44100Hz mode

Slave LED

Indicate if the Microphone Array Mark III is in slave
mode.

0 = Master mode

1 = Slave mode

‘ Name

Description |

Switch Connector

2 Pins for a power switch. By default, there is a jumper

Power Connector

Connector for the power supply.

RJ45 Connector Connector for the Ethernet cable.
MAC DIP Dip switch to setup the MAC address of the Microphone
Array Mark IIL
| Name | Description |
FPGA reset 2 Pins for a reset button. It’s active only when the power

is ON

FPGA modes se-
lector

Select the different modes of the FPGA configuration:
parallel, serial JTAG. By default, the 3 2-pins connectors
have jumpers, to allow PROM programing. For other
modes see the FPGA documentation.

Prom Socket

Socket for the PROM. The PROM should be inserted has
shown on the socket

FPGA JTAG con-
hector

This connector is used for a JTAG programming of the
FPGA from a computer through the XILINX'S cable:
Parallel Cable III, Model DLCS5.

41

Name

Description

Master Synchro-
nization OUT

Connector for the synchronization cable. The other
end of the synchronization cable should be connected
to Slave Synchronization IN. The synchronization sig-
nals are going out of the Motherboard ,in Master Mode,
through this connector

Slave Synchro-
nization IN

Connector for the synchronization cable. The other end
of the synchronization cable should be connected to
Slave Synchronization OUT or Master Synchronization
OUT. The synchronization signals are going in the Moth-
erboard, in Slave Mode (to be detected), through this
connector

Slave Synchro-
nization OUT

Connector for the synchronization cable. The other end
of the synchronization cable should be connected to
Slave Synchronization IN. The synchronization signals
are propagate from the Slave Synchronization IN to an-
other Motherboard through this connector

Name ‘ Description

To Microboards 1 | Connector for first Microboard.

To Microboards 2 | Connector for second Microboard.
To Microboards 3 | Connector for third Microboard.
To Microboards 4 | Connector for fourth Microboard.
To Microboards 5 | Connector for fifth Microboard.

To Microboards 6 | Connector for sixth Microboard.
To Microboards 7 | Connector for seventh Microboard.
To Microboards 8 | Connector for eighth Microboard.

42

5.2.2 PROM setup

The PROM provided is normally not programed. The program can be
found at this URL: http://www.nist.gov/smartspace/toolChest/
cmaiii/

To configure the PROM, the Xilinx Serial PROM programmer from
Roman-Jones, Inc. is adequate. It can be bought at http://www.
digikey.com

The PROM used is referenced as XC17S200APD8C.

5.2.3 MAC address setup

2

e ife T)
a_A_E‘-tl*fiﬁl_@iiS;_l E$10ZS

2

Figure 39: The MAC dip.

Fixed by the VHDL programm 1/2/3|4|5|6

0001 0000 0000 0000 0000 0000 0000 000000000011 | x | x | X | x| x | x

The RED DIP switch (cf figure BY)setups the MAC address. A MAC
address is made of 48 bits. The DIP switch fixed the last 8 ones and the
VHDL program fixed the 40 remaining one. By default, as one the photo,
the MAC address is : 10:00:00:00:03:00.

Examples:

o If the switch 1 on the DIP is changed, compared to the photo, the
MAC address becomes : 10:00:00:00:03:80.

o If the switch 8 on the DIP is changed, compared to the photo, the
MAC address becomes : 10:00:00:00:03:01.

o If all the switches on the DIP are changed, compared to the photo, the
MAC address becomes : 10:00:00:00:03:FF.

43

http://www.nist.gov/smartspace/toolChest/cmaiii/
http://www.nist.gov/smartspace/toolChest/cmaiii/
http://www.digikey.com
http://www.digikey.com

| Configuration Modes | Preconfiguration Pulls-ups | E$153 | E$17 | E$152 |

Master Serial mode Yes (default) 0 0 0
Yes 0 0 1
Slave Parallel mode Yes 0 1 0
No 0 1 1
Boundary-Scan mode | Yes 1 0 0
No 1 0 1
Slave Serial mode No 1 1 0
Yes 1 1 1

5.2.4 2-Pin heads setup

5.24.1 FPGA mode The Spartan-Il FPGA supports the following four
configuration modes:

e Slave Serial mode

e Master Serial mode

e Slave Parallel mode

e Boundary-scan mode

The Configuration mode pins (E$153, E$17, E$152) select among these con-
figuration modes with the option in each case of having the IOB pins ei-
ther pulled up or left floating prior to configuration. The selection codes
are listed in the previous table. Configuration through the boundary-scan
port is always available, independent of the mode selection. Selecting the
boundary-scan mode simply turns off the other modes. The three mode
pins have internal pull-up resistors, and default to a logic High if left un-
connected.

The default mode enables a FPGA configuration form the PROM or the
JTAG connector but to do both will results in problems... If you do a JTAG
configuration, you have to remove the PROM.

5.2.4.2 Reset The shortcut of the 2-Pin head E$147 will result in the RE-
SET of the FPGA from any programs like a "Power off - Power on" cycle.
This 2-Pin head E$147 is the option of a live reset on the box.

44

5.2.4.3 Power Switch The shortcut of the 2-Pin head E$105 will result
in the POWER ON of the Microphone Array. This 2-Pin head E$105 is the
option of a power switch on the box.

5.3 Cable Connections setup
5.3.1 Motherboard-Microboard connections

The cables presented on the figure B§ (a) are connecting the Motherboard

to the 8 Microboards. These cables have a socket connector with central

polarizing key because a mismatch connection would led to a shortcut.
The tigure Bg have numbered sockets:

| Name | Description

To Microboards 1 | Connector for first Microboard.

To Microboards 2 | Connector for second Microboard.

To Microboards 3 | Connector for third Microboard.

To Microboards 4 | Connector for fourth Microboard.

To Microboards 5 Connector for fifth Microboard.

To Microboards 6 | Connector for sixth Microboard.

To Microboards 7 | Connector for seventh Microboard.

To Microboards 8 | Connector for eighth Microboard.

5.3.2 Synchronization connections

The Motherboard (cf figure B8) has 3 synchronization connections detailed
in this table:

With the cable provided (cf figure B§ (b)) the synchronization is possi-
ble with a least 4 Motherboards in daisy chain.To do with even more Moth-
erboards, you might have to upgrade the cable to an other one of better
quality.

The delay introduce between two synchronized boards is about 3 ns
(3%x107?s). The delay is the time needed to propagate along the about 30cm
of the cable. Compared to the frequency of 22050Hz of the converter the
error is about 0.01%.

45

6 Linux Tuning.

6.1 BOOTP server

Just after being power up, the microphone array is doing a BOOTP request
on the network. You need on a computer, in direct liaison or connected
through a switch, a DHCP daemon. The Internet Software Consortium
DHCP Server, dhcpd, implements the Dynamic Host Configuration Pro-
tocol (DHCP) and the Internet Bootstrap Protocol (BOOTP). DHCP allows
hosts on a TCP/IP network to request and be assigned IP addresses, and
also to discover information about the network to which they are attached.
BOOTP provides similar functionality, with certain restrictions.

The DHCP protocol allows a host which is unknown to the network
administrator to be automatically assigned a new IP address out of a pool
of IP addresses for its network. In order for this to work, the network ad-
ministrator allocates address pools in each subnet and enters them into the
letc/dhcpd.conf file. On startup, dhcpd reads the dhcpd.conf file and stores
a list of avail- able addresses on each subnet in memory.

To be able to do that you have to be logged as administrator on the

machine.
After, you need to create the file /etc/dhcpd.conf Here is a copy of the

file dhepd.conf

option subnet-mask 255.255.255.0;
option broadcast-address 10.0.0.255;
option routers 10.0.0.1;

option domain-name-servers 10.0.0.1;
option domain-name “array.org";

ddns-update-style ad-hoc;
subnet 10.0.0.0 netmask 255.255.255.0 {

host array2 {
hardware ethernet 10:00:00:00:03:00;
fixed-address 10.0.0.2;

}

host array3 {
hardware ethernet 10:00:00:00:03:CA;
fixed-address 10.0.0.3;

}

host array4 {
hardware ethernet 10:00:00:00:03:FF;
fixed-address 10.0.0.4;

46

In order to activate the daemon you have to enter the following com-
mand:

dhepd

You are know all set and the green LED closest to the SRAM memory
should light...normally...

You can notice that all the hardware Ethernet (MAC) addresses are the
same : 10:00:00:00:03:XX This is because XX is given by the red DIP switch:
XX goes from 00 to FF. This enables us to put up to 256 microphone arrays
on the same network...

6.2 Kernel tuning

The amount of data created by the microphone array system is about
4.4MBytes a second if the frequency doubler is not activated otherwise, it
goes up to 10 MBytes a second. At some point you might experience on
a normal Linux computer some loss of packets.... To resolve the problem,
there is two ways:

e tune the Linux kernel,

e or upgrade the machine.

6.2.1 sysctl.conf

Sysctl.conf is a simple file containing sysctl values to be read in and set by
sysctl. Sysctl is used to modify kernel parameters at runtime. The param-
eters available are those listed under /proc/sys/ Here is a copy of the file
in:/etc/sysctl.conf

Kernel sysctl configuration file for Red Hat Linux

#

For binary values, 0 is disabled, 1 is enabled. See sysctl(8) and
sysctl.conf(5) for more details.

Controls IP packet forwarding
net.ipv4.ip_forward = 0

Controls source route verification
net.ipv4.conf.default.rp_filter = 1

Controls the System Request debugging functionality of the kernel
kernel.sysrq = 1

Controls whether core dumps will append the PID to the core filename.

Useful for debugging multi-threaded applications.
kernel.core_uses_pid = 1

47

#increase linux TCP bufferlimits
net.core.rmem_max = 8388608
net.core.wmem_max = 8388608
net.core.rmem_default = 2097152
net.core.wmem_default = 2097152

#increase linux autotuning TCP buffer limits
net.ipv4.tcp_rmem = 4096 2097152 8388608
net.ipv4.tcp_wmem = 4096 2097152 8388608
net.ipvd.tcp_mem = 8388608 8388608 8388608

First you have to be logged as administrator on the machine. After
changing your /etc/sysctl.conf you need to apply the settings. To do so,
you have to enter the following command:

sysctl -p

Then relaunch the software you were using and everything should be
fine except if you don’t meet the minimum requirement.

6.2.2 Minimum requirement

If you don’t change /etc/sysctl.conf, you are going to lose packets even with
a XP3000+...

So the minimum we used (with /etc/sysctl.conf changed) was a 1GHz
CPU with 1 GBytes of memory and two network card:

e one in direct connection to the microphone array,
e one to send the data the the rest of the network.

The microphone array works perfectly fine on a switch. The problem,
in that case, is that everybody on the network have access, through given
software, to it and, for example, can listen what is happening in the room.

48

7 The softwares on the computer.

7.1 The command and control

The program called array_simple_controls.c is here to give you the basic
commands and setup to do in order to give orders to the microphone array.
Here is the code of this file:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpalinet.h>
#include <signal.h>
#include <string.h>

#include <sys/poll.h> library for the timout on answer
#include <getopt.h> lNibrary option

static const char *default_dip = "10.0.0.2";
const char *dip;

const char *progname, *shortname;
unsigned char msg[14];

int fd;

struct sockaddr_in adr;

int len;

static int ID_array;
static char PROM_NBJ8];

static void print_usage(FILE *stream)

fprintf(stream, "Usage : %s [-h] [-d IP\n"

-h --help Prints this message\n"
"o-d IP --dest IP Listen to this IP (default: %s)\n"
“\n For more information contact: cedrick.rochet@nist.gov\n"
“\n Official Notice \n"
"This software was developed at the National Institute of Standards and \n"
"Technology by employees of the Federal Government in the course of their \n"

"official duties. Pursuant to Title 17 Section 105 of the United States Code \n"
"this software is not subject to copyright protection and is in the public \n"

"domain.

"array_simple_controls is an experimental system as is offered AS IS. NIST \n"
"assumes no responsibility whatsoever for its use by other parties, and \n"
"makes no guarantees and NO WARRANTIES, EXPRESS OR IMPLIED, about
"its quality, reliability, fitness for any purpose, or any other \n"

"characteristic. We would appreciate acknowledgement if the software is used.\n\n"
"This software can be redistributed and/or modified freely provided that any \n"

"derivative works bear some notice that they are derived from it, and any \n"
"modified versions bear some notice that they have been modified from the \n"
"original.

49

\n\n"

\n"

\n"

\n",
progname, default_dip);

}
void options(int argc, char ***argv)
{
static struct option optlist]] = {
{ "help", 0, 0, 'h},
{ "dest", 1, 0, d},
{o, 0,0, 0 }
h

int usage = 0, finish = 0, error = 0;
dip = default_dip;

for(;;) {
int opt = getopt_long(argc, *argv, "h:d:", optlist, 0);
iflopt == EOF)
break;
switch(opt) {
case 'h’
usage = 1;
finish =

default:
abort();

if(finish)
break;
}
if (usage)
print_usage(error ? stderr : stdout);

if (finish)
exit(error);

*argv += optind;

}

static void send_msg(void)
if(sendto(fd, msg, len, 0, (const struct sockaddr *)&adr, sizeof(adr)) < 0) {

perror("sendto");
exit(1);

50

}

}
static void recieve_msg(void)
{
struct pollfd pfd;
int res;
pfd.fd = fd,
pfd.events = POLLIN;
res = poll(&pfd, 1, 100);
if(fres) {
fprintf(stderr, "Timeout on answer\n");
len = 0;
exit(0);
return;
}
len = recv(fd, msg, sizeof(msg), 0);
}

static int ask_status_slave(void)

int done = O;

do {
msg[0] = O;
msg[l] = 2; /lrequest number
msg[2] = O;
msg[3] = O;
len = 4;
send_msg();

recieve_msg();
if(!len)
continue;
done = (msg[0] == 2);

} while(!done);
printf("Your Microphone Array slave is: %i\n",(int) msg[2]);
return (int) msg[2];

}
static void slave_on(void)
{
int done = O;
do {
msg[0] = O;
msg[l] = 1; /lrequest number
msg[2] = Oxff;
msg[3] = Oxff;
len = 4;
send_msg();
done = (ask_status_slave() == 1);

51

} while('done);

}
static void slave_off(void)
{
int done = 0;
do {
msg[0] = 0;
msg[l] = 1; /lrequest number
msg[2] = O;
msg[3] = O;
len = 4;
send_msg();
done = (ask_status_slave() == 0);

} while(!done);

}
static void ask_id(void)

int done = O;

do {
msg[0]
msg[1]
msg[2]
msg[3]

/lrequest number

eowe

len = 4;
send_msg();

recieve_msg();
if(llen)
continue;
done = (msg[0] == 3);

} while(!done);

ID_array = (msg[2])|(msg[3]<<8);

memcpy(PROM_NB,msg+6,8);

printf("Capture on %x with PROM %s\n", ID_array, PROM_NB);
}

static int ask_status_capture(void)
{
int done = O;
do {
msg[0]
msg[1]
msg[2]
msg[3]

/lrequest number

ecue

len = 4;
send_msg();

recieve_msg();

52

if(!len)
continue;
done = (msg[0] == 5);

} while('done);
printf("Your Microphone Array capture is: %i\n",(int) msg[2]);
return (int) msg[2];

}
static void capture_on(void)
{
int done = O;
do {
msg[0] = O;
msg[l] = 4; /lrequest number
msg[2] = Oxff;
msg[3] = Oxff;
len = 4;
send_msg();
done = (ask_status_capture() == 1);

} while(!done);

}
static void capture_off(void)
{
int done = 0;
do {
msg[0] = O;
msg[l] = 4; /lrequest number
msg[2] = O;
msg[3] = O;
len = 4;
send_msg();
done = (ask_status_capture() == 0);
} while(!done);
}

static void ask_old_packet(short packet_number)

{

/I Be careful in using this fuction because it won't stop the normal data packet traffic
/I but will insert the packets asked in the middle of the data traffic...

/I If the microphone is not in capture mode, it will send back a back with msg[2]=n
char *p;

p = (char *) &packet_number;

msg[0] = 0;
msg[1l] = 6; /lrequest number
msg[2] = p[0];

53

msg(3] = p[1];

len = 4;
send_msg();

printf("Your packet number is: %i",packet_number);

}
static int ask_status_speed(void)
{
int done = O;
do {
msg[0] = O;
msg[l] = 8§; /lrequest number
msg[2] = 0;
msg[3] = O;
len = 4;
send_msg();

recieve_msg();
if(!len)
continue;
done = (msg[0] == 7);
} while(!done);
printf("Your Microphone Array speed is: %i\n",(int) msg[2]);

return (int) msg[2];

static void speed_on(void)

{
int done = 0;
do {
msg[0] = O;
msg[l] = 7; /lrequest number
msg[2] = Oxff;
msg[3] = Oxff;
len = 4;
send_msg();
done = (ask_status_speed() == 1);
} while(!done);
}

static void speed_off(void)

int done = 0;

do {
msg[0] = 0;
msg[l] = 7; /lrequest number
msg[2] = O;

54

}

msg[3] = O;

len = 4;
send_msg();

done = (ask_status_speed() == 0);

} while(!done);

static void ask_range_old_packet(short first_packet_number, short last_packet_number)

{

}

/I Be careful in using this fuction because it won't stop the normal data packet traffic

/I but will insert the packets asked in the middle of the data traffic...

/I The activation of this option on range more than 5 packets can overload your network

/I card under to much traffic...

/I Remember that at normal operation the traffic on the line is about 4.4MBytes per second.

/I If the microphone is not in capture mode, it will send back a back with msg[2]=n

char *pfirst;
char *plast;

/I conversion of the shorts in chars to fill msg
pfirst = (char *) &first_packet _number;
plast = (char *) &last_packet_number;

msg[0]=0x00;

msg[1]=0x09; /Irequest number
msg[2] = pfirst[0];

msg[3] = pfirst[1];

msg[4] = plast[O];

msg[5] = plast[1];

len = 4;

send_msg();

printf("Your packet range is: %i - %i \n"first_packet _number,last_packet_number);

int main(int argc, char **argv)

{

int d;
int choix01, choix02, choix03;

int numberil;
int number2;

/* Option processing */
progname = argv[0];
shortname = strrchr(progname, '/’);
if(lshortname)
shortname = progname;
else
shortname++;

55

options(argc, &argv);

/*socket connection*/
fd = socket(PF_INET, SOCK_DGRAM, 0);
if(fd<0) {
perror(“socket");
return O;
exit(1);
}

memset(&adr, 0, sizeof(adr));

adr.sin_family = AF_INET;

adr.sin_port = htons(32767);

adr.sin_addr.s_addr = INADDR_ANY;
llprintf("Bind to IP: %s\n", &adr.sin_addr.s_addr);

if(bind(fd, (struct sockaddr *)&adr, sizeof(adr)) < 0) {
perror("bind");
return O;
exit(1);

}

memset(&adr, 0, sizeof(adr));
adr.sin_family = AF_INET;
adr.sin_port = htons(32767);
inet_aton(dip, &adr.sin_addr);
printf("Listen on IP: %s\n", dip);

ask_id();

choix01 = ask_status_slave();

choix02 = ask_status_capture();

choix03 = ask_status_speed();

for(;;) {
printf(\n1: SLAVE MODE ON/OFF - request01\n");
printf("2: REQUEST STATUS SLAVE MODE - request02\n“);
printf("3: REQUEST ID - request03\n");
printf("4: CAPTURE ON/OFF - request04\n");
printf("5: REQUEST STATUS CAPTURE - request05\n“);
printf("6: REQUEST OLD PACKET - request06\n");
printf("7: DOUBLE FREQUENCY AD ON/OFF - request07\n“);
printf("8: REQUEST STATUS DOUBLE FREQUENCY AD - requestO8\n“);
printf("9: REQUEST RANGE OLD PACKETS - request09\n");

printf("0: QUIT\n");
printf("Your choice is: ");

scanf("%d",&d);
switch(d){
case O :
printf("Quitting...\n");

exit(0);
break;

56

case 1:

if (choix01 == 1) {
slave_off();
choix01=0;

} else {
slave_on();
choix01=1;

}

break;

case 2:
ask_status_speed();
break;

case 3:
ask_id();
break;

case 4:

if (choix02 == 1) {
capture_off();
choix02=0;

} else {
capture_on();
choix02=1;

}

break;

case 5:
ask_status_capture();
break;

case 6:
printf("Your number packet is: ");
scanf("%d", &numberl);

ask_old_packet((short)numberl);
break;

case 7:

if (choix03 == 1) {
speed_off();
choix03=0;

} else {
speed_on();
choix03=1;

}

break;

case 8:
ask_status_speed();
break;

case 9:

57

printf("Your first number packet is: ");
scanf("%d", &numberl);

printf("Your last number packet is: ");
scanf("%d", &number2);

ask_range_old_packet((short)numberl, (short)number2);
break;

default :
printf("Error: this input is not right: %i\n",d);
exit(0);
break;

}
}

return O;

}

7.2 The oscilloscope

The oscilloscope was made with the goal of viewing, listening and record-
ing in a file the data received from one channel. It helped us to adjust the
value of some resistors in the Microphone amplification stage like the gain.

At the top of the window, the ID of the microphone array is given and
the PROM version. In our case it’s 3ca.

The red numbers represents the highest and the lowest points of the
channel at the time of picture.

The yellow numbers and letters represent the channel number/the key.
For example in the top left corner is the channel 32 and if you type 1 you
will listen it or the bottom right corner is the channel 47 and if you type v’
you will listen to it.

The figure f] represents the oscilloscope in record mode of the channel
21 at the UNIX time 1048627720 in the file /tmp/21-1048627720.ary.

The figure 1 represents also different channels (16 to 31) than the pre-
vious one (32 to 47) (cf figure f]). To pass from on quarter of 64 to another
you have to use the keys F1, F2, F3, F4, F5:

e F1: first quarter with the channels from 0 to 15,

F2: second quarter with the channels from 16 to 31,

F3: third quarter with the channels from 32 to 47,

F4: fourth quarter with the channels from 48 to 63,

F5: all quarters.

58

B Microphone array 1D: 3ca =1

vwmw.'.lfwﬂm;»»w,’urwrmﬁ!ﬂwwﬂujﬂ»«wﬁg«wﬁ'.i.mwwwmwﬂmwﬂ'mmupml,',{nj;r.ww.swn:.ww.n-.'nwtlmlw»wwmnﬁmrmwy.wﬁmwquwﬁt«ﬂfﬁ

32,11 7 GEpos 34,3 - 35-4
1

.Jlﬁ.h,'w‘?ﬁ'.wwmi'mmmw;;'.tu,';'ﬂwfvﬁﬁ.vfWi.-“ul&nnrm»wuhtw.ﬂmzwmnqwml{w‘uwmmwmwwmnlnwmmwwi'm:.nw-wumlfm!{mvw;wﬂmmawmﬂ.w;

F6,q -1

e T e L e I R L T e L e

m«u;wwww;;!mw;ﬂﬂwnw»wu‘wwv»vw#ﬂmwﬂnwﬁlkﬂﬁww&Wa'rW¢}Nv|me[ﬂ,WﬁﬁmbW;\ki|rwwanL'ﬂ.MH‘ﬂhwmﬁ'ﬂ!wmv '

3401 9 71 4?,v

Figure 40: Oscilloscope in listening mode of the channel 42.

If you try F5 you might not be able to see of the channels because the
window is in 1600*1200. So another key that might be interesting is the tab
key. It toggles from window to full screen the oscilloscope.

To get a capture of a channel you have first to select it with the corre-
sponding key in our case w and then press [space] to toggle the capture in
the file on/off.

7.3 The library

Project....

59

2525777 2862053 2825158 1882575

\/!V‘wj \ANW\)\W Wy V WJMNW\)\M«AMM \/\f“\pj\/\/\ﬂmmw Wy \f VAN

16,1 -2176680

2483049 A
#tnp-21-1848627720 . ary

A~ \/VW\»\[\J‘%MMW\NWWWW’WW\ NWW\ A

—-2550668 28.q -34492608 21-u|-3111769
23561686 2895361 2937588

wamwmmemmwwwwNwwwmwwwmmww

-24835893 3 255 32 264
3204586 26 : 4

W Aot st A s

—-3B22152 28,z |-3422267 29,x|-3045730 38.-c|-2263493

Figure 41: Oscilloscope in capturing mode of the channel 21.

60

Name

|

Description

Master Synchro-
nization OUT

Connector for the synchronization cable. The other
end of the synchronization cable should be connected
to Slave Synchronization IN. The synchronization sig-
nals are going out of the Motherboard ,in Master Mode,
through this connector

Slave Synchro-
nization IN

Connector for the synchronization cable. The other end
of the synchronization cable should be connected to
Slave Synchronization OUT or Master Synchronization
OUT. The synchronization signals are going in the Moth-
erboard, in Slave Mode (to be detected), through this
connector

Slave Synchro-
nization OUT

Connector for the synchronization cable. The other end
of the synchronization cable should be connected to
Slave Synchronization IN. The synchronization signals
are propagate from the Slave Synchronization IN to an-
other Motherboard through this connector

61

	Historic.
	The First Generation
	The Second Generation

	The Idea.
	The Hardware.
	Microboard
	An overview
	Microphone amplification stage
	Digitalization stage
	Motherboard connection stage

	Motherboard
	An overview
	Power stage
	PROM stage
	Clock stage
	Data collection stage
	FPGA stage
	Memory stage
	Ethernet stage

	The VHDL program for the FPGA.
	The VHDL
	UDP
	 The Main VHDL program
	The capture module
	The sram interface module
	The capture_udp_frame module
	The bootp module
	The arp module
	The response status module
	The mux4_1 module
	The CRC32 module
	The tx_frame module
	The incoming message module
	The read incoming message module
	The MI interface for configuration and status

	The kit Microphone Array Mark III.
	The Microphone Array mark III kit
	Hardware setup
	Motherboard Overview
	PROM setup
	MAC address setup
	2-Pin heads setup

	Cable Connections setup
	Motherboard-Microboard connections
	Synchronization connections

	Linux Tuning.
	BOOTP server
	Kernel tuning
	sysctl.conf
	Minimum requirement

	The softwares on the computer.
	The command and control
	The oscilloscope
	The library

