

34-35'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816748

Boring ID: LB-R-051 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), lbs	Splitting Tensile Strength, psi	Failure Type
34.46-34.55 ft	ST-1	0.97	1.98	0.49	4,750	1,570	1

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

33-33.5'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816749

Boring ID: LB-R-068 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
33-33.5 ft	ST-2	1.01	1.97	0.51	2,846	913	3

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

40-40.5'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816759

Boring ID: LB-R-069 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
40-40.5 ft	ST-3	0.85	1.98	0.43	4,810	1,830	3

ST-3

ST-3

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements. The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

47-47.25'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816750

Boring ID: LB-R-077 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), lbs	Splitting Tensile Strength, psi	Failure Type
47-47.25 ft	ST-4	0.96	1.98	0.49	2,331	778	3

ST-4

ST-4

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements. The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

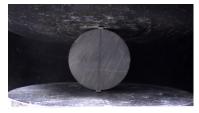
Project: Upstate Confidential Project

28.5-28.75'

Project No: GTX-321096 Location:

816760

Boring ID: LB-R-082 Sample Type: Core Tested By: jss Sample ID: ---Checked By: smd Test Date: 06/11/25


Test Id:

Test Comment: Visual Description: Sample Comment:

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
28.5-28.75 ft	ST-5	0.86	1.96	0.44	2,393	901	1

ST-5

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

35.5-36'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816751

Boring ID: LB-R-082 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
35.56-35.65 ft	ST-6	0.95	1.97	0.48	2,101	717	3

ST-6

ST-6

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements. The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

48-49'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816752

Boring ID: LB-R-106 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
48-49 ft	ST-7	1.08	1.98	0.55	6,268	1,870	1

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

27-28'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816753

Boring ID: LB-R-112 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
27-28 ft	ST-8	1.02	1.98	0.51	2,745	866	3

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

21.5-22'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816754

Boring ID: LB-R-115 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
21.52-21.62 ft	ST-9	0.99	1.97	0.50	2,249	734	3

ST-9

ST-9

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

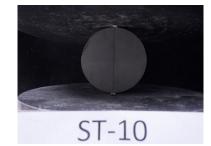
27-27.5'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816755

Boring ID: LB-R-117 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd


Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
27-27.5 ft	ST-10	1.04	1.98	0.53	1,240	382	3

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

20.25-21'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816756

Boring ID: LB-R-127 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
20.25-21 ft	ST-11	0.92	1.98	0.46	6,301	2,210	3

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

31.5-32.5'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816757

Boring ID: LB-R-129 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
31.5-32.5 ft	ST-12	0.89	1.98	0.45	2,479	892	1

ST-12

ST-12

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

816758

Boring ID: LB-R-130 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/11/25 Checked By: smd

Depth: 20-22.5' Test Id:
Test Comment: ---

Visual Description: --Sample Comment: ---

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D3967

Specimen Depth	Test No	Thickness (L), in	Diameter (D), in	Thickness to Diameter Ratio (L/D)	Failure Load (P), Ibs	Splitting Tensile Strength, psi	Failure Type
22.33-22.42 ft	ST-13	0.89	1.99	0.44	5,678	2,050	1

ST-13

ST-13

Notes: Strain rate: 2.5%/min.

ASTM requires the thickness-to-diameter ratio (L/D) of each test specimen to be between 0.2 and 0.75.

The reported thickness (L) is the average of three measurements.

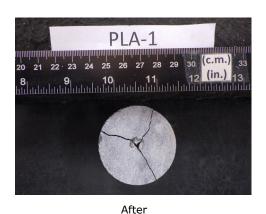
The reported diameter(D) is the average of three measurements.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-018 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 27-27.5' Test Id: 817032

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-1	27-27.5 ft	1.98	1.05	3,125	2.66	1.63	1174	0.919	1079	19	22,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

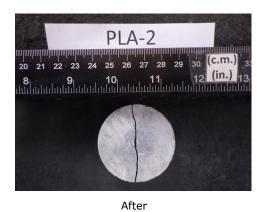
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-027 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 33.5-34' Test Id: 817034

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-2	33.66-33.76 ft	1.98	0.99	2,970	2.49	1.58	1192	0.905	1079	18	21,500

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

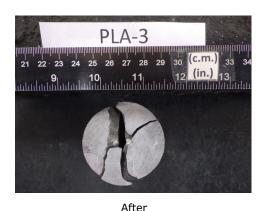
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-029 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 30.1-31.1' Test Id: 817035

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-3	30.53-30.63 ft	1.99	0.97	2,736	2.45	1.57	1117	0.902	1007	18	20,100

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

36.6-37.6'

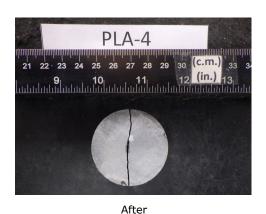
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817036

Boring ID: LB-R-029 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-4	36.6-37.6 ft	1.99	0.97	3,111	2.44	1.56	1274	0.901	1148	18	22,900

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

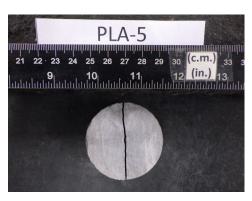
F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-035 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Depth: 20.4-20.6' Test Id: 817037


Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-5	20.4-20.6 ft	1.99	1.01	3,132	2.57	1.60	1216	0.912	1109	19	23,100

After

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

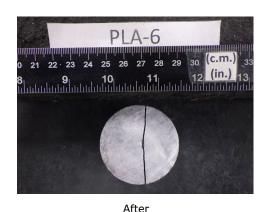
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-041 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 29.6-30.6' Test Id: 817038

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-6	29.6-30.6 ft	1.99	0.97	2,731	2.46	1.57	1113	0.902	1004	18	20,000

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

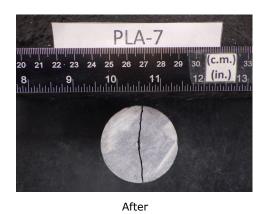
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-045 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 11.5-12' Test Id: 817040

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-7	11.62-11.71 ft	1.97	1.04	2,837	2.59	1.61	1095	0.913	1000	19	20,800

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

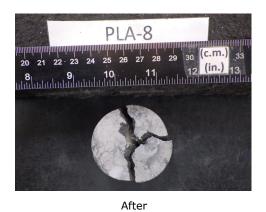
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096


Boring ID: LB-R-047 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 30.5-31' Test Id: 817041

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-8	30.5-31 ft	1.99	0.97	1,387	2.46	1.57	564	0.903	509	18	10,200

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

28.5-29'

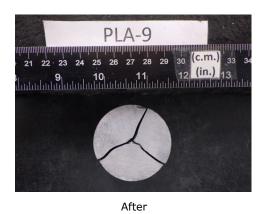
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817043

Boring ID: LB-R-051 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-9	28.56-28.65 ft	1.99	1.03	1,789	2.59	1.61	690	0.914	630	19	13,100

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

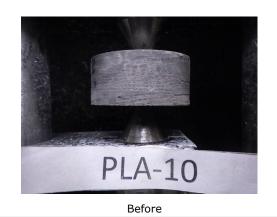
De = the equivalent core diameter

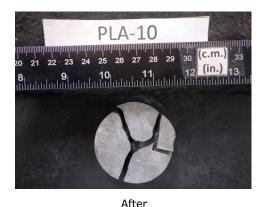
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096


Boring ID: LB-R-065 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 22-22.25' Test Id: 817047

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-10	22.03-22.12 ft	1.98	0.90	1,592	2.28	1.51	699	0.887	620	18	12,600

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

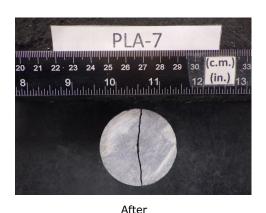
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-068 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 24-24.5' Test Id: 817049

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-11	24-24.5 ft	1.98	0.97	2,794	2.45	1.56	1142	0.902	1030	18	20,600

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

26-26.5'

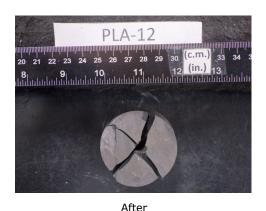
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817050

Boring ID: LB-R-068 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-12	26.07-26.16 ft	1.97	0.99	1,864	2.47	1.57	755	0.903	682	18	13,600

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

33.5-34'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817051

Boring ID: LB-R-068 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-13	33.5-34 ft	1.97	0.92	1,490	2.30	1.52	647	0.890	576	18	11,600

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

46-46.25'

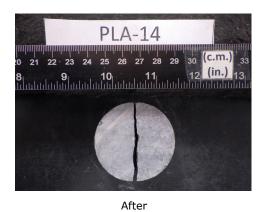
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817055

Boring ID: LB-R-072 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-14	46.04-46.14 ft	1.98	1.01	2,554	2.55	1.60	1002	0.910	912	18	18,000

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

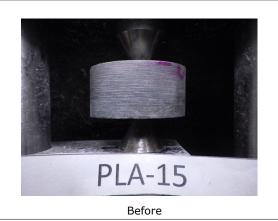
De = the equivalent core diameter

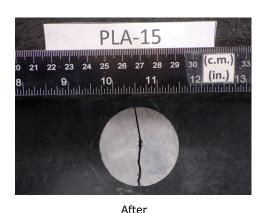
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096


Boring ID: LB-R-076 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 40.5-40.75' Test Id: 817057

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-15	40.54-40.63 ft	1.99	0.97	2,617	2.45	1.56	1069	0.902	964	18	19,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

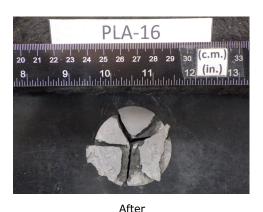
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-077 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 46.75-47' Test Id: 817058

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-16	46.75-47 ft	1.96	1.09	1,243	2.73	1.65	456	0.924	421	19	8,660

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

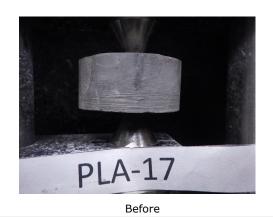
25.5-26'

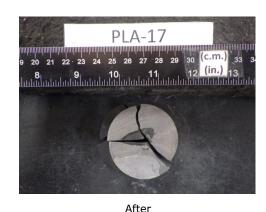
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817064

Boring ID: LB-R-086 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-17	25.5-26 ft	1.99	0.92	1,167	2.33	1.53	502	0.892	447	18	9,030

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

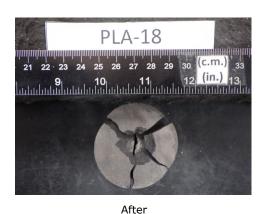
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-088 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 33.5-34' Test Id: 817065

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-18	33.5-34 ft	1.99	0.93	4,636	2.36	1.54	1966	0.894	1758	18	35,400

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

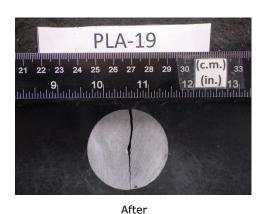
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-098 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 31.5-32' Test Id: 817067

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-19	31.5-32 ft	1.99	0.99	2,812	2.51	1.58	1122	0.907	1018	18	20,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

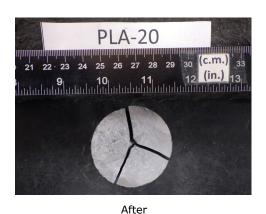
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-104 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 57-57.5' Test Id: 817071

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-20	57.07-57.16 ft	1.97	1.03	1,801	2.58	1.61	698	0.913	637	19	13,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

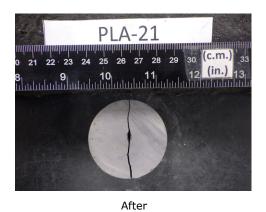
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-111 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 19.5-20' Test Id: 817077

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-21	19.5-20 ft	1.97	1.01	1,396	2.53	1.59	552	0.909	501	18	9,930

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

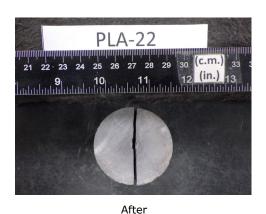
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-116 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 34.5-34.75' Test Id: 817083

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-22	34.5-34.75 ft	1.97	1.00	2,869	2.52	1.59	1139	0.908	1034	18	20,500

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

39.5-40'

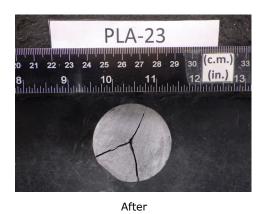
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817085

Boring ID: LB-R-116 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-23	39.5-40 ft	1.98	1.03	3,109	2.58	1.61	1205	0.913	1099	19	22,900

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

15-15.3'

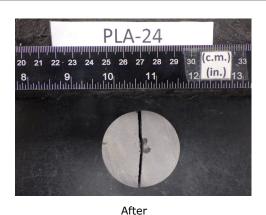
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817086

Boring ID: LB-R-117 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-24	15.05-15.14 ft	1.97	1.02	1,477	2.55	1.60	579	0.910	527	19	11,000

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

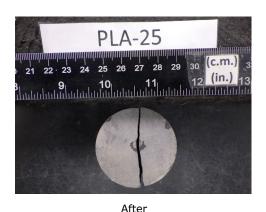
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-120 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 47-47.5' Test Id: 817093

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-25	47.08-47.17 ft	1.96	1.04	3,044	2.59	1.61	1176	0.913	1074	19	22,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

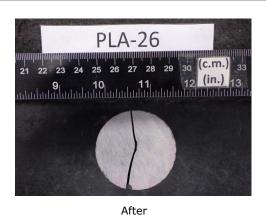
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-121 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 56.5-56.75' Test Id: 817094

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-26	56.53-56.62 ft	1.98	1.01	1,850	2.55	1.60	725	0.910	660	18	13,100

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

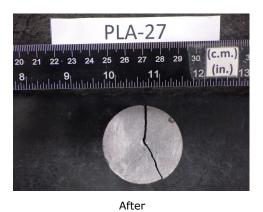
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-125 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 11.5-12' Test Id: 817099

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-27	11.56-11.65 ft	1.98	0.99	2,934	2.50	1.58	1174	0.906	1064	18	21,100

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

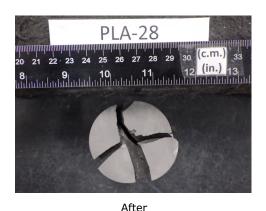
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-129 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 31.5-32.5' Test Id: 817103

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-28	31.5-32.5 ft	1.98	0.99	814	2.50	1.58	326	0.906	295	18	5,860

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

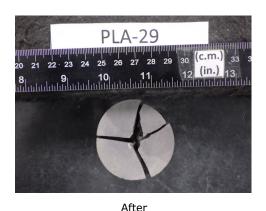
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-129 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Depth: 35-35.5' Test Id: 817104

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-29	35-35.5 ft	1.98	1.06	1,969	2.67	1.63	738	0.919	679	19	14,000

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

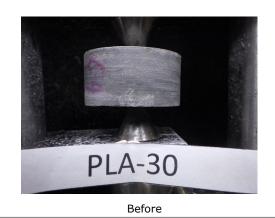
44-44.5'

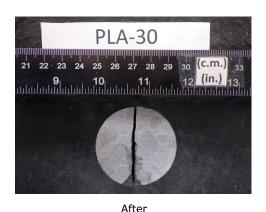
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817105

Boring ID: LB-R-129 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/09/25 Checked By: smd


Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

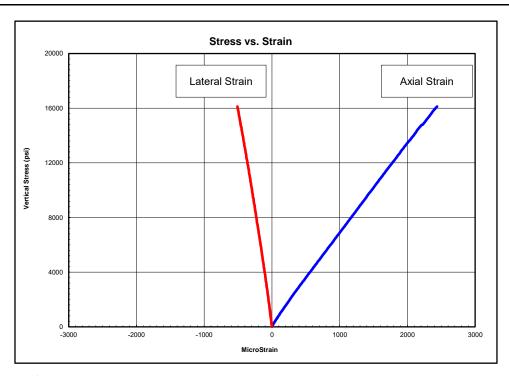
Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-30	44-44.5 ft	1.98	0.98	2,480	2.47	1.57	1005	0.903	908	18	18,100

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.


De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/11/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-077
Sample ID:	C-1
Depth, ft:	40.55-40.93
Sample Type:	rock core
Sample Description:	See photographs Intact material failure
	Best Effort end preparation performed

Peak Compressive Stress: 16,123 psi

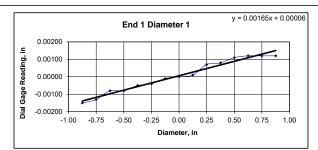
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1600-5900	6,670,000	0.19
5900-10200	6,600,000	0.21
1020-14500	6,460,000	0.22

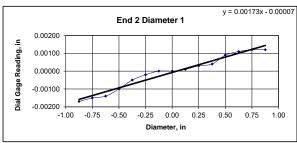
Notes:

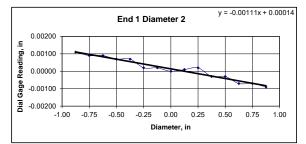
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

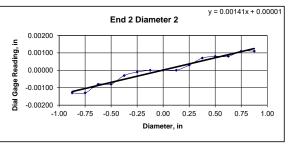
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-077 Sample ID: C-1 40.55-40.93 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.39	4.38	4.38	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	627.04			
Bulk Density, lb/ft ³	176	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00150	-0.00130	-0.00080	-0.00080	-0.00050	-0.00040	-0.00010	0.00000	0.00010	0.00070	0.00080	0.00110	0.00120	0.00120	0.00120
Diameter 2, in (rotated 90°)	0.00110	0.00090	0.00090	0.00070	0.00070	0.00020	0.00020	0.00000	0.00010	0.00020	-0.00030	-0.00030	-0.00070	-0.00070	-0.00090
											Difference between	en max and mi	in readings, in:		
											0° =	0.00270	90° =	0.00200	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00150	-0.00140	-0.00100	-0.00050	-0.00020	0.00000	0.00000	0.00010	0.00030	0.00040	0.00090	0.00110	0.00120	0.00120
Diameter 2, in (rotated 90°)	-0.00130	-0.00130	-0.00080	-0.00080	-0.00030	-0.00010	0.00000	0.00000	0.00000	0.00030	0.00070	0.00080	0.00080	0.00110	0.00110
											Difference between	en max and mi	in readings, in:		
											0° =	0.0029	90° =	0.0024	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00145

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00165 0.09462	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00173 0.09888	
Maximum Angu	lar Difference:	0.00426	
	Parallelism Tolerance Met? Spherically Seated	YES	
	Spriencally Seated		
DIAMETER 2	Spriencially Seated		
DIAMETER 2 End 1:		0.00111 0.06335	
	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.06335	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00270	1.983	0.00136	0.078	YES	
Diameter 2, in (rotated 90°)	0.00200	1.983	0.00101	0.058	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00290	1.983	0.00146	0.084	YES	
Diameter 2, in (rotated 90°)	0.00240	1.983	0.00121	0.069	YES	

Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 077	Reliable dial gauge measurements could not be
Sample ID:	C=1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	40.55-40.93	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-R-077 Sample ID: C-1 Depth, ft: 40.55-40.93


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/11/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-088
Sample ID:	C-2
Depth, ft:	34.03-34.38
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 23,093 ps

The axial strain gauges failed before the peak value was attained. Young's Modulus and Poisson' Ratio could not be determined within the third stress range.

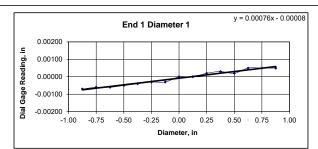
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2300-8500	8,360,000	0.26
8500-14600	8,080,000	0.30
14600-20800		

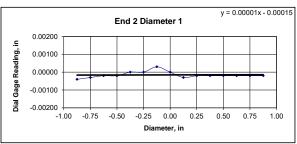
Notes:

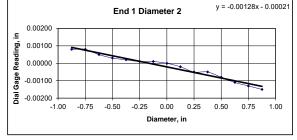
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

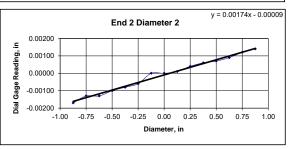
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-088 Sample ID: C-2 Depth (ft): 34.03-34.38 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.32	4.32	4.32	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	616.32			
Bulk Density, lb/ft3	176	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00070	-0.00060	-0.00060	-0.00050	-0.00040	-0.00030	-0.00030	0.00000	0.00000	0.00020	0.00030	0.00020	0.00050	0.00050	0.00050
Diameter 2, in (rotated 90°)	0.00080	0.00080	0.00050	0.00030	0.00020	0.00010	0.00010	0.00000	-0.00020	-0.00050	-0.00050	-0.00080	-0.00110	-0.00130	-0.00150
											Difference between	en max and m	in readings, in:		
											0° =	0.00120	90° =	0.00230	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00040	-0.00030	-0.00020	-0.00020	0.00000	0.00000	0.00030	0.00000	-0.00030	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020
Diameter 2, in (rotated 90°)	-0.00170	-0.00130	-0.00130	-0.00100	-0.00080	-0.00060	0.00000	0.00000	0.00010	0.00040	0.00060	0.00070	0.00090	0.00120	0.00140
											Difference between	een max and mi	in readings, in:		
											0° =	0.0007	90° =	0.0031	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00155

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00076 0.04371	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00001 0.00065	
Maximum Angu	ular Difference:	0.04305	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00128 0.07317	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.07317	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00120	1.980	0.00061	0.035	YES	
Diameter 2, in (rotated 90°)	0.00230	1.980	0.00116	0.067	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00070	1.980	0.00035	0.020	YES	
Diameter 2, in (rotated 90°)	0.00310	1.980	0.00157	0.090	YES	
1						

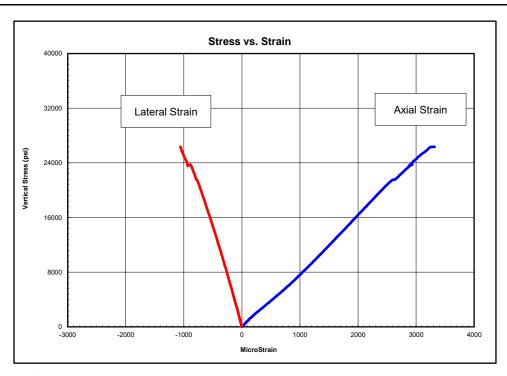
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-088	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	34.03-34.38	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.


BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-R-088 Sample ID: C-2 Depth, ft: 34.03-34.38


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/11/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-103
Sample ID:	C-1
Depth, ft:	11-12
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 26,347 psi

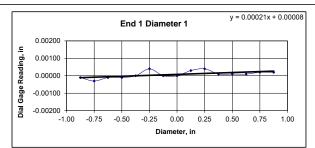
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2600-9700	7,660,000	0.25
9700-16700	8,880,000	0.33
16700-23700	7,920,000	0.34

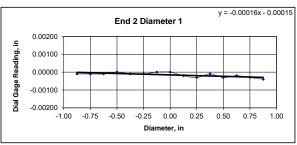
Notes:

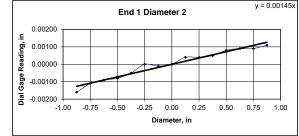
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

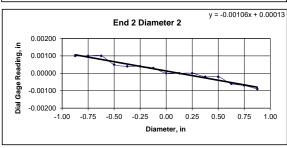
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-103 Sample ID: C-1 Depth (ft): 11-12 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.40	4.39	4.40	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.00	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	634.5			
Bulk Density, lb/ft ³	176	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00010	-0.00030	-0.00010	-0.00010	0.00000	0.00040	0.00000	0.00000	0.00030	0.00040	0.00010	0.00010	0.00010	0.00020	0.00020
Diameter 2, in (rotated 90°)	-0.00160	-0.00110	-0.00090	-0.00080	-0.00050	0.00000	-0.00010	0.00000	0.00040	0.00040	0.00050	0.00080	0.00090	0.00090	0.00110
											Difference between	een max and m	in readings, in:		
											0° =	0.00070	90° =	0.00270	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00010	-0.00010	-0.00010	0.00000	-0.00010	-0.00010	0.00000	0.00000	-0.00020	-0.00030	-0.00010	-0.00030	-0.00020	-0.00030	-0.00040
Diameter 2, in (rotated 90°)	0.00100	0.00100	0.00100	0.00050	0.00040	0.00040	0.00030	0.00000	0.00000	0.00000	-0.00020	-0.00020	-0.00060	-0.00070	-0.00090
											Difference between	een max and m	in readings, in:		
											0° =	0.0004	90° =	0.0019	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00135

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00021 0.01228
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00016 0.00917
Maximum Angu	ılar Difference:	0.00311
	Parallelism Tolerance Met? Spherically Seated	YES
DIAMETER 2		
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00145 0.08283
	Slope of Best Fit Line Angle of Best Fit Line:	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.08283

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00070	1.993	0.00035	0.020	YES	
Diameter 2, in (rotated 90°)	0.00270	1.993	0.00135	0.078	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00040	1.993	0.00020	0.011	YES	
Diameter 2, in (rotated 90°)	0.00190	1.993	0.00095	0.055	YES	

Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 100	Reliable dial gauge measurements could not be
Sample ID:	C=1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

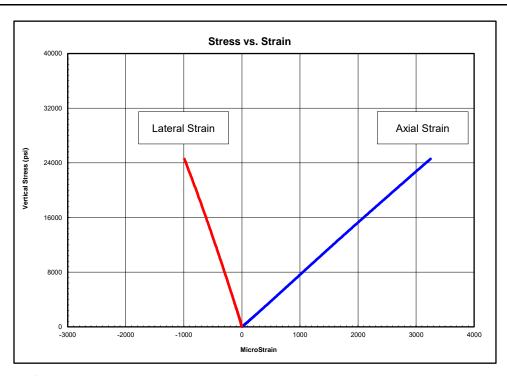
BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-R-103 Sample ID: C-1 Depth, ft: 11-12


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/11/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-104
Sample ID:	
Depth, ft:	57.75-58.2
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 24,581 psi

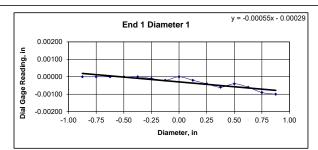
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2500-9000	7,730,000	0.29
9000-15600	7,630,000	0.31
15600-22100	7,460,000	0.32

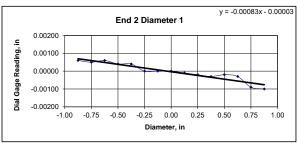
Notes:

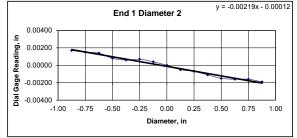
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

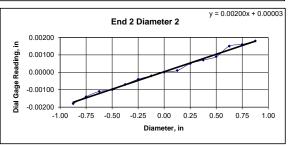
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-104 Sample ID: 57.75-58.2 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	e	
Specimen Length, in:	4.34	4.33	4.34		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97		Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	588.87				
Bulk Density, lb/ft3	169	Minimum Diameter Tolereno	ce Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met?	YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	0.00000	-0.00020	-0.00040	-0.00060	-0.00040	-0.00060	-0.00090	-0.00100
Diameter 2, in (rotated 90°)	0.00170	0.00150	0.00140	0.00080	0.00060	0.00070	0.00040	0.00000	-0.00050	-0.00070	-0.00110	-0.00150	-0.00160	-0.00160	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00100	90° =	0.00360	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00060	0.00050	0.00060	0.00040	0.00040	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00030	-0.00020	-0.00030	-0.00090	-0.00100
Diameter 2, in (rotated 90°)	-0.00180	-0.00140	-0.00110	-0.00100	-0.00070	-0.00040	-0.00020	0.00000	0.00010	0.00050	0.00070	0.00090	0.00150	0.00160	0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.0016	90° =	0.0036	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00180

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00055 0.03176	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00083 0.04764	
Maximum Angı	ılar Difference:	0.01588	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00219 0.12572	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12572	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00100	1.970	0.00051	0.029	YES	
Diameter 2, in (rotated 90°)	0.00360	1.970	0.00183	0.105	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00160	1.970	0.00081	0.047	YES	
Diameter 2, in (rotated 90°)	0.00360	1.970	0.00183	0.105	YES	

Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-104	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	57.75-58.2	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

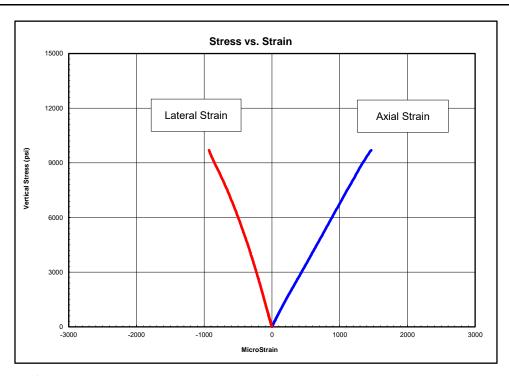
BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543


END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-R-104 Sample ID: Depth, ft: 57.75-58.2


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/11/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-110
Sample ID:	C-2
Depth, ft:	23.74-24.12
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 9,692 ps

The strain values recorded for this test produce values of Poisson's Ratio that exceed maximum values found in rocks.

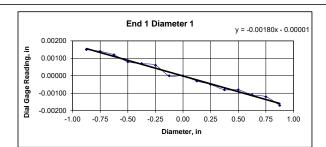
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1000-3600	6,590,000	
3600-6100	6,700,000	
6100-8700	6,600,000	

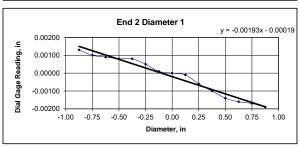
Notes:

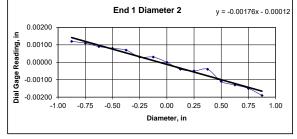
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

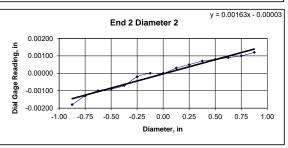
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-110 Sample ID: C-2 Depth (ft): 23.74-24.12 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.35	4.35	4.35	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	602.47			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerence Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio Tolerance	Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00150	0.00140	0.00120	0.00080	0.00070	0.00060	0.00000	0.00000	-0.00030	-0.00050	-0.00080	-0.00080	-0.00110	-0.00120	-0.00170
Diameter 2, in (rotated 90°)	0.00120	0.00110	0.00090	0.00080	0.00070	0.00030	0.00030	0.00000	-0.00040	-0.00050	-0.00040	-0.00110	-0.00130	-0.00150	-0.00190
											Difference between				
											0° =	0.00320	90° =	0.00310	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00130	0.00100	0.00090	0.00080	0.00080	0.00050	0.00010	0.00000	-0.00010	-0.00060	-0.00100	-0.00140	-0.00160	-0.00170	-0.00190
Diameter 2, in (rotated 90°)	-0.00180	-0.00130	-0.00100	-0.00090	-0.00070	-0.00020	0.00000	0.00000	0.00030	0.00050	0.00070	0.00080	0.00090	0.00100	0.00120
											Difference between	een max and m	in readings, in:		
											0° =	0.0032	90° =	0.003	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00160

	0.00180 0.10297	
Slope of Best Fit Line Angle of Best Fit Line:	0.00193 0.11083	
ular Difference:	0.00786	
Parallelism Tolerance Met? Spherically Seated	NO	
Slope of Best Fit Line Angle of Best Fit Line:	0.00176 0.10068	
Slope of Best Fit Line		
Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.10068	
	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: ular Difference: Parallelism Tolerance Met?	Slope of Best Fit Line

Flatness Tolerance Met?

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00320	1.980	0.00162	0.093	YES	
Diameter 2, in (rotated 90°)	0.00310	1.980	0.00157	0.090	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00320	1.980	0.00162	0.093	YES	
Diameter 2, in (rotated 90°)	0.00300	1.980	0.00152	0.087	YES	

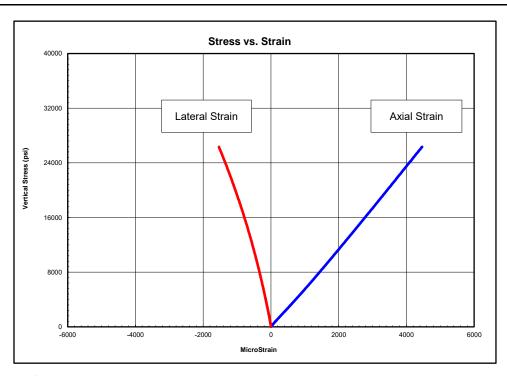
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-110	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	23.74-24.12	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-R-110 Sample ID: C-2 Depth, ft: 23.74-24.12


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/11/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-125
Sample ID:	C-1
Depth, ft:	14.56-14.93
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 26,340 psi

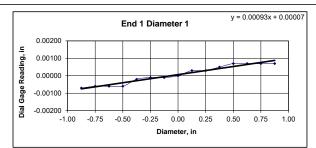
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2600-9700	5,650,000	0.26
9700-16700	6,010,000	0.35
16700-23700	6,140,000	0.44

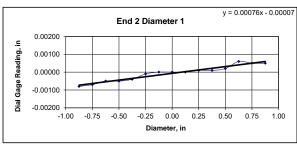
Notes:

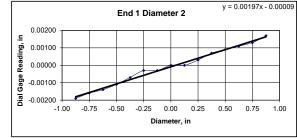
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

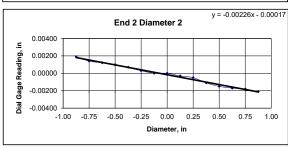
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-125 Sample ID: C-1 Depth (ft): 14.56-14.93 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.34	4.34	4.34	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	620.81			
Bulk Density, lb/ft ³	177	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00070	-0.00060	-0.00060	-0.00060	-0.00020	-0.00010	-0.00010	0.00000	0.00030	0.00030	0.00050	0.00070	0.00070	0.00070	0.00070
Diameter 2, in (rotated 90°)	-0.00190	-0.00160	-0.00140	-0.00110	-0.00070	-0.00030	-0.00030	0.00000	0.00000	0.00030	0.00070	0.00090	0.00110	0.00130	0.00170
											Difference between				
											0° =	0.00140	90° =	0.00360	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00080	-0.00070	-0.00050	-0.00050	-0.00040	-0.00010	0.00000	0.00000	0.00000	0.00010	0.00010	0.00020	0.00060	0.00050	0.00050
Diameter 2, in (rotated 90°)	0.00190	0.00140	0.00120	0.00100	0.00070	0.00030	0.00000	0.00000	-0.00030	-0.00050	-0.00110	-0.00150	-0.00170	-0.00180	-0.00210
											Difference between	en max and m	in readings, in:		
											0° =	0.0014	90° =	0.004	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00200

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00093 0.05337	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00076 0.04338	
Maximum Angu	ılar Difference:	0.00999	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Spriencally Seated		
DIAMETER 2			
DIAMETER 2 End 1:		0.00197 0.11263	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11263	

Flatness Tolerance Met?

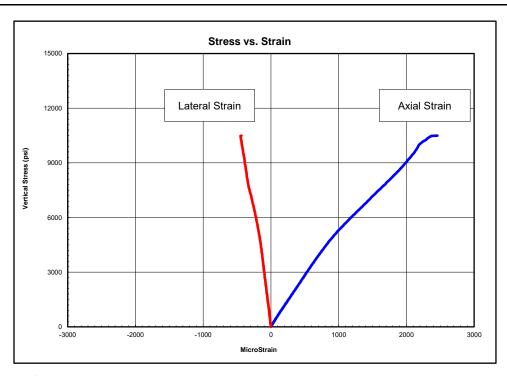
PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00140	1.980	0.00071	0.041	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00140	1.980	0.00071	0.041	YES	
Diameter 2, in (rotated 90°)	0.00400	1.980	0.00202	0.116	YES	

Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:		Reliable dial gauge measurements could not be
Sample ID:	(= 1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	14.56-14.93	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-R-125 Sample ID: C-1 Depth, ft: 14.56-14.93


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/11/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-136
Sample ID:	C-2
Depth, ft:	29.75-30.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 10,494 psi

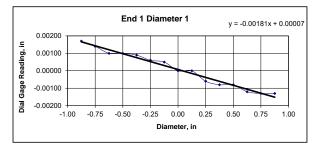
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1000-3800	5,510,000	0.19
3800-6600	4,190,000	0.20
6600-9400	3,750,000	0.20

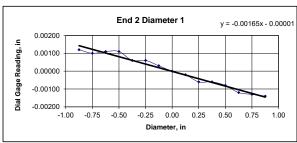
Notes:

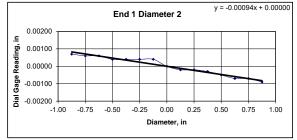
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

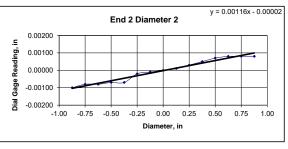
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-136 Sample ID: C-2 29.75-30.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Averag	ge	
Specimen Length, in:	4.37	4.37	4.37		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99		Is the maximum gap \leq 0.02 in.? YES
Specimen Mass, g:	619.61				
Bulk Density, lb/ft3	173	Minimum Diameter Tolerene	ce Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00170	0.00140	0.00100	0.00100	0.00090	0.00060	0.00050	0.00000	0.00000	-0.00060	-0.00080	-0.00080	-0.00120	-0.00130	-0.00130
Diameter 2, in (rotated 90°)	0.00070	0.00060	0.00060	0.00040	0.00040	0.00040	0.00040	0.00000	-0.00020	-0.00020	-0.00030	-0.00050	-0.00070	-0.00070	-0.00090
											Difference between	een max and mi	n readings, in:		
											0° =	0.00300	90° =	0.00160	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00120	0.00100	0.00110	0.00110	0.00060	0.00060	0.00030	0.00000	-0.00020	-0.00060	-0.00060	-0.00080	-0.00120	-0.00130	-0.00140
Diameter 2, in (rotated 90°)	-0.00100	-0.00080	-0.00080	-0.00070	-0.00070	-0.00020	-0.00010	0.00000	0.00010	0.00030	0.00050	0.00070	0.00080	0.00080	0.00080
											Difference between	een max and m	n readings, in:		
											0° =	0.0026	90° =	0.0018	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00150

	Flatness Tolerance Met?	NO	
DIAMETER 1			
Fnd 1:			
Liid 1.	Slope of Best Fit Line	0.00181	
	Angle of Best Fit Line:	0.10379	
End 2:			
	Slope of Best Fit Line	0.00165	
	Angle of Best Fit Line:	0.09429	
Maximum Ang	ular Difference:	0.00949	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line	0.00094	
	Angle of Best Fit Line:	0.05402	
End 2:			
	Slope of Best Fit Line	0.00116	
	Angle of Best Fit Line:	0.06646	
Maximum Ang	ular Difference:	0.01244	

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00300	1.990	0.00151	0.086	YES	
Diameter 2, in (rotated 90°)	0.00160	1.990	0.00080	0.046	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00260	1.990	0.00131	0.075	YES	
Diameter 2, in (rotated 90°)	0.00180	1.990	0.00090	0.052	YES	

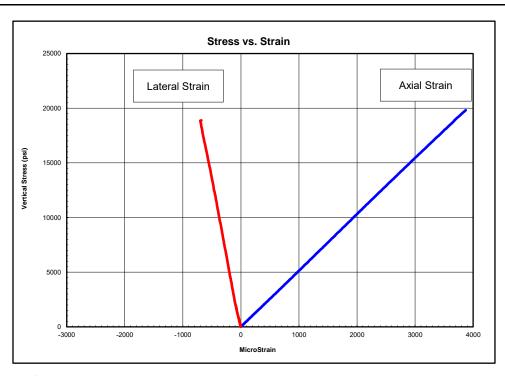
Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-136	Reliable dial gauge measurements could not be
Boring ID: Sample ID:	LB-R-136 C-2	performed on this rock type. Tolerance

BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-R-136 Sample ID: C-2 Depth, ft: 29.75-30.5


After cutting and grinding

After break

Client:	Langan Engineering	
Project Name:	Upstate Confidential Project	
Project Location:	NY	
GTX #:	321096	
Test Date:	6/11/2025	
Tested By:	gp	
Checked By:	jsc	
Boring ID:	LB-X-003	
Sample ID:	C-2	
Depth, ft:	31.53-31.91	
Sample Type:	rock core	
Sample Description:	See photographs Intact material failure Best Effort end preparation performed	

Peak Compressive Stress: 19,818 psi

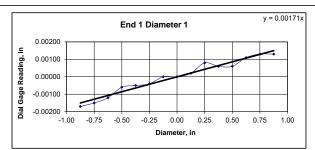
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2000-7300	5,150,000	0.18
7300-12600	5,190,000	0.18
12600-17800	5,120,000	0.19

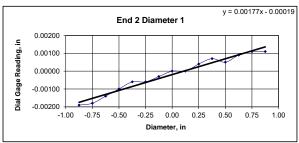
Notes:

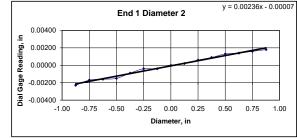
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

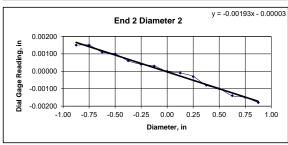
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-X-003 Sample ID: C-2 Depth (ft): 31.53-31.91 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

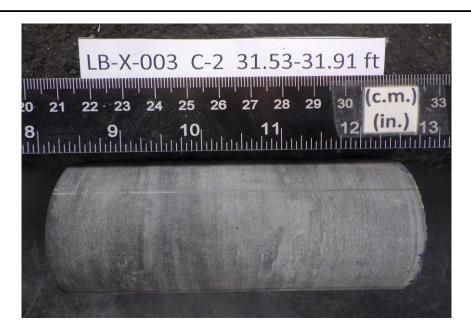

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.36	4.36	4.36	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	607.66			
Bulk Density, lb/ft3	171	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLELISM (Procedure FP1)															
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00150	-0.00120	-0.00060	-0.00050	-0.00040	0.00000	0.00000	0.00020	0.00080	0.00060	0.00060	0.00110	0.00130	0.00130
Diameter 2, in (rotated 90°)	-0.00230	-0.00170	-0.00160	-0.00150	-0.00090	-0.00040	-0.00040	0.00000	0.00020	0.00060	0.00090	0.00130	0.00140	0.00160	0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.00300	90° =	0.00410	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00180	-0.00140	-0.00100	-0.00060	-0.00060	-0.00030	0.00000	0.00000	0.00040	0.00070	0.00050	0.00090	0.00110	0.00110
Diameter 2, in (rotated 90°)	0.00150	0.00150	0.00110	0.00100	0.00060	0.00040	0.00030	0.00000	-0.00010	-0.00030	-0.00080	-0.00100	-0.00140	-0.00150	-0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.003	90° =	0.0033	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00205

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00171 0.09822	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00177 0.10166	
Maximum Angı	ılar Difference:	0.00344	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00236 0.13538	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.13538	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)									
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$			
Diameter 1, in	0.00300	1.989	0.00151	0.086	YES				
Diameter 2, in (rotated 90°)	0.00410	1.989	0.00206	0.118	YES	Perpendicularity Tolerance Met? YES			
END 2									
Diameter 1, in	0.00300	1.989	0.00151	0.086	YES				
Diameter 2, in (rotated 90°)	0.00330	1.989	0.00166	0.095	YES				

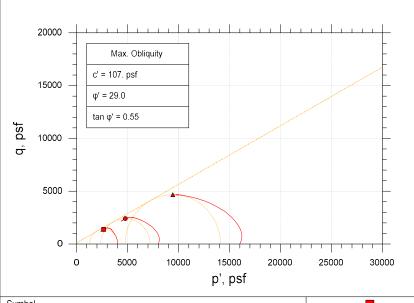

Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 % 000	Reliable dial gauge measurements could not be
Sample ID:	(=)	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	31.53-31.91	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

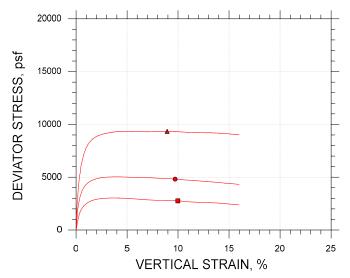
BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
End Flatness Tolerance Met? YES							

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/11/2025 Tested By: gp Checked By: smd Boring ID: LB-X-003 Sample ID: C-2 Depth, ft: 31.53-31.91

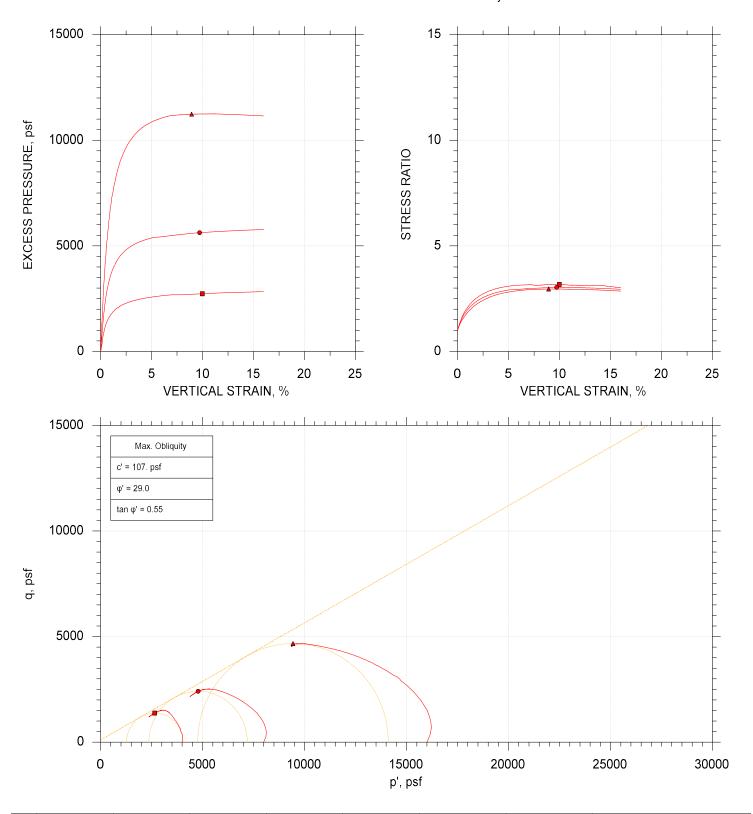
After cutting and grinding




After break

Client: Any Client			
Project Name: Any Project			
Project Location: Anywhere			
Project Number: GTX-309270			
Tested By: md	Checked By: njh		
Boring ID: B-1			
Preparation: intact			
Description: Moist, dark gray clay			
Classification: Lean CLAY			
Group Symbol: CL			
Liquid Limit: 49	Plastic Limit: 25		
Plasticity Index: 24	Estimated Specific Gravity: 2.7		

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767



0 5000 10000 15000 2000 p', psf	00 25000 30000	5000	5 10 15 VERTICAL STRAIN,	20 25
Symbol		•	A	
Sample ID	U-1	U-1	U-1	
Depth, ft	24-26	24-26	24-26	
Test Number	CU-2-1	CU-2-2	CU-2-3	
Height, in	4.700	4.710	4.300	
Diameter, in	2.040	2.030	2.030	
□ Moisture Content (from Cuttings), % □ Dry Density, pcf	38.0	36.7	35.9	
	82.1	84.7	84.7	
Saturation (Wet Method), %	97.6	100.0	98.1	
Void Ratio	1.05	0.990	0.989	
Moisture Content, %	35.6	33.3	30.0	
Dry Density, pcf Cross-sectional Area (Method A), in²	86.0	88.8	93.2	
Cross-sectional Area (Method A), in²	3.169	3.142	3.058	
Saturation, % Void Ratio	100.0	100.0	100.0	
	0.961	0.899	0.809	
Back Pressure, psf	2.170e+004	2.200e+004	2.544e+004	
Vertical Effective Consolidation Stress, psf	3993.	7977.	1.596e+004	
Horizontal Effective Consolidation Stress, psf	4007.	7998.	1.600e+004	
Vertical Strain after Consolidation, %	1.181	1.886	3.572	
Volumetric Strain after Consolidation, %	3.606	5.082	8.647	
Time to 50% Consolidation, min			10.30	
Shear Strength, psf	1382.	2412.	4671.	
Strain at Failure, %	9.98	9.71	8.93	
Strain Rate, %/min	0.01600	0.01600	0.01600	
Deviator Stress at Failure, psf	2763.	4823.	9342.	
Effective Minor Principal Stress at Failure, psf	1271.	2369.	4762.	
Effective Major Principal Stress at Failure, psf	4035.	7192.	1.410e+004	
B-Value	0.96	0.94	0.94	
Notes: - Before Shear Saturation set to 100% for phase calculation Moisture Content determined by ASTM D2216 Atterberg Limits determined by ASTM D4318 Deviator Stress includes membrane correction Values for c				
Remarks:				

System Q

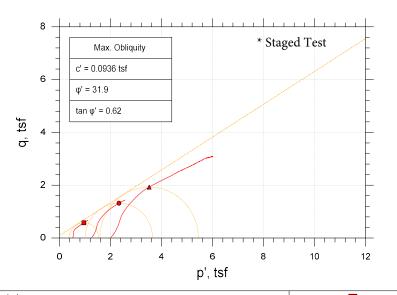
CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767

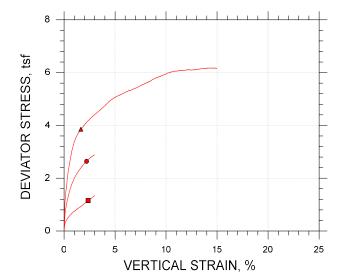
	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
-	U-1	CU-2-1	24-26	md	12/11/18	njh	12/26/18	309270-CU-2-1n.dat
•	U-1	CU-2-2	24-26	md	12/11/18	njh	12/26/18	309270-CU-2-2n.dat
A	U-1	CU-2-3	24-26	md	12/11/18	njh	12/26/18	309270-CU-2-3n.dat

Remarks: System Q

Project: Any Project	Location: Anywhere	Project No.: GTX-309270				
Boring No.: B-1	Sample Type: intact					
Description: Moist, dark gray clay						

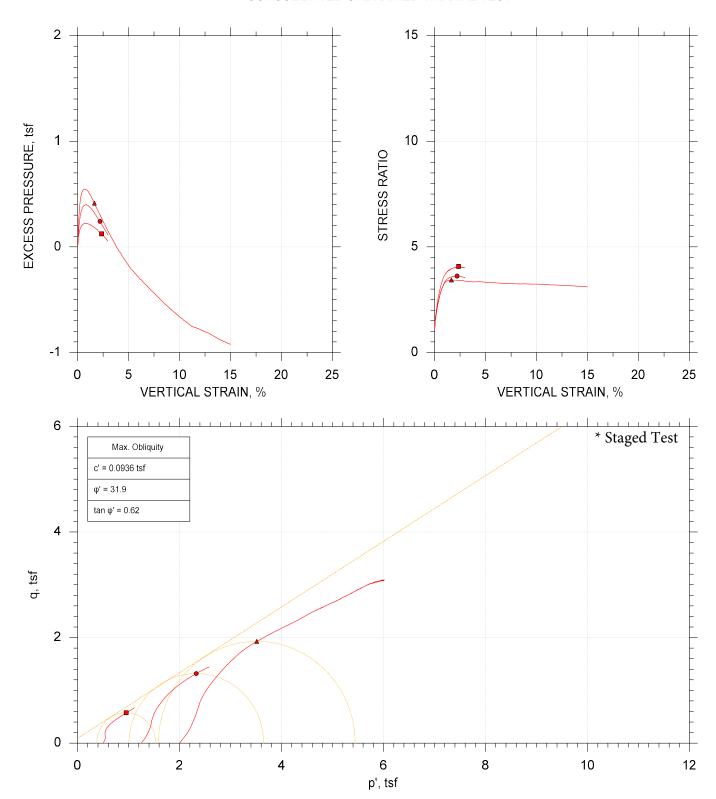
Client: Any Client	
Project Name: Any Project	
Project Location: Anywhere	
Project Number: GTX-315433	
Tested By: trm	Checked By: anm
Boring ID: RW-5	
Preparation: intact	
Description: Moist, light yellowish brown clay	
Classification:	
Group Symbol:	


Plastic Limit: 19


Estimated Specific Gravity: 2.7

CONSOLIDATED UNDRAINED TRIAXIAL TEST

Liquid Limit: 32


Plasticity Index: 13

	0 2 4 6 8	10 12		5 10 15	20 25		
	p', tsf	10 12	0 5 10 15 20 25 VERTICAL STRAIN, %				
Syn		ST-1	ST-1	ST-1			
	nple ID						
	th, ft t Number	8-10 CU-1-1	8-10 CU-1-2	8-10 CU-1-3			
res	t number Height, in	4.690	4.542	4.437			
	Diameter, in	2.040	2.040	2.040			
_	Moisture Content (from Cuttings), %	17.7	2.040				
Initial	Dry Density, pcf	110.					
-	Saturation (Wet Method), %	89.3					
	Void Ratio	0.534					
\vdash	Moisture Content, %	0.534		17.9			
_	Dry Density, pcf			17.9			
Shear	Cross-sectional Area (Method A), in ²			3.311			
e.	Cross-sectional Area (Method A), in ² Saturation, %			100.0			
Before	Void Ratio			0.482			
m	Back Pressure, tsf	9.430		13.88			
1/0-	ical Effective Consolidation Stress, tsf	9.430	10.84	2.000			
	ical Effective Consolidation Stress, tst		1.249	1.999			
		0.4993	0.003174	0.003245			
	ical Strain after Consolidation, %	0.1507					
	umetric Strain after Consolidation, %	0.5594	0.9955	0.3996			
	e to 50% Consolidation, min	96.04	1 220	1.020			
	ar Strength, tsf	0.5776	1.320	1.929			
	in at Failure, %	2.35	2.20	1.65			
	in Rate, %/min	0.01600	0.01600	0.01600			
	iator Stress at Failure, tsf	1.155	2.640	3.857			
	ctive Minor Principal Stress at Failure, tsf	0.3757	1.007	1.585			
Effective Major Principal Stress at Failure, tsf		1.531	3.647	5.442			
B-V		0.99					
Notes: - Before Shear Saturation set to 100% for phase calculation Moisture Content determined by ASTM D2216. - Atterberg Limits determined by ASTM D4318 Deviator Stress includes membrane correction Values for c and φ determined from best-fit straight line for the specific test conditions. Actual strength parameters may vary and should be determined by an engineer for site conditions.							
Rer	narks:						
TX-	124						

CONSOLIDATED UNDRAINED TRIAXIAL TEST

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
•	ST-1	CU-1-1	8-10	trm	5/11/22	anm	5/19/22	315433-CU-1-1v.dat
•	ST-1	CU-1-2	8-10	trm	5/11/22	anm	5/19/22	315433-CU-1-2v.dat
A	ST-1	CU-1-3	8-10	trm	5/11/22	anm	5/19/22	315433-CU-1-3v.dat

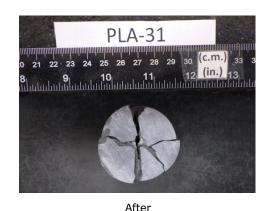
Project: Any Project	Location: Anywhere	Project No.: GTX-315433
Boring No.: RW-5	Sample Type: intact	
Description: Moist, light yellowish brown clay		

Remarks: TX-024

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-005 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 29.9-30.4' Test Id: 817031

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-31	29.95-30.04 ft	1.99	0.84	866	2.14	1.46	405	0.875	354	18	7,300

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

28-29'

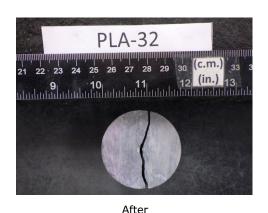
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817033

Boring ID: LB-R-027 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-32	28.48-28.58 ft	1.98	0.95	2,754	2.41	1.55	1144	0.898	1028	18	20,600

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

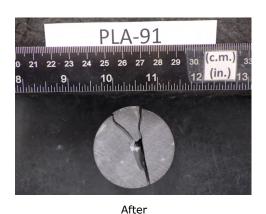
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-033 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd


Depth: 31.2-32.2' Test Id: 819400

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-91	31.2-32.2 ft	1.98	0.94	474	2.36	1.54	201	0.895	180	18	3,610

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

23.9-24.4'

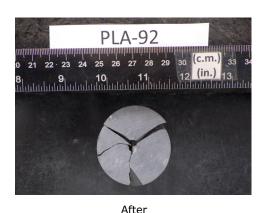
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819401

Boring ID: LB-R-035 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-92	23.9-24.4 ft	1.98	0.99	1,486	2.49	1.58	597	0.905	540	18	10,700

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

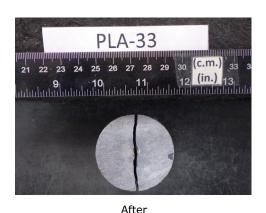
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-042 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 25.2-26.2' Test Id: 817039

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-33	25.63-25.72 ft	1.98	1.01	2,880	2.54	1.59	1133	0.909	1030	18	20,400

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

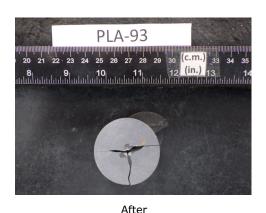
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-042 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd


Depth: 30.2-31.2' Test Id: 819402

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-93	30.2-31.2 ft	1.98	1.00	933	2.52	1.59	370	0.908	336	18	6,670

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

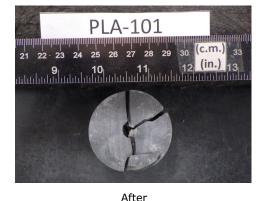
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-043 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/19/25 Checked By: smd


Depth: 29.5-30.5' Test Id: 820218

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-101	29.5-30.5 ft	1.98	0.89	807	2.25	1.50	359	0.885	318	18	6,460

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

25.5-26'

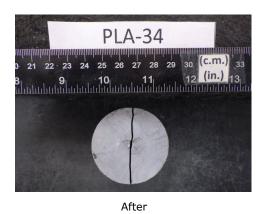
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817042

Boring ID: LB-R-048 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-34	25.60-25.70 ft	2	0.96	1,769	2.44	1.56	726	0.901	654	18	13,100

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

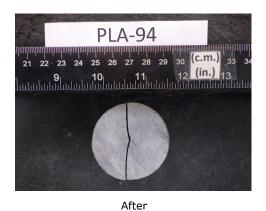
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-051 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd


Depth: 28-28.5' Test Id: 819403

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-94	28.05-28.14 ft	1.98	1.03	1,729	2.61	1.62	662	0.915	606	19	12,600

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

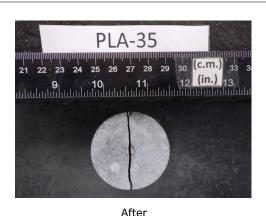
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-057 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 32-32.5' Test Id: 819404

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-35	32-32.5 ft	1.99	1.06	1,646	2.67	1.64	615	0.920	566	19	11,700

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

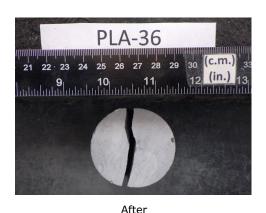
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-059 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 35-35.25' Test Id: 817044

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-36	35-35.25 ft	1.98	0.90	1,830	2.26	1.50	810	0.886	717	18	14,600

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

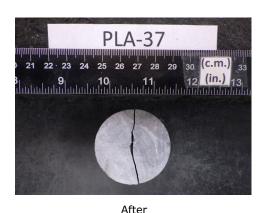
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-064 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 29-29.25' Test Id: 817045

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-37	29-29.25 ft	1.96	0.93	2,491	2.32	1.52	1073	0.891	956	18	19,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

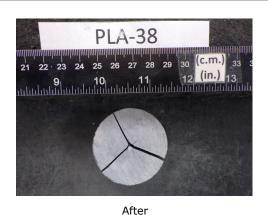
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-064 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 34-34.5' Test Id: 817046

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-38	34-34.5 ft	1.96	0.88	1,810	2.21	1.49	820	0.881	723	18	14,800

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

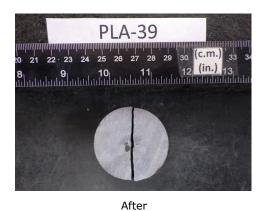
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-065 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 29-29.25' Test Id: 817893

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-39	29-29.25 ft	1.99	0.93	2,482	2.36	1.54	1052	0.894	941	18	18,900

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

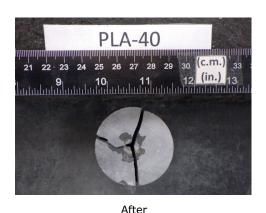
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-070 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 37-37.5' Test Id: 817052

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-40	37.05-37.15 ft	1.97	0.94	3,442	2.36	1.54	1457	0.895	1303	18	26,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

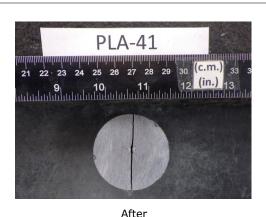
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-071 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 29-29.75' Test Id: 817053

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-41	29-29.75 ft	1.97	1.05	3,136	2.63	1.62	1192	0.917	1092	19	22,600

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

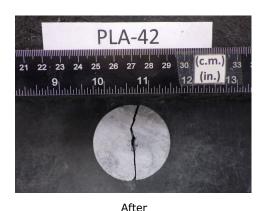
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-071 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 34.5-35' Test Id: 817054

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-42	34.61-34.71 ft	1.99	0.85	1,774	2.16	1.47	822	0.877	720	18	14,800

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

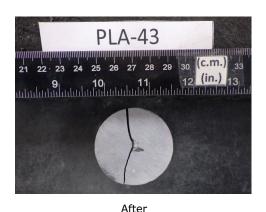
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-074 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 63.1-63.6' Test Id: 817056

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-43	63.1-63.6 ft	1.97	1.01	1,664	2.53	1.59	659	0.908	598	18	11,900

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

44-44.3'

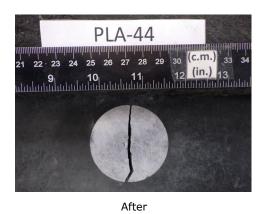
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817059

Boring ID: LB-R-081 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-44	44.03-44.12 ft	1.97	1.00	1,147	2.52	1.59	456	0.907	414	18	8,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

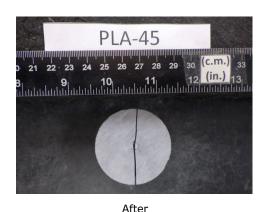
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-082 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 41-41.25' Test Id: 817060

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-45	41.11-41.20 ft	1.99	0.90	2,151	2.28	1.51	944	0.888	837	18	17,000

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

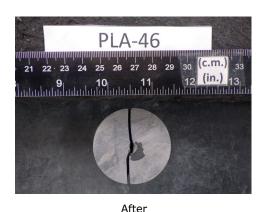
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-083 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 23.75-24' Test Id: 817061

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-46	23.83-23.92 ft	1.97	0.88	1,126	2.20	1.48	512	0.881	450	18	9,210

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

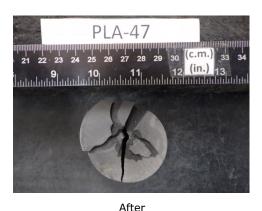
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-083 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 30-30.5' Test Id: 819405

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-47	30-30.5 ft	1.98	1.06	2,183	2.66	1.63	820	0.919	753	19	15,600

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

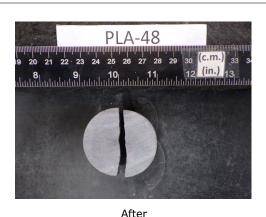
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-084 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 22.7-23' Test Id: 817062

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-48	22.74-22.83 ft	1.98	0.98	1,311	2.48	1.58	528	0.905	477	18	9,500

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

24.7-25'

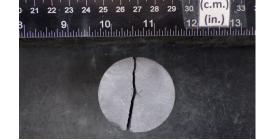
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817063

Boring ID: LB-R-084 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-49	24.7-25 ft	1.98	0.93	1,499	2.36	1.54	636	0.894	569	18	11,500

After

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

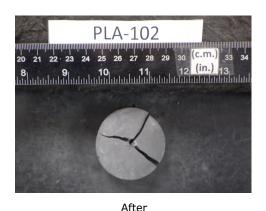
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-093 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/19/25 Checked By: smd


Depth: 27.25-28' Test Id: 820413

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-102	27.25-28 ft	1.97	0.76	1,124	1.90	1.38	592	0.852	505	18	10,700

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

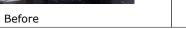
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-096 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 45-45.5' Test Id: 817066

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	ls(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-50	45-45.5 ft	1.97	0.94	3,008	2.36	1.54	1274	0.895	1139	18	22,900

After

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

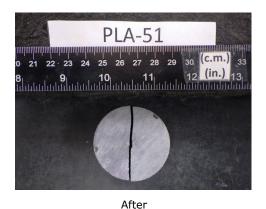
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-104 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 44.5-44.75' Test Id: 817068

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-51	44.5-44.75 ft	1.97	0.89	2,711	2.23	1.49	1214	0.883	1072	18	21,800

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

52.5-53'

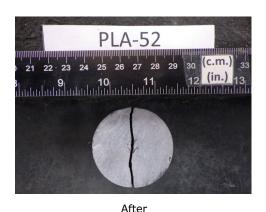
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817069

Boring ID: LB-R-104 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-52	52.5-53 ft	1.97	0.99	2,830	2.49	1.58	1139	0.905	1031	18	20,500

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

55.5-56'

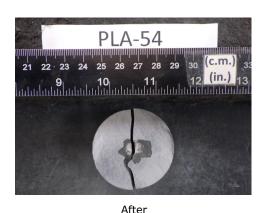
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817070

Boring ID: LB-R-104 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-54	55.54-55.63 ft	1.97	0.92	3,572	2.32	1.52	1538	0.891	1371	18	27,700

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

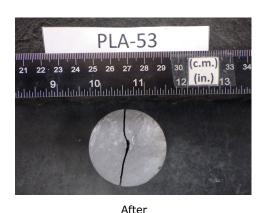
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-105 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 37-37.5' Test Id: 817072

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-53	37-37.5 ft	1.98	0.96	3,127	2.43	1.56	1288	0.900	1159	18	23,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

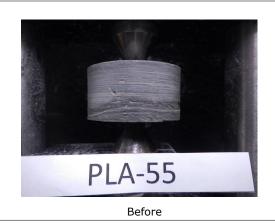
De = the equivalent core diameter

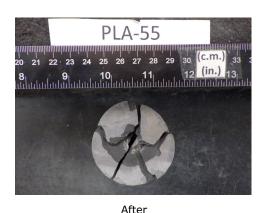
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096


Boring ID: LB-R-105 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 43-43.5' Test Id: 817073

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-55	43-43.5 ft	1.97	1.05	3,287	2.63	1.62	1251	0.916	1146	19	23,800

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

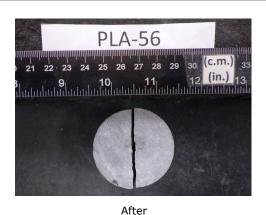
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-106 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 56.5-57.5' Test Id: 817074

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-56	56.5-57.5 ft	1.98	0.96	2,794	2.43	1.56	1151	0.900	1036	18	20,700

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

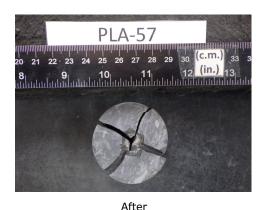
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-107 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 42.5-43' Test Id: 817075

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-57	42.53-42.62 ft	1.97	0.95	1,922	2.37	1.54	810	0.896	725	18	14,600

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

43-43.75'

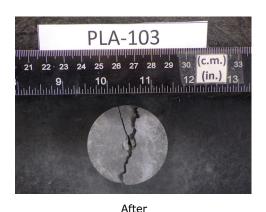
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

820414

Boring ID: LB-R-107 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/19/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-103	43-43.75 ft	1.97	0.98	1,212	2.46	1.57	492	0.903	445	18	8,860

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

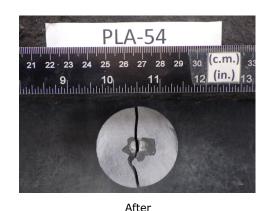
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-110 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 15.5-16' Test Id: 819054

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-58	15.5-16 ft	1.97	0.98	771	2.47	1.57	313	0.903	283	18	5,630

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

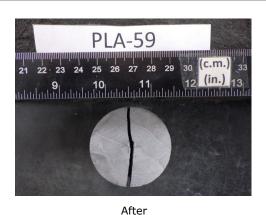
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-110 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 19-19.25' Test Id: 817076

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-59	19-19.25 ft	1.97	0.90	2,405	2.25	1.50	1069	0.885	946	18	19,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

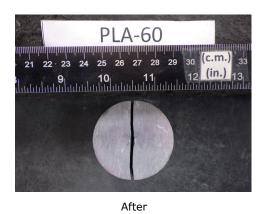
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-112 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 19-19.5' Test Id: 817078

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-60	19-19.5 ft	1.98	1.03	3,177	2.59	1.61	1225	0.914	1119	19	23,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

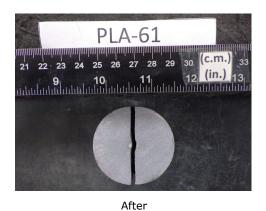
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-112 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 20-20.25' Test Id: 817079

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-61	20-20.25 ft	1.97	0.90	2,713	2.25	1.50	1206	0.885	1067	18	21,700

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

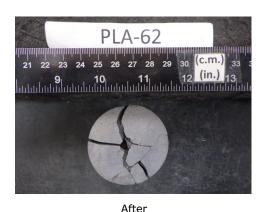
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-112 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 27.5-28' Test Id: 817080

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-62	27.5-28 ft	1.98	0.96	1,315	2.43	1.56	540	0.901	487	18	9,730

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

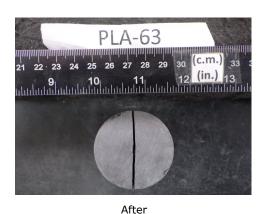
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-113 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 18.5-18.75' Test Id: 817081

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Те	st No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
Р	LA-63	18.5-18.75 ft	1.97	0.96	3,118	2.41	1.55	1294	0.899	1163	18	23,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

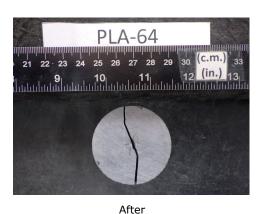
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-113 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 25.5-25.75' Test Id: 817082

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-64	25.5-25.75 ft	1.98	0.94	2,590	2.38	1.54	1088	0.896	975	18	19,600

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

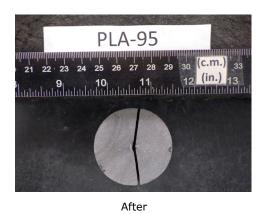
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-115 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd


Depth: 26-27' Test Id: 819406

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-95	26-27 ft	1.97	0.96	3,177	2.42	1.56	1310	0.900	1179	18	23,600

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

30-31'

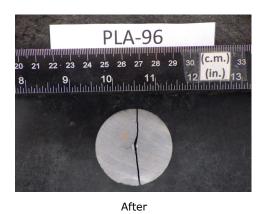
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819407

Boring ID: LB-R-115 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-96	30-31 ft	1.98	1.00	2,565	2.51	1.58	1021	0.907	926	18	18,400

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

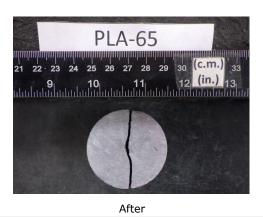
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-116 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 36.25-36.5' Test Id: 817084

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-65	36.28-36.37 ft	1.97	0.95	2,972	2.39	1.55	1242	0.897	1115	18	22,400

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

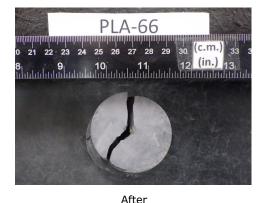
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817087

Boring ID: LB-R-117 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Depth: 22.7-23'
Test Comment: --Visual Description: ---

Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-66	22.7-23 ft	1.98	0.96	549	2.43	1.56	226	0.900	203	18	4,070

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

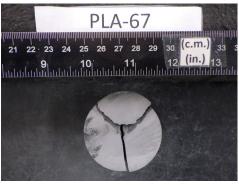
F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-117 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Depth: 23.9-24.5' Test Id: 819057


Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-67	23.9-24.5 ft	1.98	0.94	1,061	2.38	1.54	445	0.896	399	18	8,010

After

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

29-29.7'

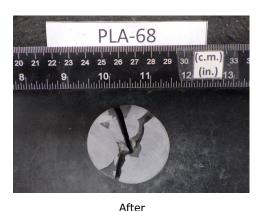
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819058

Boring ID: LB-R-117 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-68	29-29.7 ft	1.98	1.00	1,317	2.53	1.59	522	0.908	474	18	9,390

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

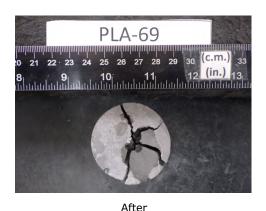
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-118 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 34.5-35' Test Id: 817088

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-69	34.5-35 ft	1.99	0.90	1,900	2.28	1.51	833	0.888	739	18	15,000

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

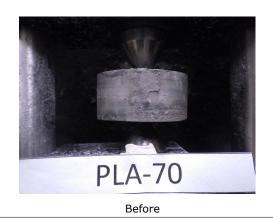
De = the equivalent core diameter

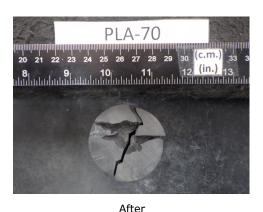
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096


Boring ID: LB-R-118 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 42-42.5' Test Id: 817089

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-70	42-42.5 ft	1.99	0.93	1,990	2.36	1.54	844	0.894	755	18	15,200

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

14-14.3'

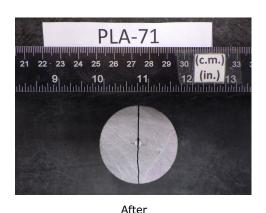
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817090

Boring ID: LB-R-119 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-71	14.06-14.15 ft	1.97	0.98	2,556	2.46	1.57	1037	0.903	937	18	18,700

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

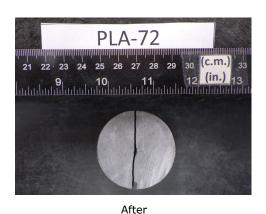
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-119 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 20.6-21' Test Id: 817091

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-72	20.6-21 ft	1.98	0.94	1,904	2.37	1.54	804	0.895	720	18	14,500

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

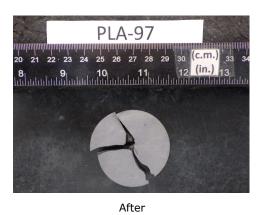
F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819408

Boring ID: LB-R-119 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd


Depth: 30-30.5' Test Id: Test Comment: ---

Visual Description: ---Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-97	30.08-30.17 ft	1.98	0.98	998	2.48	1.57	403	0.904	364	18	7,250

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

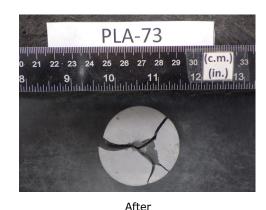
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-119 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 31.6-32' Test Id: 817092

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-73	31.66-31.75 ft	1.97	0.90	585	2.27	1.51	258	0.886	228	18	4,640

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

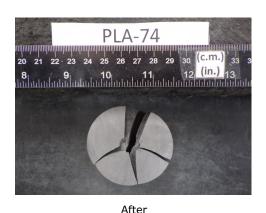
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819059

Boring ID: LB-R-119 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Depth: 32.5-33'
Test Comment: --Visual Description: ---

Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-74	32.88-32.98 ft	1.98	0.95	692	2.41	1.55	287	0.899	258	18	5,170

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

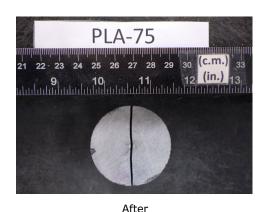
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-121 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 60-60.25' Test Id: 819060

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-75	60.07-60.16 ft	1.98	0.90	1,578	2.27	1.51	694	0.887	616	18	12,500

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

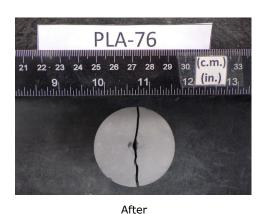
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-122 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 42-43' Test Id: 819061

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-76	42.02-42.16 ft	1.97	1.02	1,275	2.55	1.60	499	0.910	455	19	9,490

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

48-48.3'

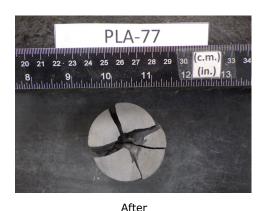
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817095

Boring ID: LB-R-122 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-77	48.05-48.14 ft	1.97	0.95	1,758	2.38	1.54	737	0.897	661	18	13,300

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

36.75-37'

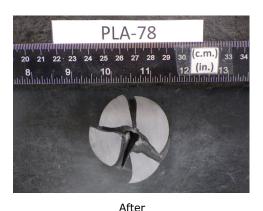
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817096

Boring ID: LB-R-123 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-78	36.79-36.89 ft	1.97	0.87	955	2.19	1.48	436	0.880	384	18	7,850

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

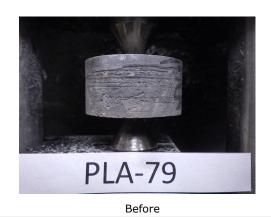
47-47.5'

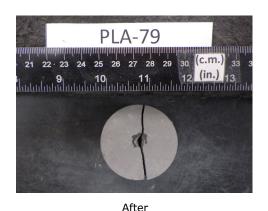
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817097

Boring ID: LB-R-124 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-79	47-47.5 ft	1.97	1.03	1,093	2.58	1.61	423	0.913	386	19	8,030

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

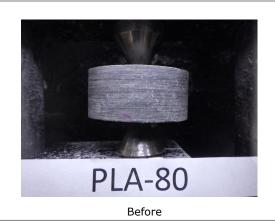
De = the equivalent core diameter

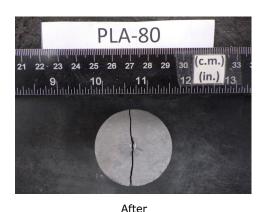
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096


Boring ID: LB-R-124 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 49.5-49.75' Test Id: 817098

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-80	49.5-49.75 ft	1.98	0.89	2,655	2.24	1.50	1187	0.884	1049	18	21,400

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

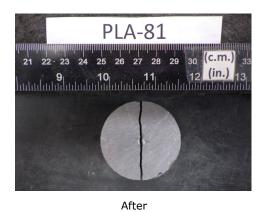
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-126 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 13-13.25' Test Id: 817100

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-81	13-13.25 ft	1.98	0.94	2,531	2.37	1.54	1067	0.895	956	18	19,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-127 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Depth: 34.25-34.75' Test Id: 817101

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-82	34.25-34.75 ft	1.99	1.00	2,668	2.53	1.59	1056	0.908	959	18	19,000

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

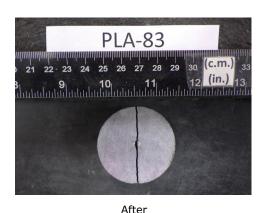
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-128 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 30.25-30.5' Test Id: 817102

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-83	30.29-30.38 ft	1.98	0.92	3,044	2.31	1.52	1315	0.891	1171	18	23,700

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

32.5-33'

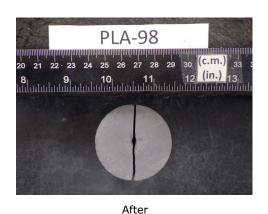
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819413

Boring ID: LB-R-129 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-98	32.80-32.90 ft	1.98	1.04	1,275	2.61	1.62	488	0.915	447	19	9,270

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

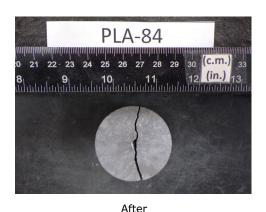
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-130 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 23-23.5' Test Id: 817106

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-84	23-23.5 ft	1.99	0.99	1,949	2.51	1.58	776	0.907	704	18	14,000

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

33-33.25'

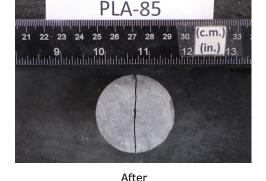
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817107

Boring ID: LB-R-131 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-85	33-33.25 ft	1.99	1.03	3,204	2.62	1.62	1222	0.916	1119	19	23,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

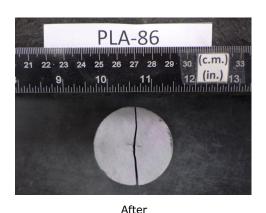
Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-R-134 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd


Depth: 21.4-21.6' Test Id: 817108

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-86	21.4-21.6 ft	1.99	1.01	2,331	2.57	1.60	906	0.912	827	18	16,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

25.4-25.6'

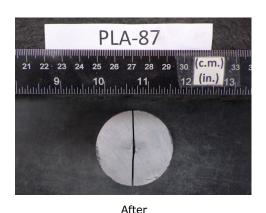
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819063

Boring ID: LB-R-134 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-87	25.4-25.6 ft	1.99	1.02	1,504	2.58	1.61	583	0.913	532	19	11,100

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

27-28'

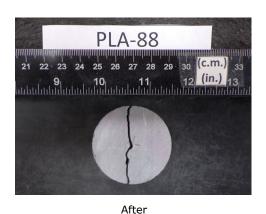
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817109

Boring ID: LB-R-135 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-88	27-28 ft	1.99	0.97	2,055	2.46	1.57	834	0.903	753	18	15,000

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

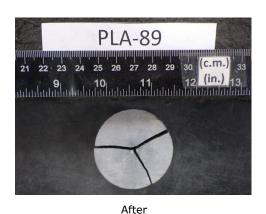
26.25-26.5'

Location: NY Project No: GTX-321096

817110

Boring ID: LB-R-136 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-89	26.26-26.5 ft	2	0.90	2,435	2.28	1.51	1069	0.887	948	18	19,200

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

39.5-40'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817111

Boring ID: LB-X-001 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-99	39.53-39.65 ft	3.33	1.27	2,711	5.40	2.32	503	1.077	541	19	9,550

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

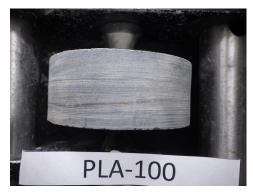
De = the equivalent core diameter

Is = the uncorrected point load strength index

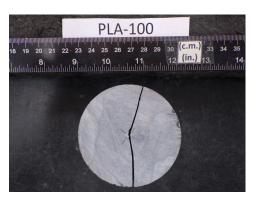
F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096


Boring ID: LB-X-001 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/18/25 Checked By: smd

Depth: 40-40.75' Test Id: 819065


Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-100	40-40.75 ft	3.26	1.30	3,455	5.38	2.32	642	1.077	691	19	12,200

Before

After

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

33-33.5'

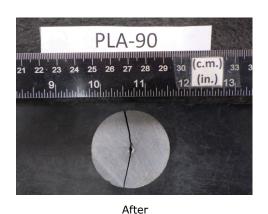
Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

817112

Boring ID: LB-X-003 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/12/25 Checked By: smd

Test Id:


Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-90	33.03-33.13 ft	1.99	0.95	1,895	2.39	1.55	792	0.897	711	18	14,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-X-005 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/19/25 Checked By: smd

Depth: 38.5-39' Test Id: 819064

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-104	38.56-38.68 ft	3.34	1.19	4,076	5.05	2.25	808	1.061	857	19	15,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

Boring ID: LB-X-006 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/19/25 Checked By: smd

Depth: 44-44.5' Test Id: 819070

Test Comment: --Visual Description: --Sample Comment: ---

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm),	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-105	44.06-44.18 ft	3.34	1.12	2,808	4.75	2.18	591	1.047	618	19	11,200

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

55-55.5'

Project: Upstate Confidential Project

Location: NY Project No: GTX-321096

819069

Boring ID: LB-X-006 Sample Type: Core Tested By: jss Sample ID: --- Test Date: 06/19/25 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-106	55.08-55.19 ft	3.31	1.15	2,343	4.86	2.20	482	1.052	508	19	9,170

After

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Project Name: Upstate Confidential Project

321096

Project Location NY

GTX #:

NV

Tested By: Checked By:

Test Date:

06/19/25

jss smd

Sample Type: rock lump

Point Load Strength Index of Rock by ASTM D5731

Boring No.	Sample No.	Depth, ft.	Test No.	Test Type	Width (W), in.	Depth (D), in.	Area, in ²	Failure Load (P), Ib	D _e ², in²	D _e , in.	I _s , psi	F	I _{s(50),} psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
LB-R-045	C-3	26.5-27	PLL-1	Irregular Lump	1.27	1.35	1.25	834	1.59	1.26	526	0.818	430	19	9,990

PLL-1 before

PLL-1 after

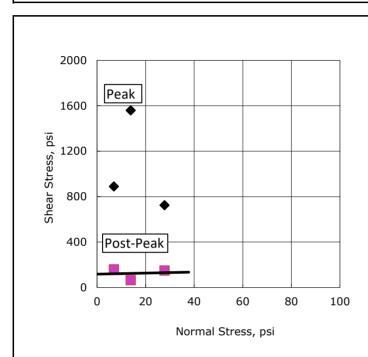
Intact material & discontinuity failure

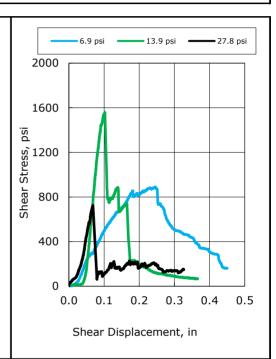
Notes:

Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D 5731 Table 1.

 D_e = the equivalent core diameter

 I_s = the uncorrected point load strength index

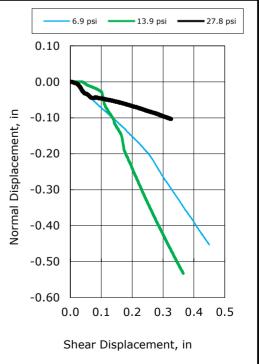

F = the size correction factor



Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY
GTX #: 321096
Start Date: 6/20/2025
End Date: 6/20/2025
Tested By: tlm
Checked By: jsc

Boring ID: LB-R-045
Sample ID: C-1
Depth, ft: 13.5-14
Visual Description: Rock Core

Direct Shear Test of Rock by ASTM D5607



Test No.:	DS-1	DS-2	DS-3
Specimen Diameter, in:	1.98	1.97	1.98
Specimen Length, in:	2.07	2.07	2.08
Specimen Mass, grams:	283	288	280
Specimen Area, in ² :	3.07	3.05	3.07
Specimen Bulk Density, pcf	170	173	167
Shear Plane Area, in ²	3.07	3.05	3.07
Normal Stress, psi:	6.94	13.9	27.8
Peak Shear Stress, psi:	890	1560	725
Post Peak Shear Stress, psi:	160	65.8	150
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:			
Peak Cohesive Intercept, psi:			
Post-Peak Friction Angle:		24.4	
Post-Peak Cohesive Intercept, psi:		118	
JRC Roughness	14-16	6-8	6-8

Notes:
Specimen cut to length using diamond tipped saw blade.
Tested at as-received moisture content and density.
'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.
Actual strength parameters may vary and should be determined by an engineer for site-specific

conditions

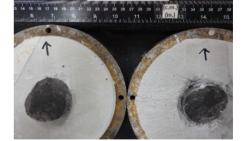
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 6/20/2025 End Date: 6/20/2025 Tested By: tlm Checked By: jsc LB-R-045 Boring ID: Sample ID: C-1 Depth, ft: 13.5-14 Visual Description: Rock Core

Point 1 Normal Stress, psi: 6.9

Pre-Test

Post-Test

Point 2 Normal Stress, psi: 13.9

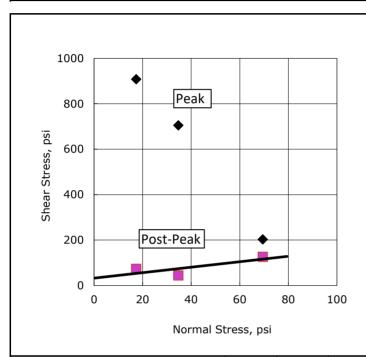


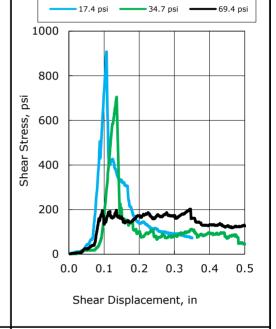
Pre-Test

Post-Test

Point 3 Normal Stress, psi: 27.8

Pre-Test

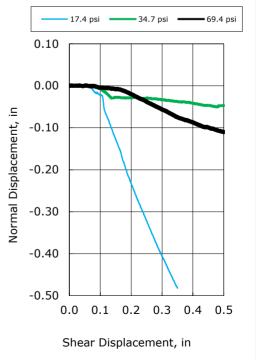

Post-Test



Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY
GTX #: 321096
Start Date: 6/20/2025
End Date: 6/23/2025
Tested By: tlm

Checked By: jsc
Boring ID: LB-R-057
Sample ID: C-2
Depth, ft: 33.5-34.5
Visual Description: Rock Core

Direct Shear Test of Rock by ASTM D5607



Test No.:	DS-4	DS-5	DS-6
Specimen Diameter, in:	1.99	1.99	1.99
Specimen Length, in:	2.45	2.41	2.12
Specimen Mass, grams:	342	336	297
Specimen Area, in ² :	3.10	3.10	3.09
Specimen Bulk Density, pcf	172	171	173
Shear Plane Area, in ²	3.10	3.10	3.09
Normal Stress, psi:	17.4	34.7	69.4
Peak Shear Stress, psi:	908	705	203
Post Peak Shear Stress, psi:	73.2	44.6	126
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:			
Peak Cohesive Intercept, psi:			
Post-Peak Friction Angle:		50.3	
Post-Peak Cohesive Intercept, psi:		32.5	
JRC Roughness	8-10	4-6	4-6

Notes:
Specimen cut to length using diamond tipped saw blade.
Tested at as-received moisture content and density.
'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.
Actual strength parameters may vary and should be determined by an engineer for site-specific

conditions

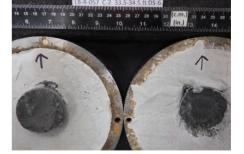
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 6/20/2025 End Date: 6/23/2025 Tested By: tlm Checked By: jsc LB-R-057 Boring ID: Sample ID: C-2 Depth, ft: 33.5-34.5 Visual Description: Rock Core

Point 1 Normal Stress, psi: 17.4

Pre-Test

Post-Test

Point 2 Normal Stress, psi: 34.7



Pre-Test

Post-Test

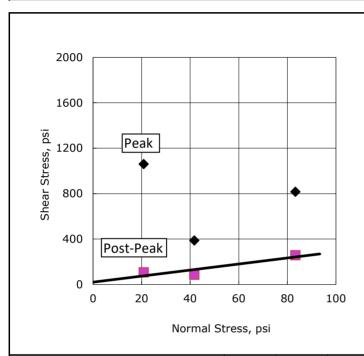
Point 3 Normal Stress, psi: 69.4

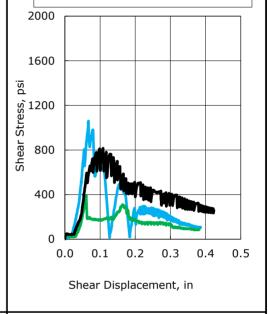
Pre-Test

Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY
GTX #: 321096

 Start Date:
 6/23/2025


 End Date:
 6/23/2025


 Tested By:
 tlm

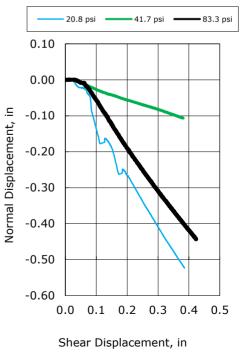
 Checked By:
 jsc

Boring ID: LB-R-064
Sample ID: --Depth, ft: 38-39
Visual Description: Rock Core

Direct Shear Test of Rock by ASTM D5607

41.7 psi

83.3 psi


20.8 psi

Test No.:	DS-7	DS-8	DS-9
Specimen Diameter, in:	1.97	1.96	1.96
Specimen Length, in:	2.98	2.72	2.71
Specimen Mass, grams:	409	359	368
Specimen Area, in ² :	3.04	3.02	3.02
Specimen Bulk Density, pcf	172	167	171
Shear Plane Area, in ²	3.04	3.02	3.02
Normal Stress, psi:	20.8	41.7	83.3
Peak Shear Stress, psi:	1060	388	816
Post Peak Shear Stress, psi:	107	85.7	258
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:			
Peak Cohesive Intercept, psi:			
Post-Peak Friction Angle:		69.4	
Post-Peak Cohesive Intercept, psi:		21	
JRC Roughness	8-10	8-10	8-10

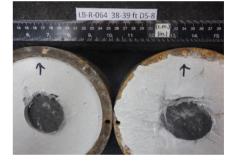
Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/23/2025 End Date: 6/23/2025 Tested By: tlm Checked By: jsc Boring ID: LB-R-064 Sample ID: Depth, ft: 38-39 Visual Description: Rock Core

Point 1 Normal Stress, psi: 20.8



Pre-Test

Post-Test

Point 2 Normal Stress, psi: 41.7

Pre-Test

Post-Test

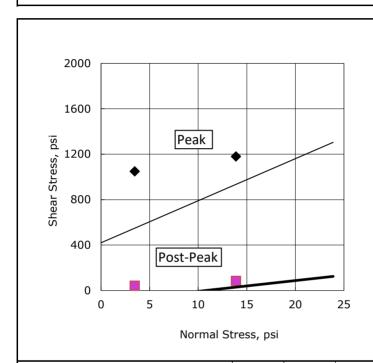
Point 3 Normal Stress, psi: 83.3

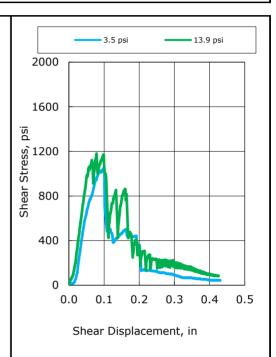
Pre-Test

Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project

Project Name: Opstate Com

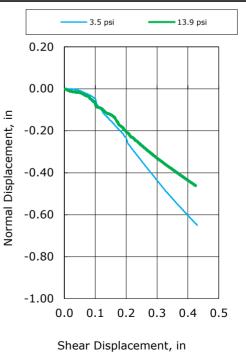

GTX #: 321096 Start Date: 6/23/2025


End Date: 6/23/2025
Tested By: tlm
Checked By: jsc

Boring ID: LB-R-103 Sample ID: ---

Depth, ft: 10.10-10.29
Visual Description: Rock Core

Direct Shear Test of Rock by ASTM D5607


Test No.:	DS-10	DS-11	
Specimen Diameter, in:	1.99	1.99	
Specimen Length, in:	2.11	2.22	
Specimen Mass, grams:	301	315	
Specimen Area, in ² :	3.10	3.11	
Specimen Bulk Density, pcf	175	174	
Shear Plane Area, in ²	3.10	3.11	
Normal Stress, psi:	3.47	13.9	
Peak Shear Stress, psi:	1050	1180	
Post Peak Shear Stress, psi:	43.1	84.6	
Horiz. Displacement Rate, in/min:	0.005	0.005	

Peak Friction Angle:		85.4	
Peak Cohesive Intercept, psi:		1007	
Post-Peak Friction Angle:		75.9	
Post-Peak Cohesive Intercept, psi:		29.3	
JRC Roughness	8-10	8-10	

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

Actual strength parameters may vary and should be

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 6/23/2025 End Date: 6/23/2025 Tested By: tlm Checked By: jsc Boring ID: LB-R-103 Sample ID: Depth, ft: 10.10-10.29 Visual Description: Rock Core

Point 1 Normal Stress, psi: 3.5

Pre-Test

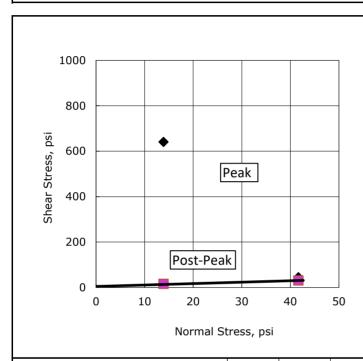
Post-Test

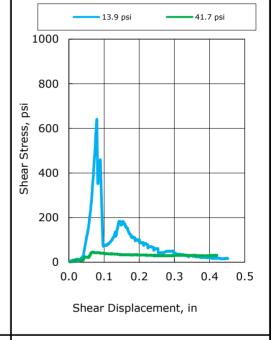
Point 2 Normal Stress, psi: 13.9

Pre-Test

Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project


Project Location: NY


GTX #: 321096 Start Date: 6/24/2025 End Date: 6/24/2025

Tested By: tlm
Checked By: jsc
Boring ID: LB-R-111

Sample ID: C-2 Depth, ft: 24.75-25.25 Visual Description: Rock Core

Direct Shear Test of Rock by ASTM D5607

Test No.:	DS-12	DS-13	
Specimen Diameter, in:	1.99	1.99	
Specimen Length, in:	2.63	2.56	
Specimen Mass, grams:	370	361	
Specimen Area, in ² :	3.09	3.10	
Specimen Bulk Density, pcf	174	173	
Shear Plane Area, in ²	3.09	3.10	
Normal Stress, psi:	13.9	41.7	
Peak Shear Stress, psi:	641	45.2	
Post Peak Shear Stress, psi:	16.4	31.0	
Horiz. Displacement Rate, in/min:	0.005	0.005	

Peak Friction Angle:			
Peak Cohesive Intercept, psi:			
Post-Peak Friction Angle:		27.7	
Post-Peak Cohesive Intercept, psi:		9.1	
JRC Roughness	2-4	4-6	

Shear Displacement, in

13.9 psi

0.30

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

Actual strength parameters may vary and should be determined by an engineer for site-specific conditions.

41.7 psi

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 6/24/2025 End Date: 6/24/2025 Tested By: tlm Checked By: jsc Boring ID: LB-R-111 Sample ID: C-2 Depth, ft: 24.75-25.25 Visual Description: Rock Core

Point 1 Normal Stress, psi: 13.9

Pre-Test

Post-Test

Point 2 Normal Stress, psi: 41.7

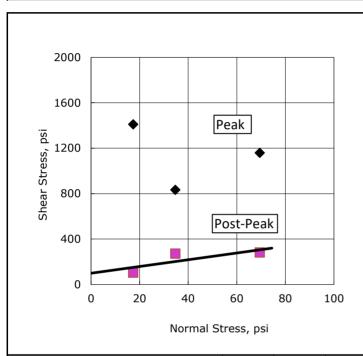
Pre-Test

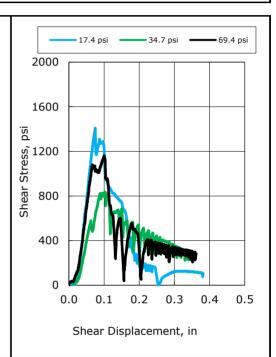
Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project

Project Location: NY GTX #: 321096

 Start Date:
 6/24/2025

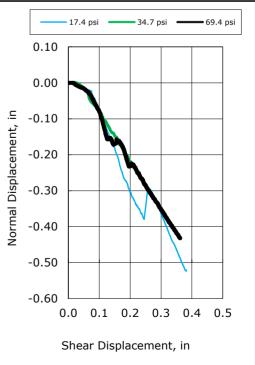

 End Date:
 6/24/2025


 Tested By:
 tlm

Checked By: jsc Boring ID: LB-R-115

Sample ID: --Depth, ft: 31.02-31.23
Visual Description: Rock Core

Direct Shear Test of Rock by ASTM D5607



Test No.:	DS-14	DS-15	DS-16
Specimen Diameter, in:	1.98	1.98	1.97
Specimen Length, in:	2.35	1.82	1.89
Specimen Mass, grams:	330	248	265
Specimen Area, in ² :	3.07	3.06	3.06
Specimen Bulk Density, pcf	174	169	174
Shear Plane Area, in ²	3.07	3.06	3.06
Normal Stress, psi:	17.4	34.7	69.4
Peak Shear Stress, psi:	1410	834	1160
Post Peak Shear Stress, psi:	104	273	282
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:				
Peak Cohesive Intercept, psi:				
Post-Peak Friction Angle:		71.4		
Post-Peak Cohesive Intercept, psi:	100			
JRC Roughness	6-8 6-8 6-8			

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/24/2025 End Date: 6/24/2025 Tested By: tlm Checked By: jsc Boring ID: LB-R-115 Sample ID: Depth, ft: 31.02-31.23 Visual Description: Rock Core

Point 1 Normal Stress, psi: 17.4

Pre-Test

Post-Test

Point 2 Normal Stress, psi: 34.7

Pre-Test

Post-Test

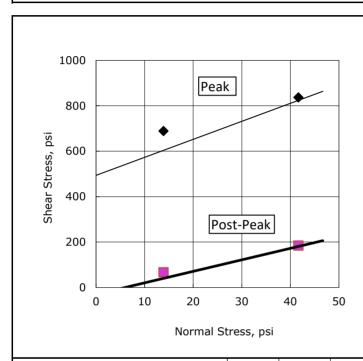
Point 3 Normal Stress, psi: 69.4

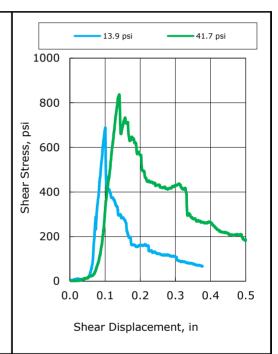
Pre-Test

Post-Test

tlm

Project Name: Upstate Confidential Project

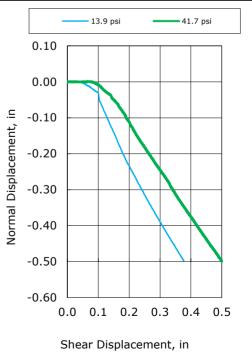

Project Location: GTX #: 321096


Start Date: 6/24/2025 End Date: 6/24/2025 Tested By:

Checked By: Boring ID: LB-R-135

Sample ID: Depth, ft: 23.51-23.66 Visual Description: Rock Core

Direct Shear Test of Rock by ASTM D5607



Test No.:	DS-17	DS-18	
Specimen Diameter, in:	1.99	1.99	
Specimen Length, in:	1.84	2.12	
Specimen Mass, grams:	259	297	
Specimen Area, in ² :	3.11	3.11	
Specimen Bulk Density, pcf	172	172	
Shear Plane Area, in ²	3.11	3.11	
Normal Stress, psi:	13.9	41.7	
Peak Shear Stress, psi:	689	837	
Post Peak Shear Stress, psi:	67.0	185	
Horiz. Displacement Rate, in/min:	0.005	0.005	

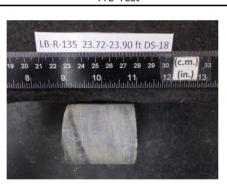
Peak Friction Angle:		79.4	
Peak Cohesive Intercept, psi:		615	
Post-Peak Friction Angle:		76.8	
Post-Peak Cohesive Intercept, psi:		8.0	
JRC Roughness	6-8	6-8	

Notes: Specimen cut to length using diamond tipped saw blade. Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used

to mount specimen in test rings. Actual strength parameters may vary and should be determined by an engineer for site-specific conditions

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 6/24/2025 End Date: 6/24/2025 Tested By: tlm Checked By: jsc Boring ID: LB-R-135 Sample ID: Depth, ft: 23.51-23.66 Visual Description: Rock Core

Point 1 Normal Stress, psi: 13.9



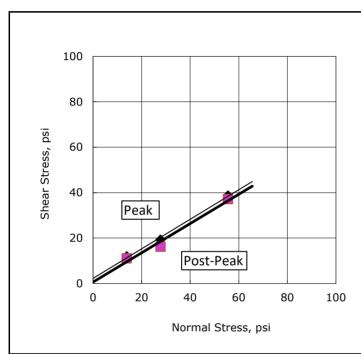
Pre-Test

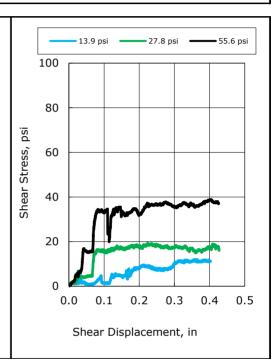
Post-Test

Point 2 Normal Stress, psi: 41.7

Pre-Test

Post-Test

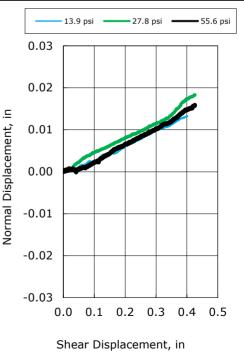



Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY
GTX #: 321096
Start Date: 6/12/2025
End Date: 6/12/2025
Tested By: tlm
Checked By: jsc

Boring ID: LB-R-066
Sample ID: C-2
Depth, ft: 28.02-28.28

Visual Description: Rock core with saw cut joint

Sliding Friction Test of Rock by ASTM D5607



Test No.:	SF-1	SF-2	SF-3
Specimen Diameter, in:	1.99	1.99	1.99
Specimen Length, in:	2.86	2.86	2.86
Specimen Mass, grams:	401	401	401
Specimen Area, in ² :	3.10	3.10	3.10
Specimen Bulk Density, pcf	173	173	173
Shear Plane Area, in ²	3.21	3.21	3.21
Normal Stress, psi:	13.9	27.8	55.6
Peak Shear Stress, psi:	12.0	19.3	38.7
Post Peak Shear Stress, psi:	11.1	16.2	37.2
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		33.0	
Peak Cohesive Intercept, psi:		2.3	
Post-Peak Friction Angle:		32.8	
Post-Peak Cohesive Intercept, psi:	0.6		
JRC Roughness	0-2	0-2	0-2

Notes: Specimen cut to length using diamond tipped saw blade.

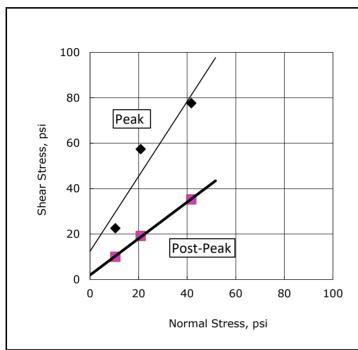
Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

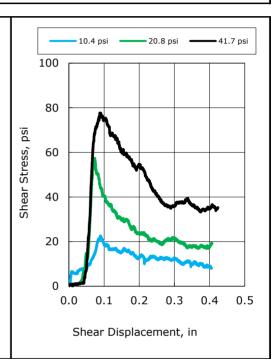
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY 321096 GTX #: Start Date: 6/12/2025 End Date: 6/12/2025 Tested By: tlm Checked By: jsc LB-R-066 Boring ID: Sample ID: C-2 Depth, ft: 28.02-28.28 Visual Description: Rock core with saw cut joint

Pre-Test

Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY

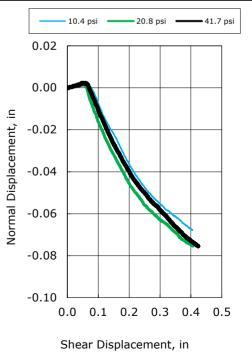

GTX #: 321096 Start Date: 6/13/2025 End Date: 6/13/2025 Tested By: tlm


Boring ID: LB-R-068 Sample ID: C-1 Depth, ft: 25-25.25

Checked By:

Visual Description: Rock core with open joint

Sliding Friction Test of Rock by ASTM D5607



Test No.:	SF-4	SF-5	SF-6
Specimen Diameter, in:	1.97	1.97	1.97
Specimen Length, in:	2.84	2.84	2.84
Specimen Mass, grams:	392	392	392
Specimen Area, in ² :	3.03	3.03	3.03
Specimen Bulk Density, pcf	173	173	173
Shear Plane Area, in ²	5.39	5.39	5.39
Normal Stress, psi:	10.4	20.8	41.7
Peak Shear Stress, psi:	22.6	57.4	77.6
Post Peak Shear Stress, psi:	10.01	19.2	35.3
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		58.8	
Peak Cohesive Intercept, psi:		12	
Post-Peak Friction Angle:		38.8	
Post-Peak Cohesive Intercept, psi:	2.0		
JRC Roughness	6-8	6-8	6-8

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/13/2025 End Date: 6/13/2025 Tested By: tlm Checked By: jsc LB-R-068 Boring ID: Sample ID: C-1 Depth, ft: 25-25.25 Visual Description: Rock core with open joint

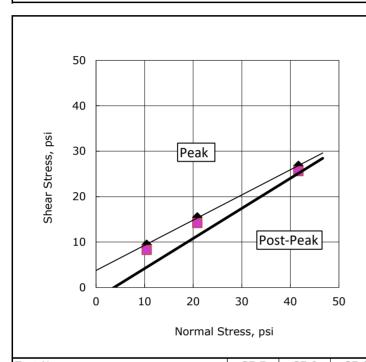
Pre-Test

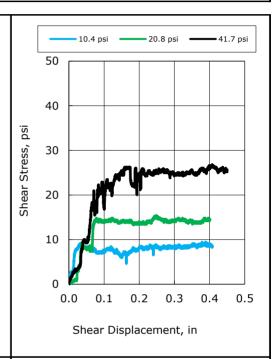
Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY
GTX #: 321096

 Start Date:
 6/12/2025

 End Date:
 6/12/2025

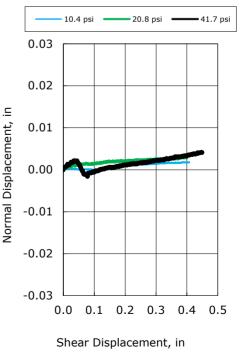

 Tested By:
 tlm


Checked By:

Boring ID: LB-R-070
Sample ID: C-1
Depth, ft: 34.53-34.78

Visual Description: Rock core with saw cut joint

Sliding Friction Test of Rock by ASTM D5607



Test No.:	SF-7	SF-8	SF-9
Specimen Diameter, in:	1.97	1.97	1.97
Specimen Length, in:	2.70	2.70	2.70
Specimen Mass, grams:	370	370	370
Specimen Area, in ² :	3.05	3.05	3.05
Specimen Bulk Density, pcf	172	172	172
Shear Plane Area, in ²	3.19	3.19	3.19
Normal Stress, psi:	10.4	20.8	41.7
Peak Shear Stress, psi:	9.43	15.4	26.8
Post Peak Shear Stress, psi:	8.28	14.2	25.7
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:	29.0		
Peak Cohesive Intercept, psi:		3.8	
Post-Peak Friction Angle:		29.0	
Post-Peak Cohesive Intercept, psi:		2.6	
JRC Roughness	0-2	0-2	0-2

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/12/2025 End Date: 6/12/2025 Tested By: tlm Checked By: jsc LB-R-070 Boring ID: Sample ID: C-1 Depth, ft: 34.53-34.78 Visual Description: Rock core with saw cut joint

Pre-Test

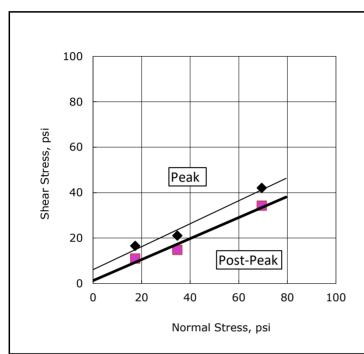
Post-Test

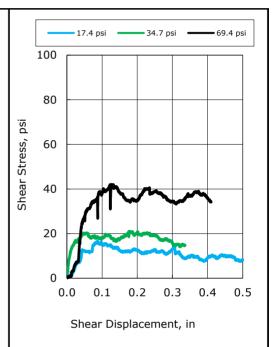
Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY

321096

 Start Date:
 6/12/2025

 End Date:
 6/13/2025

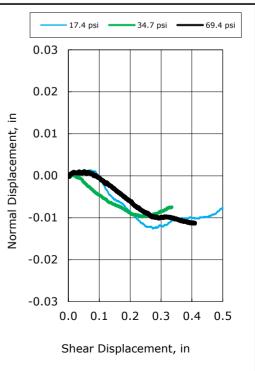

 Tested By:
 tlm


GTX #:

Checked By: jsc
Boring ID: LB-R-102
Sample ID: C-2
Depth, ft: 32.10-32.36

Visual Description: Rock core with open joint

Sliding Friction Test of Rock by ASTM D5607



Test No.:	SF-10	SF-11	SF-12
Specimen Diameter, in:	1.98	1.98	1.98
Specimen Length, in:	2.95	2.95	2.95
Specimen Mass, grams:	412	412	412
Specimen Area, in ² :	3.07	3.07	3.07
Specimen Bulk Density, pcf	174	174	174
Shear Plane Area, in ²	3.77	3.77	3.77
Normal Stress, psi:	17.4	34.7	69.4
Peak Shear Stress, psi:	16.6	21.1	42.1
Post Peak Shear Stress, psi:	11.0	14.8	34.3
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		26.8	
Peak Cohesive Intercept, psi:		6.1	
Post-Peak Friction Angle:		24.8	
Post-Peak Cohesive Intercept, psi:		1.3	
JRC Roughness	6-8	6-8	6-8

Notes: Specimen cut to length using diamond tipped saw blade.

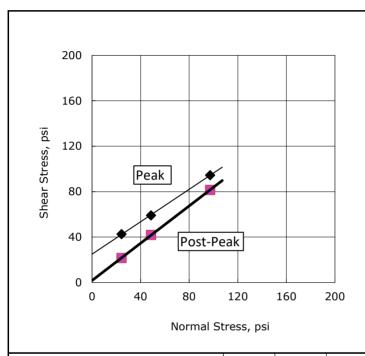
Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

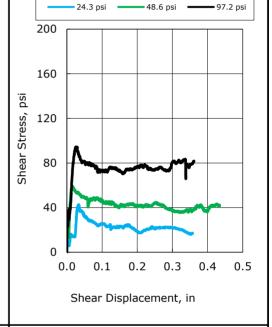
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 6/12/2025 End Date: 6/13/2025 Tested By: tlm Checked By: jsc LB-R-102 Boring ID: Sample ID: C-2 Depth, ft: 32.10-32.36 Visual Description: Rock core with open joint

Pre-Test

Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project


Project Location: NY 321096
Start Date: 6/13/2025


End Date: 6/16/2025
Tested By: tlm
Checked By: jsc
Boring ID: LB-R-105

Sample ID: ---Depth, ft: 45-46

Visual Description: Rock core with open joint

Sliding Friction Test of Rock by ASTM D5607



Test No.:	SF-13	SF-14	SF-15
Specimen Diameter, in:	1.98	1.98	1.98
Specimen Length, in:	2.87	2.87	2.88
Specimen Mass, grams:	407	407	407
Specimen Area, in ² :	3.08	3.08	3.08
Specimen Bulk Density, pcf	175	175	175
Shear Plane Area, in ²	3.22	3.22	3.22
Normal Stress, psi:	24.3	48.6	97.2
Peak Shear Stress, psi:	42.6	59.2	94.5
Post Peak Shear Stress, psi:	21.6	41.9	81.5
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		35.5	
Peak Cohesive Intercept, psi:		25	
Post-Peak Friction Angle:		39.4	
Post-Peak Cohesive Intercept, psi:		1.8	
JRC Roughness	6-8	6-8	6-8

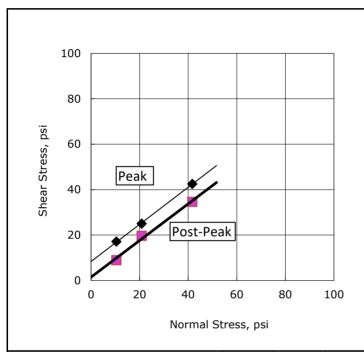
Notes: Specimen cut to length using diamond tipped saw blade.

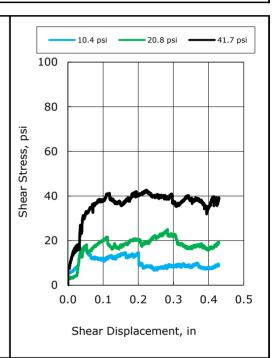
Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/13/2025 End Date: 6/16/2025 Tested By: tlm Checked By: jsc Boring ID: LB-R-105 Sample ID: Depth, ft: 45-46 Visual Description: Rock core with open joint

Pre-Test

Post-Test

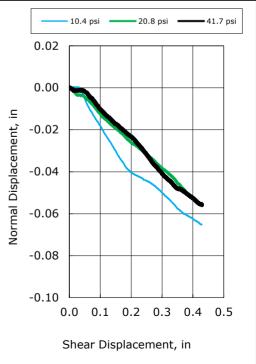

Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY


GTX #: 321096 Start Date: 6/16/2025 End Date: 6/16/2025 Tested By: tlm

Checked By: jsc
Boring ID: LB-R-107
Sample ID: --Depth, ft: 36-37

Visual Description: Rock core with open joint

Sliding Friction Test of Rock by ASTM D5607



Test No.:	SF-16	SF-17	SF-18
Specimen Diameter, in:	1.97	1.97	1.97
Specimen Length, in:	3.01	3.01	3.01
Specimen Mass, grams:	421	421	421
Specimen Area, in ² :	3.05	3.05	3.05
Specimen Bulk Density, pcf	175	175	175
Shear Plane Area, in ²	3.01	3.01	3.01
Normal Stress, psi:	10.4	20.8	41.7
Peak Shear Stress, psi:	17.1	25.0	42.6
Post Peak Shear Stress, psi:	8.98	19.7	34.7
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		39.3	
Peak Cohesive Intercept, psi:		8.4	
Post-Peak Friction Angle:		38.9	
Post-Peak Cohesive Intercept, psi:		1.5	
JRC Roughness	10-12	10-12	10-12

Notes:
Specimen cut to length using diamond tipped saw blade.
Tested at as-received moisture content and density.
'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.
Actual strength parameters may vary and should be determined by an engineer for site-specific

conditions

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/16/2025 End Date: 6/16/2025 Tested By: tlm Checked By: jsc LB-R-107 Boring ID: Sample ID: Depth, ft: 36-37 Visual Description: Rock core with open joint

Pre-Test

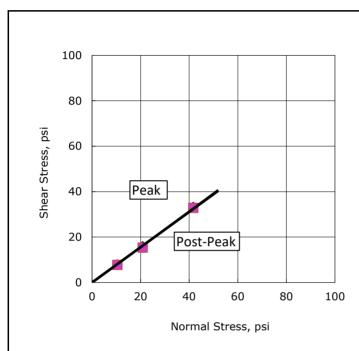
Post-Test

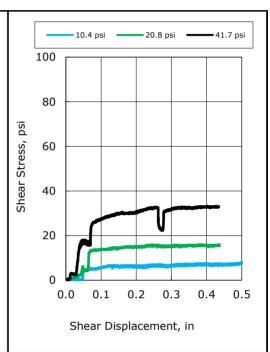
Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY

321096

 Start Date:
 6/16/2025

 End Date:
 6/17/2025


 Tested By:
 tlm


GTX #:

Checked By: jsc
Boring ID: LB-R-115
Sample ID: C-1
Depth, ft: 24.5-25

Visual Description: Rock core with saw cut joint

Sliding Friction Test of Rock by ASTM D5607

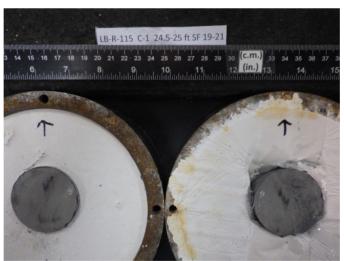

Test No.:	SF-19	SF-20	SF-21
Specimen Diameter, in:	1.98	1.98	1.98
Specimen Length, in:	2.82	2.82	2.81
Specimen Mass, grams:	392	392	392
Specimen Area, in ² :	3.06	3.06	3.06
Specimen Bulk Density, pcf	173	173	173
Shear Plane Area, in ²	3.22	3.22	3.22
Normal Stress, psi:	10.4	20.8	41.7
Peak Shear Stress, psi:	7.98	16.0	33.3
Post Peak Shear Stress, psi:	7.78	15.4	32.9
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		38.3	
Peak Cohesive Intercept, psi:		0	
Post-Peak Friction Angle:		37.9	
Post-Peak Cohesive Intercept, psi:		0	
JRC Roughness	0-2	0-2	0-2

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

Actual strength parameters may vary and should be determined by an engineer for site-specific conditions.



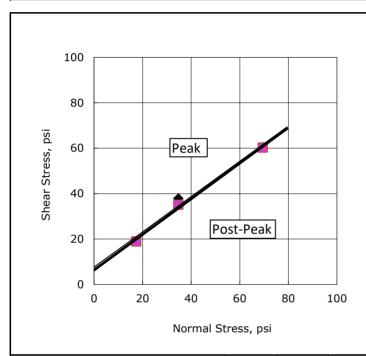
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/16/2025 End Date: 6/17/2025 Tested By: tlm Checked By: jsc LB-R-115 Boring ID: Sample ID: C-1 Depth, ft: 24.5-25 Visual Description: Rock core with saw cut joint

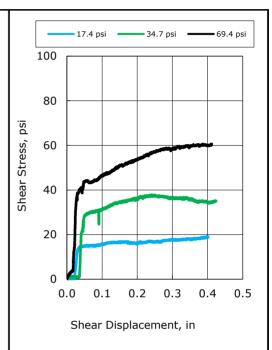
Pre-Test

Post-Test

Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY
GTX #: 321096

 Start Date:
 6/17/2025


 End Date:
 6/17/2025

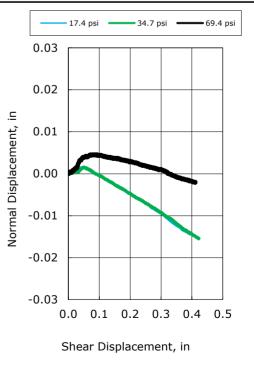

 Tested By:
 tlm

Checked By: jsc
Boring ID: LB-R-116
Sample ID: C-1
Depth, ft: 35-35.5

Visual Description: Rock core with saw cut joint

Sliding Friction Test of Rock by ASTM D5607

Test No.:	SF-22	SF-23	SF-24
Specimen Diameter, in:	1.97	1.97	1.97
Specimen Length, in:	2.81	2.81	2.82
Specimen Mass, grams:	380	380	380
Specimen Area, in ² :	3.03	3.03	3.03
Specimen Bulk Density, pcf	170	170	170
Shear Plane Area, in ²	3.21	3.21	3.21
Normal Stress, psi:	17.4	34.7	69.4
Peak Shear Stress, psi:	19.0	37.9	60.5
Post Peak Shear Stress, psi:	19.0	35.1	60.3
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005


Peak Friction Angle:		37.8	
Peak Cohesive Intercept, psi:		7.6	
Post-Peak Friction Angle:		38.1	
Post-Peak Cohesive Intercept, psi:		6.4	
JRC Roughness	0-2	0-2	0-2

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as received moisture content and densit

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

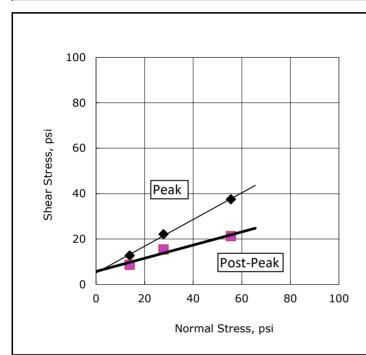
Actual strength parameters may vary and should be determined by an engineer for site-specific conditions.

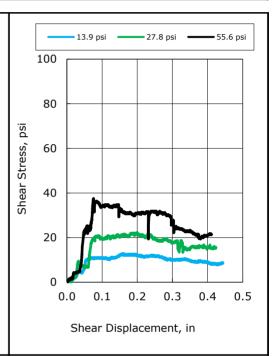
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/17/2025 End Date: 6/17/2025 Tested By: tlm Checked By: jsc LB-R-116 Boring ID: Sample ID: C-1 Depth, ft: 35-35.5 Visual Description: Rock core with saw cut joint

Pre-Test

Post-Test

Client: Langan Engineering Project Name: **Upstate Confidential Project** Project Location: GTX #: 321096 Start Date: 6/17/2025

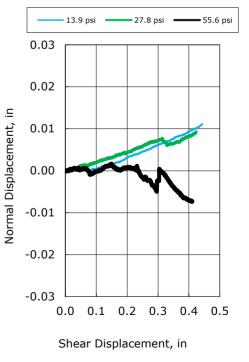

6/18/2025 Tested By: tlm Checked By: Boring ID: LB-R-125


End Date:

Sample ID: C-2 Depth, ft: 17.5-18

Visual Description: Rock core with saw cut joint

Sliding Friction Test of Rock by ASTM D5607


Test No.:	SF-25	SF-26	SF-27
Specimen Diameter, in:	1.98	1.98	1.98
Specimen Length, in:	2.68	2.68	2.68
Specimen Mass, grams:	377	377	377
Specimen Area, in ² :	3.08	3.08	3.08
Specimen Bulk Density, pcf	174	174	174
Shear Plane Area, in ²	2.89	2.89	2.89
Normal Stress, psi:	13.9	27.8	55.6
Peak Shear Stress, psi:	12.8	22.2	37.5
Post Peak Shear Stress, psi:	8.69	15.5	21.3
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		30.5	
Peak Cohesive Intercept, psi:		5.1	
Post-Peak Friction Angle:		16.2	
Post-Peak Cohesive Intercept, psi:		5.8	
JRC Roughness	0-2	0-2	0-2

Notes: Specimen cut to length using diamond tipped saw blade. Tested at as-received moisture content and density.

> to mount specimen in test rings. Actual strength parameters may vary and should be determined by an engineer for site-specific conditions

> 'Hydro-Stone Super X' encapsulating compound used

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/17/2025 End Date: 6/18/2025 Tested By: tlm Checked By: jsc LB-R-125 Boring ID: Sample ID: C-2 Depth, ft: 17.5-18 Visual Description: Rock core with saw cut joint

Pre-Test

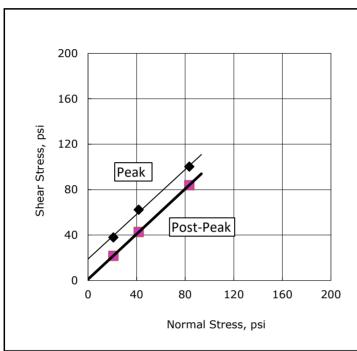
Post-Test

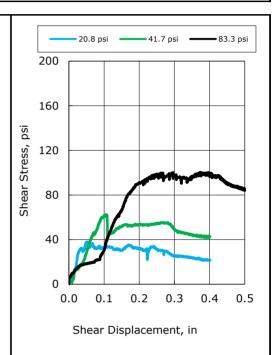
Client: Langan Engineering
Project Name: Upstate Confidential Project

Project Location: NY GTX #: 321096

 Start Date:
 6/18/2025

 End Date:
 6/18/2025

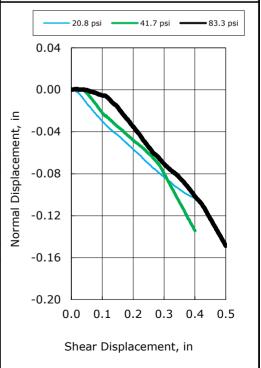

 Tested By:
 tlm


Checked By: jsc
Boring ID: LB-R-128
Sample ID: ---

Depth, ft: 38.08-38.39

Visual Description: Rock core with open joint

Sliding Friction Test of Rock by ASTM D5607


Test No.:	SF-28	SF-29	SF-30
Specimen Diameter, in:	1.98	1.98	1.98
Specimen Length, in:	3.66	3.66	3.66
Specimen Mass, grams:	497	497	497
Specimen Area, in ² :	3.08	3.08	3.08
Specimen Bulk Density, pcf	168	168	168
Shear Plane Area, in ²	5.69	5.69	5.69
Normal Stress, psi:	20.8	41.7	83.3
Peak Shear Stress, psi:	37.9	62.3	100
Post Peak Shear Stress, psi:	21.7	42.7	84.0
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		44.6	
Peak Cohesive Intercept, psi:		19	
Post-Peak Friction Angle:		44.9	
Post-Peak Cohesive Intercept, psi:		1.1	
JRC Roughness	14-16	14-16	14-16

Notes: Specimen cut to length using diamond tipped saw blade.

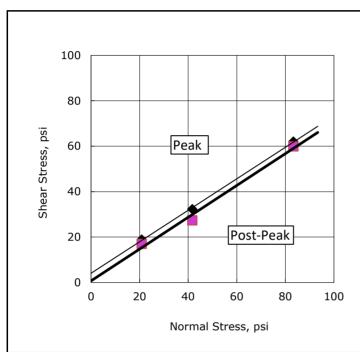
Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

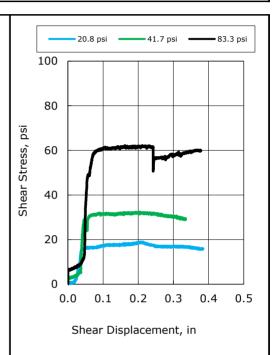
Actual strength parameters may vary and should be determined by an engineer for site-specific conditions.

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/18/2025 End Date: 6/18/2025 Tested By: tlm Checked By: jsc Boring ID: LB-R-128 Sample ID: Depth, ft: 38.08-38.39 Visual Description: Rock core with open joint

Pre-Test

Post-Test

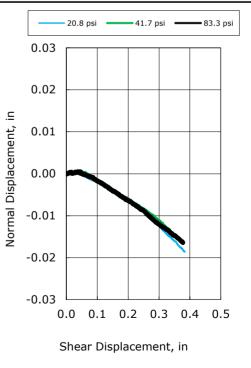

Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY


GTX #: 321096 Start Date: 6/19/2025 End Date: 6/19/2025 Tested By: tlm

Checked By: jsc
Boring ID: LB-R-129
Sample ID: C-2
Depth, ft: 36.5-37

Visual Description: Rock core with saw cut joint

Sliding Friction Test of Rock by ASTM D5607


Test No.:	SF-31	SF-32	SF-33
Specimen Diameter, in:	1.98	1.98	1.98
Specimen Length, in:	2.82	2.82	2.82
Specimen Mass, grams:	388	388	388
Specimen Area, in ² :	3.09	3.09	3.09
Specimen Bulk Density, pcf	169	169	169
Shear Plane Area, in ²	3.18	3.18	3.18
Normal Stress, psi:	20.8	41.7	83.3
Peak Shear Stress, psi:	18.9	32.3	62.0
Post Peak Shear Stress, psi:	17.0	27.4	59.9
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:		34.7	
Peak Cohesive Intercept, psi:		4.1	
Post-Peak Friction Angle:		35.0	
Post-Peak Cohesive Intercept, psi:		0.7	
JRC Roughness	0-2	0-2	0-2

Notes: Specimen cut to length using diamond tipped saw blade.

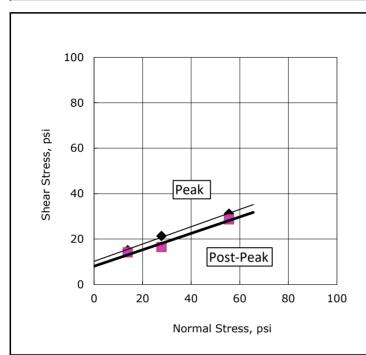
Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

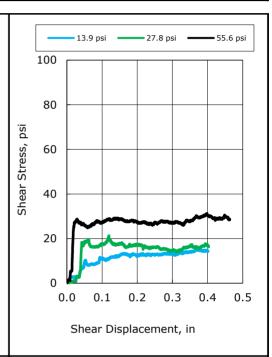
Actual strength parameters may vary and should be determined by an engineer for site-specific conditions.

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/19/2025 End Date: 6/19/2025 Tested By: tlm Checked By: jsc LB-R-129 Boring ID: Sample ID: C-2 Depth, ft: 36.5-37 Visual Description: Rock core with saw cut joint

Pre-Test

Post-Test


Client: Langan Engineering
Project Name: Upstate Confidential Project

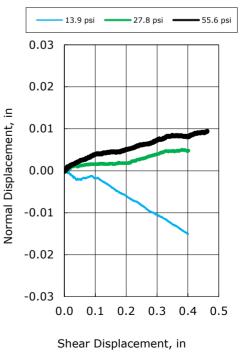

Project Location: NY 321096
Start Date: 6/19/2025

End Date: 6/19/2025
Tested By: tlm
Checked By: jsc
Boring ID: LB-X-003
Sample ID: C-1

Depth, ft: 26.51-26.69
Visual Description: Rock core with saw cut joint

Sliding Friction Test of Rock by ASTM D5607

Test No.:	SF-34	SF-35	SF-36
Specimen Diameter, in:	1.98	1.98	1.98
Specimen Length, in:	2.22	2.22	2.22
Specimen Mass, grams:	309	309	309
Specimen Area, in ² :	3.08	3.08	3.08
Specimen Bulk Density, pcf	173	173	173
Shear Plane Area, in ²	3.19	3.19	3.19
Normal Stress, psi:	13.9	27.8	55.6
Peak Shear Stress, psi:	15.1	21.4	31.2
Post Peak Shear Stress, psi:	14.2	16.5	28.7
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005


Peak Friction Angle:		20.9	
Peak Cohesive Intercept, psi:		10	
Post-Peak Friction Angle:		19.9	
Post-Peak Cohesive Intercept, psi:	8.1		
JRC Roughness	0-2	0-2	0-2

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density.

'Hydro-Stone Super X' encapsulating compound used

to mount specimen in test rings. Actual strength parameters may vary and should be determined by an engineer for site-specific conditions.



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/19/2025 End Date: 6/19/2025 Tested By: tlm Checked By: jsc LB-X-003 Boring ID: Sample ID: C-1 Depth, ft: 26.51-26.69 Visual Description: Rock core with saw cut joint

Pre-Test

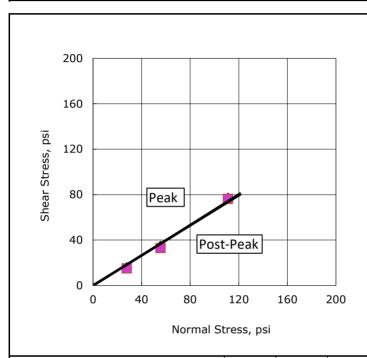
Post-Test

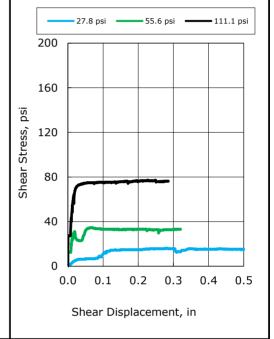
Client: Langan Engineering
Project Name: Upstate Confidential Project
Project Location: NY

321096

 Start Date:
 6/19/2025

 End Date:
 6/20/2025

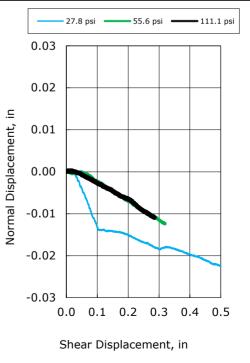

 Tested By:
 tlm


GTX #:

Checked By: jsc
Boring ID: LB-X-005
Sample ID: --Depth, ft: 44-44.5

Visual Description: Rock core with open joint

Sliding Friction Test of Rock by ASTM D5607


Test No.:	SF-37	SF-38	SF-39
Specimen Diameter, in:	3.35	3.35	3.35
Specimen Length, in:	2.50	2.50	2.50
Specimen Mass, grams:	960	960	960
Specimen Area, in ² :	8.79	8.79	8.79
Specimen Bulk Density, pcf	166	166	166
Shear Plane Area, in ²	8.86	8.86	8.86
Normal Stress, psi:	27.8	55.6	111
Peak Shear Stress, psi:	16.0	34.7	77.1
Post Peak Shear Stress, psi:	15.2	33.0	76.3
Horiz. Displacement Rate, in/min:	0.005	0.005	0.005

Peak Friction Angle:	34.0				
Peak Cohesive Intercept, psi:	0				
Post-Peak Friction Angle:	33.5				
Post-Peak Cohesive Intercept, psi:	0				
JRC Roughness	4-6 4-6 4-6				

Notes: Specimen cut to length using diamond tipped saw blade.

Tested at as-received moisture content and density. 'Hydro-Stone Super X' encapsulating compound used to mount specimen in test rings.

Actual strength parameters may vary and should be determined by an engineer for site-specific conditions.

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Start Date: 6/19/2025 End Date: 6/20/2025 Tested By: tlm Checked By: jsc Boring ID: LB-X-005 Sample ID: Depth, ft: 44-44.5 Visual Description: Rock core with open joint

Pre-Test

Post-Test

Project: Upstate Confidential Project Location: NY

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/13/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816797

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-001		21.49-21.85 ft	178	16944	1	No	1 , 2,*
LB-R-014		27.4-28.4 ft	178	29991	1	No	1,*
LB-R-021		26.56-26.98 ft	178	24083	1	No	1,*
LB-R-027		30-31 ft	178	26833	1	No	1,*
LB-R-029		30.15-30.52 ft	180	42240	1	No	1 , 2,*
LB-R-029		36.6-37.6 ft	177	23873	1	No	1 , 2,*
LB-R-030		28.54-28.93 ft	171	15026	1	No	1 , 2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Project: Upstate Confidential Project Location: NY

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/13/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816807

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-033		25.80-26.17 ft	176	22091	1	No	1 , 2,*
LB-R-041		29.6-30.6 ft	178	27713	1	No	1,*
LB-R-043		23.04-23.41 ft	176	20780	1	No	1,*
LB-R-044		29.19-29.56 ft	170	12900	1	No	1 , 2,*
LB-R-047		30.15-30.48 ft	171	20552	1	No	1,*
LB-R-048		29-30 ft	175	21064	1	No	1,*
LB-R-051		34.07-34.45 ft	174	15599	1	No	1,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Location:

Project: Upstate Confidential Project

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/19/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816847

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-055		25.5-26 ft	170	39265	1	No	1 , 2,*
LB-R-055		39.5-40.5 ft	176	28926	1	No	1,*
LB-R-057		30.05-30.44 ft	171	23836	1	No	1,*
LB-R-058		30.5-31.5 ft	170	16812	1	No	1 , 2,*
LB-R-058		36-36.75 ft	177	22541	1	No	1 , 2,*
LB-R-059		34.54-34.91 ft	174	16214	1	No	1,*
LB-R-059		40-41 ft	172	18281	1	No	1,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Project: Upstate Confidential Project Location: NY

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/19/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816853

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-060		30.53-30.91 ft	174	12315	1	No	1 , 2,*
LB-R-062		32-33 ft	172	13218	1	No	1 , 2,*
LB-R-064		41.52-41.90 ft	170	21383	1	No	1,*
LB-R-065		23.54-23.91 ft	172	13514	1	No	1,*
LB-R-066		25.06-25.45 ft	175	22491	1	No	1,*
LB-R-066		26.31-26.68 ft	175	18458	1	Yes	
LB-R-069		44.54-44.92 ft	171	38120	1	No	1,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Location:

Project: Upstate Confidential Project

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/13/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816818

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-070		36.55-36.93 ft	171	20443	1	No	1 , 2,*
LB-R-070		41.5-42.5 ft	173	22779	1	No	1 , 2,*
LB-R-074		63.1-63.6 ft	172	11270	1	No	1 , 2,*
LB-R-074		65.13-65.50 ft	177	24221	1	No	1 , 2,*
LB-R-080		53.57-53.95 ft	171	30659	1	No	1 , 2,*
LB-R-081		35.84-36.21 ft	178	29920	1	No	1 , 2,*
LB-R-086		32.04-32.41 ft	175	13332	1	No	1 , 2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Location:

Project: Upstate Confidential Project

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/19/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816857

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-091		30-30.5 ft	177	12396	1	No	1 , 2,*
LB-R-098		29.04-29.42 ft	173	24839	1	No	1 , 2,*
LB-R-098		35-36 ft	172	18879	1	No	1 , 2,*
LB-R-102		25.52-25.90 ft	170	37259	1	No	1 , 2,*
LB-R-102		32.97-33.34 ft	175	25931	1	Yes	
LB-R-106		55-56 ft	171	17762	3	No	1 , 3,*
LB-R-106		56.5-57.5 ft	175	23772	1	No	1,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Project: Upstate Confidential Project Location: NY

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/13/25 Checked By: n/a

Project No:

GTX-321096

Depth: --- Test Id: 816832

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-108		25.5-26 ft	175	11753	1	No	1 , 2,*
LB-R-111		23.5-24.5 ft	174	14808	1	No	1,*
LB-R-115		33.79-34.16 ft	175	18103	1	No	1,*
LB-R-115		36.60-36.98 ft	176	39491	1	No	1,*
LB-R-116		40.58-40.95 ft	174	11588	3	No	1,*
LB-R-118		41.05-41.42 ft	167	11772	1	No	1 , 2,*
LB-R-120		49.58-49.95 ft	172	17494	3	No	1 , 2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Project: Upstate Confidential Project Location: NY

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/13/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816832

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-108		25.5-26 ft	174	11753	1	No	1 , 2,*
LB-R-111		23.5-24.5 ft	175	14808	1	No	1,*
LB-R-115		33.79-34.16 ft	174	18103	1	No	1,*
LB-R-115		36.60-36.98 ft	175	39491	1	No	1,*
LB-R-116		40.58-40.95 ft	173	11588	3	No	1,*
LB-R-118		41.05-41.42 ft	166	11772	1	No	1 , 2,*
LB-R-120		49.58-49.95 ft	173	17494	1	No	1 , 2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Project: Upstate Confidential Project Location: NY

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/13/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816863

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-124		46.56-46.93 ft	176	15822	1	No	1,*
LB-R-124		49.5-50.5 ft	175	17002	1	No	1,*
LB-R-126		19.54-19.91 ft	175	12682	1	No	1,*
LB-R-127		31.80-32.16 ft	168	10315	1	No	1,*
LB-R-128		35.75-36.25 ft	171	35783	1	No	1,*
LB-R-129		44.61-44.99 ft	177	26103	1	No	1 , 2,*
LB-R-130		30.74-31.11 ft	172	14770	1	No	1 , 2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

Project: Upstate Confidential Project Location: NY

Boring ID: --- Sample Type: --- Tested By: gp
Sample ID: --- Test Date: 06/12/25 Checked By: smd

Project No:

GTX-321096

Depth: --- Test Id: 816839

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
LB-R-132		32.08-32.45 ft	175	31786	1	No	1,*
LB-R-135		27-28 ft	170	30651	1	No	1 , 2,*
LB-R-136		24.75-25.5 ft	171	15562	1	No	1,*
LB-X-003		32.53-32.92 ft	171	15262	1	No	1,*

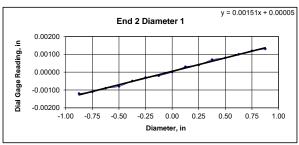
Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

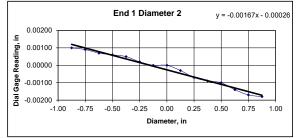
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

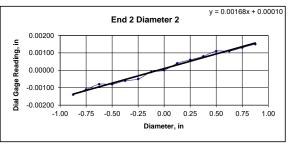
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored.
- 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

^{*}Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.


Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-001 Sample ID: Depth (ft): 21.49-21.85 Visual Description: See photographs

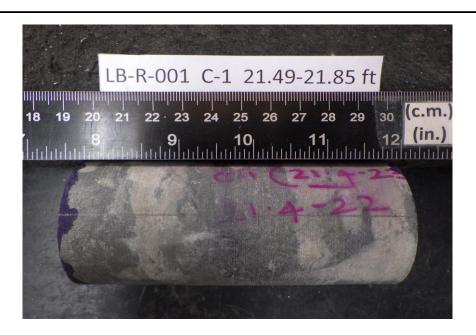

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.39	4.39	4.39	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	634.48			
Bulk Density, lb/ft3	178	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00140	-0.00120	-0.00100	-0.00090	-0.00060	-0.00020	-0.00020	0.00000	0.00020	0.00050	0.00060	0.00060	0.00090	0.00090	0.00090
Diameter 2, in (rotated 90°)	0.00100	0.00090	0.00070	0.00060	0.00050	0.00020	0.00000	0.00000	-0.00030	-0.00070	-0.00090	-0.00100	-0.00140	-0.00170	-0.00180
											Difference between	een max and m	in readings, in:		
											0° =	0.00230	90° =	0.00280	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00120	-0.00110	-0.00090	-0.00080	-0.00050	-0.00030	-0.00020	0.00000	0.00030	0.00040	0.00070	0.00080	0.00100	0.00120	0.00130
Diameter 2, in (rotated 90°)	-0.00140	-0.00110	-0.00080	-0.00080	-0.00060	-0.00050	-0.00010	0.00000	0.00040	0.00060	0.00080	0.00110	0.00110	0.00130	0.00150
											Difference between	en max and m	in readings, in:		
											0° =	0.0025	90° =	0.0029	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00145

	Flatness Tolerance Met?	NO	
DIAMETER 1			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00142 0.08120	
	Angle of Best Fit Line:	0.08120	
End 2:	Slope of Best Fit Line	0.00151	
	Angle of Best Fit Line:	0.08627	
Maximum Angu	lar Difference:	0.00507	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00167 0.09560	
	Angle of Best Fit Line:	0.09560	
End 2:	Slope of Best Fit Line	0.00168	
	Angle of Best Fit Line:	0.09609	
Maximum Angu	lar Difference:	0.00049	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00230	1.980	0.00116	0.067	YES	
Diameter 2, in (rotated 90°)	0.00280	1.980	0.00141	0.081	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00250	1.980	0.00126	0.072	YES	
Diameter 2, in (rotated 90°)	0.00290	1.980	0.00146	0.084	YES	


Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-001	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	21.49-21.85	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

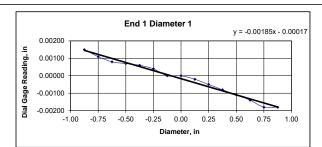
BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

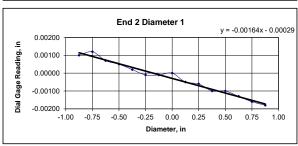
END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
End Flatness Tolerance Met? YES								

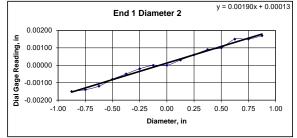
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-001 Sample ID: Depth, ft: 21.49-21.85

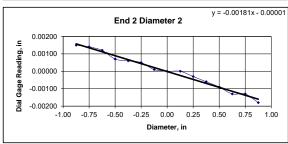
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-014 Sample ID: 27.4-28.4 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.41	4.41	4.41	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	643.9			
Bulk Density, lb/ft3	178	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLI	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00150	0.00110	0.00080	0.00070	0.00060	0.00040	0.00000	0.00000	-0.00020	-0.00050	-0.00080	-0.00110	-0.00140	-0.00180	-0.00180
Diameter 2, in (rotated 90°)	-0.00150	-0.00140	-0.00120	-0.00080	-0.00050	-0.00020	0.00000	0.00000	0.00030	0.00060	0.00090	0.00100	0.00150	0.00150	0.00170
											Difference between	en max and m	in readings, in:		
											0° =	0.00330	90° =	0.00320	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00100	0.00120	0.00070	0.00050	0.00020	-0.00010	-0.00010	0.00000	-0.00050	-0.00060	-0.00100	-0.00100	-0.00130	-0.00160	-0.00180
Diameter 2, in (rotated 90°)	0.00150	0.00140	0.00120	0.00070	0.00060	0.00050	0.00010	0.00000	0.00000	-0.00030	-0.00060	-0.00090	-0.00130	-0.00130	-0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.003	90° =	0.0033	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00165

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00185 0.10624	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00164 0.09396	
Maximum Angı	ular Difference:	0.01228	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00190 0.10903	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.10903	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00330	1.990	0.00166	0.095	YES	
Diameter 2, in (rotated 90°)	0.00320	1.990	0.00161	0.092	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00300	1.990	0.00151	0.086	YES	
Diameter 2, in (rotated 90°)	0.00330	1.990	0.00166	0.095	YES	

Client:	Langan Engineering	Test Date: 6/12/2025			
Project Name:	Upstate Confidential Project	Tested By: rik			
Project Location:	NY	Checked By: smd			
GTX #:	321096				
Boring ID:	LB-R-014	Reliable dial gauge measurements could not be			
Sample ID:		performed on this rock type. Tolerance measurements were performed using a			
Depth (ft):	27.4-28.4	machinist straightedge and feeler gauges to			
Visual Description:	See photographs	ASTM specifications.			

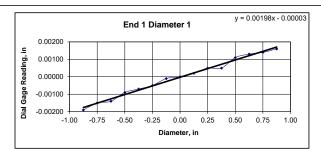
BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

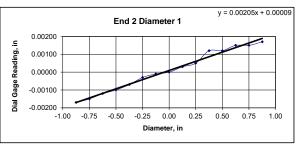
END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
	End Flatness Tolerance Met? YES							

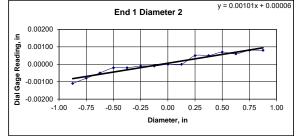
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-014 Sample ID: Depth, ft: 27.4-28.4

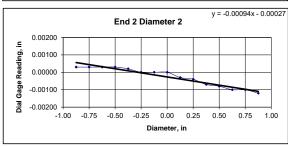
After cutting and grinding

After break




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-021 Sample ID: Depth (ft): 26.56-26.98 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.43	4.43	4.43	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	637.7			
Bulk Density, lb/ft3	178	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ıre FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00150	-0.00140	-0.00090	-0.00070	-0.00050	-0.00010	0.00000	0.00020	0.00050	0.00050	0.00110	0.00130	0.00140	0.00160
Diameter 2, in (rotated 90°)	-0.00110	-0.00080	-0.00050	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00050	0.00050	0.00070	0.00060	0.00080	0.00080
	Difference between max and min readings, in:														
											0° =	0.00350	90° =	0.00190	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00150	-0.00120	-0.00100	-0.00070	-0.00030	-0.00010	0.00000	0.00030	0.00050	0.00120	0.00120	0.00150	0.00150	0.00170
Diameter 2, in (rotated 90°)	0.00030	0.00030	0.00030	0.00030	0.00020	0.00000	0.00000	0.00000	-0.00030	-0.00040	-0.00070	-0.00080	-0.00100	-0.00100	-0.00120
											Difference between	een max and m	in readings, in:		
											0° =	0.0034	90° =	0.0015	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00175

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00198 0.11345	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00205 0.11754	
Maximum Angu	ılar Difference:	0.00409	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00101 0.05795	
End 1: End 2:	Slope of Best Fit Line Angle of Best Fit Line:		
	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.05795	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)									
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$			
Diameter 1, in	0.00350	1.980	0.00177	0.101	YES				
Diameter 2, in (rotated 90°)	0.00190	1.980	0.00096	0.055	YES	Perpendicularity Tolerance Met? YES			
END 2									
Diameter 1, in	0.00340	1.980	0.00172	0.098	YES				
Diameter 2, in (rotated 90°)	0.00150	1.980	0.00076	0.043	YES				

Client:	Langan Engineering	Test Date: 6/18/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-021	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	26.56-26.98	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

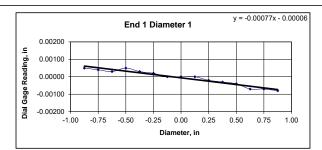
BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

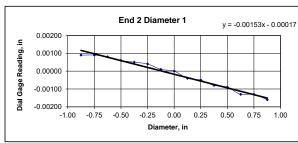
END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
	End Flatness Tolerance Met? YES							

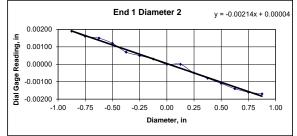
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-021 Sample ID: Depth, ft: 26.56-26.98

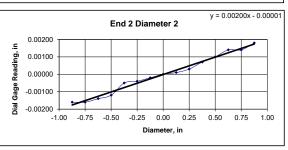
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-027 Sample ID: 30-31 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.47	4.47	4.47	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	645.96			
Bulk Density, lb/ft3	178	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.3	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00050	0.00040	0.00030	0.00050	0.00030	0.00020	0.00000	0.00000	0.00000	-0.00020	-0.00030	-0.00040	-0.00070	-0.00070	-0.00080
Diameter 2, in (rotated 90°)	0.00190	0.00160	0.00150	0.00120	0.00070	0.00050	0.00030	0.00000	0.00000	-0.00050	-0.00080	-0.00110	-0.00140	-0.00160	-0.00170
	Difference between max and min readings, in:														
											0° =	0.00130	90° =	0.00360	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00090	0.00090	0.00080	0.00060	0.00050	0.00040	0.00010	0.00000	-0.00040	-0.00050	-0.00080	-0.00090	-0.00130	-0.00130	-0.00160
Diameter 2, in (rotated 90°)	-0.00160	-0.00160	-0.00140	-0.00120	-0.00050	-0.00040	-0.00020	0.00000	0.00010	0.00030	0.00070	0.00100	0.00140	0.00140	0.00180
											Difference between	een max and m	in readings, in:		
											0° =	0.0025	90° =	0.0034	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00180

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00077 0.04404	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00153 0.08742	
Maximum Angi	ular Difference:	0.04338	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00214 0.12261	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00200 0.11443	
Maximum Angı	ular Difference:	0.00819	
	Parallelism Tolerance Met? Spherically Seated	NO	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)									
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$			
Diameter 1, in	0.00130	1.980	0.00066	0.038	YES				
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	Perpendicularity Tolerance Met? YES			
END 2									
Diameter 1, in	0.00250	1.980	0.00126	0.072	YES				
Diameter 2, in (rotated 90°)	0.00340	1.980	0.00172	0.098	YES				
1									

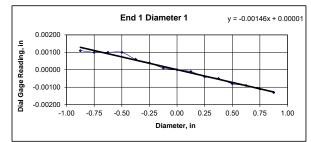
Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-027	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	30-31	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

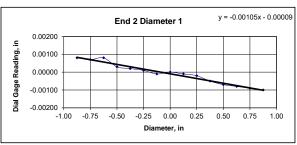
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

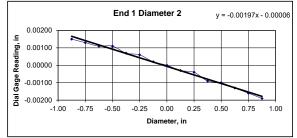
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-027 Sample ID: Depth, ft: 30-31

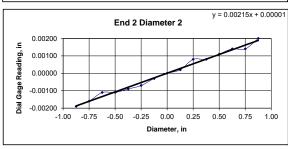
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-029 Sample ID: 30.15-30.52 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.50	4.50	4.50	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	654.86			
Bulk Density, lb/ft3	180	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.3	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

LISM (Procedu	re FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
0.00110	0.00100	0.00100	0.00100	0.00060	0.00040	0.00010	0.00000	-0.00010	-0.00040	-0.00050	-0.00080	-0.00090	-0.00110	-0.00130
0.00150	0.00130	0.00110	0.00110	0.00070	0.00060	0.00020	0.00000	-0.00030	-0.00040	-0.00090	-0.00100	-0.00130	-0.00160	-0.00190
										Difference between	en max and m	in readings, in:		
										0° =	0.00240	90° =	0.00340	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
0.00080	0.00070	0.00080	0.00030	0.00020	0.00010	-0.00010	0.00000	-0.00010	-0.00020	-0.00050	-0.00070	-0.00080	-0.00090	-0.00100
-0.00190	-0.00160	-0.00110	-0.00110	-0.00090	-0.00070	-0.00030	0.00000	0.00020	0.00080	0.00080	0.00110	0.00140	0.00140	0.00200
										Difference between	een max and m	in readings, in:		
										0° =	0.0018	90° =	0.0039	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00195
	-0.875 0.00110 0.00150 -0.875 0.00080	0.00110 0.00100 0.00150 0.00130 -0.875 -0.750 0.00080 0.00070	-0.875 -0.750 -0.625 0.00110 0.00100 0.00100 0.00150 0.00130 0.00110 -0.875 -0.750 -0.625 0.00080 0.00070 0.00080	-0.875	-0.875 -0.750 -0.625 -0.500 -0.375 0.00110 0.00100 0.00100 0.00100 0.00100 0.00150 0.00130 0.00110 0.00110 0.00070 -0.875 -0.750 -0.625 -0.500 -0.375 0.00080 0.00070 0.00080 0.00030 0.00020	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 0.00110 0.00100 0.00100 0.00100 0.00060 0.00040 0.00150 0.00130 0.00110 0.00110 0.00070 0.00060 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 0.00080 0.00070 0.00080 0.00030 0.00020 0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00110 0.00100 0.00100 0.00060 0.00040 0.00010 0.00150 0.00130 0.00110 0.00110 0.00070 0.00060 0.00060 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00080 0.00070 0.00080 0.00030 0.00020 0.00010 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.00110 0.00100 0.00100 0.00100 0.00060 0.00040 0.00010 0.00000 0.00150 0.00130 0.00110 0.0010 0.00070 0.00060 0.00020 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.00080 0.00070 0.00080 0.00030 0.00020 0.00010 -0.00010 0.00000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	-0.875	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00146 0.08382	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00105 0.06041	
Maximum Angu	lar Difference:	0.02341	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Spherically Scatca		
DIAMETER 2	Spherically Scatca		
DIAMETER 2 End 1:		0.00197 0.11279	
	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11279	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00240	1.980	0.00121	0.069	YES	
Diameter 2, in (rotated 90°)	0.00340	1.980	0.00172	0.098	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00180	1.980	0.00091	0.052	YES	
Diameter 2, in (rotated 90°)	0.00390	1.980	0.00197	0.113	YES	

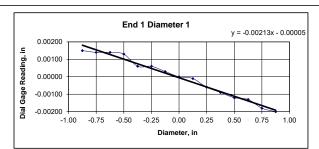
Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-029	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	30.15-30.52	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

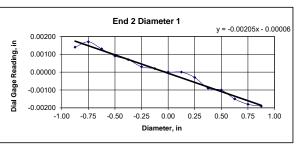
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

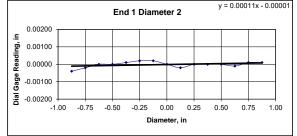
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-029 Sample ID: Depth, ft: 30.15-30.52

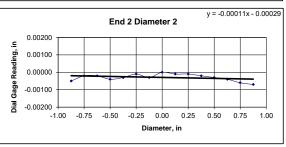
After cutting and grinding

After break




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-029 Sample ID: Depth (ft): 36.6-37.6 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.23	4.23	4.23	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	614.09			
Bulk Density, lb/ft3	177	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00150	0.00140	0.00140	0.00130	0.00060	0.00060	0.00030	0.00000	-0.00010	-0.00060	-0.00090	-0.00120	-0.00130	-0.00180	-0.00200
Diameter 2, in (rotated 90°)	-0.00040	-0.00020	0.00000	0.00000	0.00010	0.00020	0.00020	0.00000	-0.00020	0.00000	0.00000	0.00000	-0.00010	0.00010	0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.00350	90° =	0.00060	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00170	0.00130	0.00090	0.00070	0.00030	0.00020	0.00000	0.00000	-0.00030	-0.00090	-0.00100	-0.00150	-0.00180	-0.00190
Diameter 2, in (rotated 90°)	-0.00050	-0.00020	-0.00020	-0.00040	-0.00030	-0.00010	-0.00030	0.00000	-0.00010	-0.00010	-0.00020	-0.00030	-0.00040	-0.00060	-0.00070
											Difference between	en max and m	in readings, in:		
											0° =	0.0036	90° =	0.0007	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00180

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00213 0.12196	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00205 0.11770	
Maximum Angu	llar Difference:	0.00426	
	Parallelism Tolerance Met? Spherically Seated	YES	
	Sprierically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00011 0.00606	
DIAMETER 2 End 1: End 2:	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00606	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00350	1.990	0.00176	0.101	YES	
Diameter 2, in (rotated 90°)	0.00060	1.990	0.00030	0.017	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00360	1.990	0.00181	0.104	YES	
Diameter 2, in (rotated 90°)	0.00070	1.990	0.00035	0.020	YES	

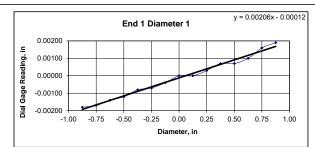
Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-029	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	36.6-37.6	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

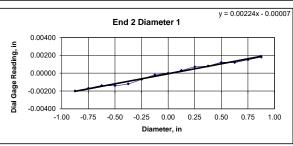
END FLATNESS END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	YES

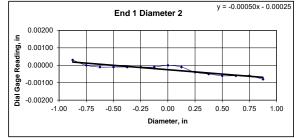
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-029 Sample ID: Depth, ft: 36.6-37.6

After cutting and grinding

After break




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-030 Sample ID: 28.54-28.93 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.46	4.46	4.46	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	615.73			
Bulk Density, lb/ft3	171	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.3	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00180	-0.00170	-0.00140	-0.00120	-0.00080	-0.00070	-0.00040	0.00000	0.00000	0.00030	0.00070	0.00070	0.00100	0.00160	0.00190
Diameter 2, in (rotated 90°)	0.00030	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	-0.00010	-0.00040	-0.00050	-0.00060	-0.00060	-0.00060	-0.00080
											Difference between	en max and m	in readings, in:		
											0° =	0.00370	90° =	0.00110	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00200	-0.00170	-0.00140	-0.00140	-0.00120	-0.00070	-0.00020	0.00000	0.00030	0.00070	0.00080	0.00120	0.00120	0.00150	0.00180
Diameter 2, in (rotated 90°)	-0.00060	-0.00060	-0.00060	-0.00050	-0.00030	-0.00030	-0.00020	0.00000	0.00000	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00030
											Difference between	en max and m	in readings, in:		
											0° =	0.0038	90° =	0.0009	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00190

DIAMETER 1			
End 1:		0.00206 0.11819	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00224 0.12851	
Maximum Angu	llar Difference:	0.01031	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00050 0.02881	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.02881	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure I	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00370	1.975	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00110	1.975	0.00056	0.032	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00380	1.975	0.00192	0.110	YES	
Diameter 2, in (rotated 90°)	0.00090	1.975	0.00046	0.026	YES	

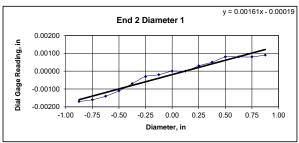
Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-030	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	28.54-28.93	machinist straightedge and feeler gauges to
		ASTM specifications.

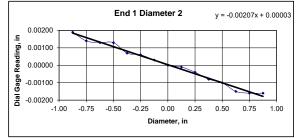
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

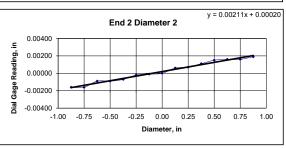
Client: Langan Engineering Upstate Confidential Project Project Name: Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-030 Sample ID: Depth, ft: 28.54-28.93

After cutting and grinding

After break


Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-033 Sample ID: 25.80-26.17 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.38	4.38	4.38	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.99	1.99	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	626.58			
Bulk Density, lb/ft3	176	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00150	-0.00130	-0.00100	-0.00060	-0.00050	-0.00050	-0.00030	0.00000	0.00030	0.00060	0.00090	0.00120	0.00120	0.00130	0.00150
Diameter 2, in (rotated 90°)	0.00190	0.00140	0.00130	0.00130	0.00070	0.00060	0.00030	0.00000	-0.00010	-0.00040	-0.00080	-0.00100	-0.00150	-0.00160	-0.00160
											Difference between	en max and m	in readings, in:		
											0° =	0.00300	90° =	0.00350	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00160	-0.00140	-0.00110	-0.00070	-0.00030	-0.00020	0.00000	0.00000	0.00030	0.00050	0.00080	0.00080	0.00080	0.00090
Diameter 2, in (rotated 90°)	-0.00160	-0.00160	-0.00090	-0.00090	-0.00070	-0.00020	-0.00010	0.00000	0.00060	0.00070	0.00110	0.00150	0.00160	0.00160	0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.0026	90° =	0.0035	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00175

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00177 0.10117
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00161 0.09200
Maximum Angu	lar Difference:	0.00917
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
End 1:		
	Slope of Best Fit Line Angle of Best Fit Line:	0.00207 0.11885
End 2:		
End 2: Maximum Angu	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11885

Flatness Tolerance Met?

PERPENDICULARITY (Procedure I	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00300	1.985	0.00151	0.087	YES	
Diameter 2, in (rotated 90°)	0.00350	1.985	0.00176	0.101	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00260	1.985	0.00131	0.075	YES	
Diameter 2, in (rotated 90°)	0.00350	1.985	0.00176	0.101	YES	

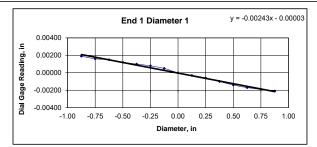
Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-033	Reliable dial gauge measurements could not be
Boring ID: Sample ID:	LB-R-033	performed on this rock type. Tolerance
3	LB-R-033 25.80-26.17	3 3

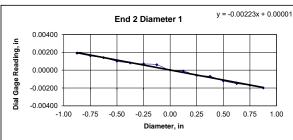
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

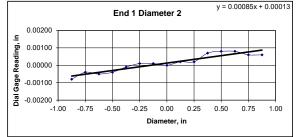
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-033 Sample ID: Depth, ft: 25.80-26.17

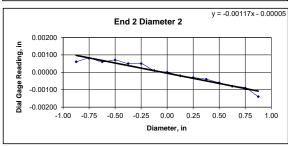
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-041 Sample ID: 29.6-30.6 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.41	4.41	4.41	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	635.8			
Bulk Density, lb/ft3	178	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00190	0.00160	0.00150	0.00120	0.00100	0.00080	0.00050	0.00000	-0.00030	-0.00060	-0.00100	-0.00140	-0.00170	-0.00190	-0.00210
Diameter 2, in (rotated 90°)	-0.00080	-0.00040	-0.00050	-0.00040	-0.00010	0.00010	0.00010	0.00000	0.00020	0.00020	0.00070	0.00080	0.00080	0.00060	0.00060
											Difference between	en max and m	in readings, in:		
											0° =	0.00400	90° =	0.00160	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00190	0.00160	0.00140	0.00100	0.00080	0.00070	0.00060	0.00000	-0.00010	-0.00060	-0.00070	-0.00120	-0.00150	-0.00170	-0.00200
Diameter 2, in (rotated 90°)	0.00060	0.00080	0.00060	0.00070	0.00050	0.00050	0.00010	0.00000	-0.00020	-0.00030	-0.00040	-0.00060	-0.00080	-0.00090	-0.00140
											Difference between	en max and m	in readings, in:		
											0° =	0.0039	90° =	0.0022	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00200

IAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00243 0.13915	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00223 0.12801	
Maximum Angu	ılar Difference:	0.01113	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00085 0.04878	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.04878	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00400	1.980	0.00202	0.116	YES	
Diameter 2, in (rotated 90°)	0.00160	1.980	0.00081	0.046	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00390	1.980	0.00197	0.113	YES	
Diameter 2, in (rotated 90°)	0.00220	1.980	0.00111	0.064	YES	

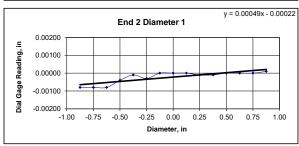
Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-041	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	29.6-30.6	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

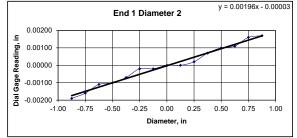
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

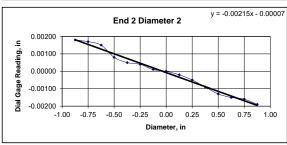
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-041 Sample ID: Depth, ft: 29.6-30.6

After cutting and grinding

After break


Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-043 Sample ID: Depth (ft): 23.04-23.41 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.41	4.41	4.41	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	627.75			
Bulk Density, lb/ft ³	176	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

ELISM (Procedu	ire FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00030	-0.00020	-0.00020	0.00010	0.00010	0.00010	0.00020	0.00000	0.00010	0.00010	0.00020	0.00030	0.00020	0.00020	0.00020
-0.00190	-0.00160	-0.00110	-0.00100	-0.00070	-0.00020	-0.00020	0.00000	0.00000	0.00020	0.00070	0.00100	0.00110	0.00160	0.00170
										Difference between	en max and m	in readings, in:		
										0° =	0.00060	90° =	0.00360	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00080	-0.00080	-0.00080	-0.00040	-0.00010	-0.00030	0.00000	0.00000	0.00000	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00010
0.00180	0.00170	0.00150	0.00080	0.00050	0.00040	0.00010	0.00000	-0.00020	-0.00050	-0.00090	-0.00130	-0.00150	-0.00160	-0.00190
										Difference between	en max and m	in readings, in:		
										0° =	0.0009	90° =	0.0037	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185
	-0.875 -0.00030 -0.00190 -0.875 -0.00080	-0.00030 -0.00020 -0.00190 -0.00160 -0.875 -0.750 -0.00080 -0.00080	-0.875 -0.750 -0.625 -0.00030 -0.00020 -0.00020 -0.00190 -0.00160 -0.00110 -0.875 -0.750 -0.625 -0.00080 -0.00080 -0.00080	-0.875 -0.750 -0.625 -0.500 -0.0030 -0.00020 -0.00020 -0.0010 -0.00190 -0.00160 -0.00110 -0.00100 -0.875 -0.750 -0.625 -0.500 -0.0080 -0.0080 -0.00080 -0.00040	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00030 -0.00020 -0.00020 0.00010 0.00010 -0.00190 -0.00160 -0.00110 -0.00100 -0.00070 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00080 -0.00080 -0.00040 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00030 -0.00020 -0.00020 0.00010 0.00010 0.00010 -0.00190 -0.00160 -0.00110 -0.00100 -0.00070 -0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00080 -0.00080 -0.00040 -0.00010 -0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00030 -0.00020 -0.00020 0.00010 0.00010 0.00010 0.00010 0.00020 -0.00190 -0.00160 -0.00110 -0.00100 -0.00070 -0.00020 -0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00080 -0.00080 -0.00040 -0.00010 -0.00030 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00030 -0.00020 -0.00020 0.00010 0.00010 0.00010 0.00010 0.00020 0.00000 -0.00190 -0.00160 -0.00110 -0.00100 -0.00070 -0.00020 -0.00020 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00080 -0.00080 -0.00040 -0.00010 -0.00030 0.00000 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00030 -0.00020 -0.00020 0.00010 0.00010 0.00010 0.00020 0.00000 0.00010 -0.00190 -0.00160 -0.00110 -0.00100 -0.00070 -0.00020 -0.00020 0.00000 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00080 -0.00080 -0.00040 -0.00010 -0.00030 0.00000 0.00000 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00030 -0.00020 -0.00020 0.00010 0.00010 0.00010 0.00020 0.00000 0.00010 0.00010 -0.00190 -0.00160 -0.00110 -0.00100 -0.00070 -0.00020 -0.0020 0.00000 0.00000 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00080 -0.00080 -0.00040 -0.00010 -0.00030 0.00000 0.00000 0.00000 -0.00010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	-0.875	-0.875

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00025 0.01457
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00049 0.02799
Maximum Angu	lar Difference:	0.01342
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00196 0.11230
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00215 0.12343
Maximum Angu	lar Difference:	0.01113
	Parallelism Tolerance Met? Spherically Seated	NO

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00060	1.980	0.00030	0.017	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00090	1.980	0.00045	0.026	YES	
Diameter 2, in (rotated 90°)	0.00370	1.980	0.00187	0.107	YES	

Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-043	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	23.04-23.41	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

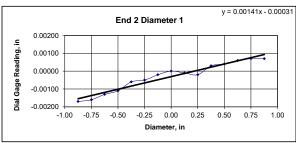
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-043 Sample ID: Depth, ft:

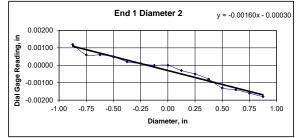
23.04-23.41

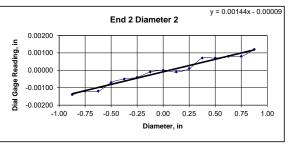
After cutting and grinding

After break




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-044 Sample ID: 29.19-29.56 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.40	4.40	4.40	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	613.62			
Bulk Density, lb/ft3	170	Minimum Diameter Tolerenc	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

ELISM (Procedu	ire FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00170	-0.00110	-0.00110	-0.00100	-0.00040	-0.00030	-0.00020	0.00000	0.00020	0.00030	0.00060	0.00080	0.00100	0.00100	0.00150
0.00120	0.00060	0.00060	0.00050	0.00020	0.00010	0.00000	0.00000	-0.00030	-0.00050	-0.00080	-0.00130	-0.00140	-0.00160	-0.00180
										Difference between	en max and m	in readings, in:		
										0° =	0.00320	90° =	0.00300	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00170	-0.00160	-0.00130	-0.00110	-0.00060	-0.00050	-0.00020	0.00000	-0.00010	-0.00020	0.00030	0.00040	0.00060	0.00070	0.00070
-0.00140	-0.00120	-0.00120	-0.00070	-0.00050	-0.00040	-0.00010	0.00000	-0.00010	0.00010	0.00070	0.00070	0.00080	0.00080	0.00120
										Difference between	en max and m	in readings, in:		
										0° =	0.0024	90° =	0.0026	
										Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00160
	-0.875 -0.00170 0.00120 -0.875 -0.00170	-0.00170 -0.00110 0.00120 0.00060 -0.875 -0.750 -0.00170 -0.00160	-0.875 -0.750 -0.625 -0.00170 -0.00110 -0.00110 0.00120 0.00060 0.00060 -0.875 -0.750 -0.625 -0.00170 -0.00160 -0.00130	-0.875 -0.750 -0.625 -0.500 -0.00170 -0.00110 -0.00110 -0.00100 0.00120 0.00060 0.00060 0.00050 -0.875 -0.750 -0.625 -0.500 -0.00170 -0.00160 -0.00130 -0.00110	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00170 -0.00110 -0.00110 -0.00100 -0.00040 0.00120 0.00060 0.00060 0.00050 0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00170 -0.00160 -0.00130 -0.00110 -0.00060	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00170 -0.00110 -0.00110 -0.00100 -0.00040 -0.00030 0.00120 0.00060 0.00060 0.00050 0.00020 0.00010 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00170 -0.00160 -0.00130 -0.00110 -0.00060 -0.00050	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00170 -0.00110 -0.00110 -0.00100 -0.00040 -0.00030 -0.00020 0.00120 0.00060 0.00050 0.00020 0.00010 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00170 -0.00160 -0.00130 -0.00110 -0.00060 -0.00050 -0.00020	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00170 -0.00110 -0.00110 -0.00100 -0.00040 -0.00030 -0.00020 0.00000 0.00120 0.00060 0.00050 0.00020 0.00010 0.00000 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00170 -0.00160 -0.00130 -0.00110 -0.00060 -0.00050 -0.00020 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00170 -0.00110 -0.00110 -0.00100 -0.00040 -0.00030 -0.00020 0.00000 0.00020 0.00120 0.00060 0.00050 0.00020 0.00010 0.00000 0.00000 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00170 -0.00160 -0.00130 -0.00110 -0.00060 -0.00050 -0.00020 0.00000 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00170 -0.00110 -0.00110 -0.00100 -0.00040 -0.00030 -0.0020 0.00000 0.00020 0.00030 0.00120 0.00060 0.00050 0.00020 0.00010 0.00000 0.00000 -0.00030 -0.00050 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00170 -0.00160 -0.00130 -0.00110 -0.00060 -0.00050 -0.00050 -0.00020 0.00000 -0.00010 -0.00020	-0.875	-0.875	-0.875	-0.875

DIAMETER 1			
DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00164 0.09380	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00141 0.08103	
Maximum Angu	ular Difference:	0.01277	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00160 0.09151	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.09151	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00320	1.990	0.00161	0.092	YES	
Diameter 2, in (rotated 90°)	0.00300	1.990	0.00151	0.086	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00240	1.990	0.00121	0.069	YES	
Diameter 2, in (rotated 90°)	0.00260	1.990	0.00131	0.075	YES	
1						

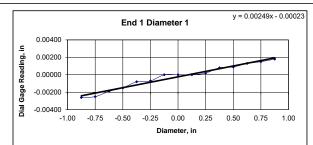
Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-044	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	29.19-29.56	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

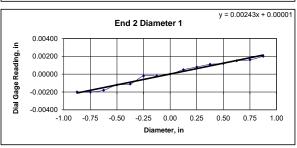
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

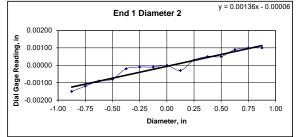
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-044 Sample ID: Depth, ft: 29.19-29.56

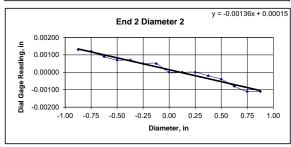
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-047 Sample ID: 30.15-30.48 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

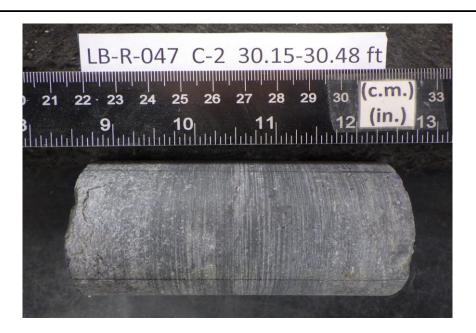

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	3.92	3.92	3.92	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	549.92			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.0	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00260	-0.00250	-0.00190	-0.00150	-0.00080	-0.00070	0.00000	0.00000	0.00000	0.00020	0.00080	0.00090	0.00130	0.00150	0.00180
Diameter 2, in (rotated 90°)	-0.00150	-0.00120	-0.00090	-0.00080	-0.00020	-0.00010	-0.00010	0.00000	-0.00030	0.00030	0.00050	0.00050	0.00090	0.00100	0.00100
											Difference between	en max and m	in readings, in:		
											0° =	0.00440	90° =	0.00250	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00200	-0.00200	-0.00180	-0.00120	-0.00110	-0.00020	-0.00020	0.00000	0.00050	0.00080	0.00110	0.00120	0.00150	0.00160	0.00200
Diameter 2, in (rotated 90°)	0.00130	0.00120	0.00090	0.00070	0.00070	0.00050	0.00050	0.00000	0.00000	0.00000	-0.00020	-0.00040	-0.00080	-0.00110	-0.00110
											Difference between	en max and m	in readings, in:		
											0° =	0.004	90° =	0.0024	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00220

1			
DIAMETER 1			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00249 0.14242	
Fnd 2:			
End 2.	Slope of Best Fit Line	0.00243	
	Angle of Best Fit Line:	0.13915	
Maximum Angu	lar Difference:	0.00327	
	Parallelism Tolerance Met? Spherically Seated	YES	
	, ,		
DIAMETER 2			
End 1:	Slope of Best Fit Line	0.00136	
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00136 0.07792	
End 1: End 2:	Angle of Best Fit Line:	0.07792	
	Angle of Best Fit Line: Slope of Best Fit Line	0.07792	
End 2:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.07792 0.00136 0.07809	
	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.07792	
End 2:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: lar Difference:	0.00136 0.07809 0.00016	
End 2:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00136 0.07809 0.00016	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)									
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00440	1.993	0.00221	0.127	YES					
Diameter 2, in (rotated 90°)	0.00250	1.993	0.00125	0.072	YES	Perpendicularity Tolerance Met? YES				
END 2										
Diameter 1, in	0.00400	1.993	0.00201	0.115	YES					
Diameter 2, in (rotated 90°)	0.00240	1.993	0.00120	0.069	YES					



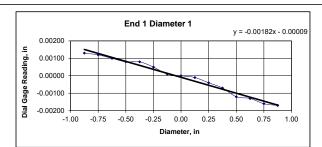
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-047	Reliable dial gauge measurements could not be
	LD IC OT	3 3
Sample ID:		performed on this rock type. Tolerance
3	30.15-30.48	3 3

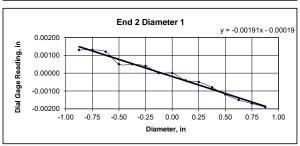
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

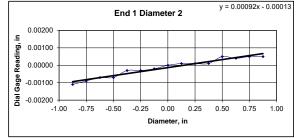
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-047 Sample ID: Depth, ft: 30.15-30.48

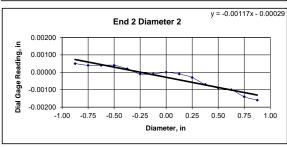
After cutting and grinding

After break




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-048 Sample ID: 29-30 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.42	4.42	4.42		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	633.51				
Bulk Density, lb/ft3	175	Minimum Diameter Tolerend	ce Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met?	YES	Straightness Tolerance Met? YES

ID FLATNESS AND PARALLELISM (Procedure FP1) ID 1 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875														
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
0.00130	0.00120	0.00100	0.00080	0.00080	0.00050	0.00010	0.00000	-0.00010	-0.00040	-0.00070	-0.00120	-0.00130	-0.00160	-0.00170
-0.00110	-0.00090	-0.00070	-0.00070	-0.00030	-0.00030	-0.00020	0.00000	0.00010	0.00010	0.00010	0.00050	0.00040	0.00050	0.00050
										Difference between	een max and m	in readings, in:		
										0° =	0.00300	90° =	0.00160	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
0.00130	0.00130	0.00120	0.00050	0.00050	0.00040	0.00000	0.00000	-0.00040	-0.00050	-0.00080	-0.00120	-0.00150	-0.00170	-0.00190
0.00050	0.00040	0.00040	0.00040	0.00020	-0.00010	-0.00010	0.00000	-0.00010	-0.00030	-0.00070	-0.00090	-0.00100	-0.00140	-0.00160
										Difference between	een max and m	in readings, in:		
										0° =	0.0032	90° =	0.0021	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00160
	-0.875 0.00130 -0.00110 -0.875 0.00130	-0.875 -0.750 0.00130 0.00120 -0.00110 -0.00090 -0.875 -0.750 0.00130 0.00130	-0.875 -0.750 -0.625 0.00130 0.00120 0.00100 -0.00110 -0.00090 -0.00070 -0.875 -0.750 -0.625 0.00130 0.00130 0.00120	-0.875 -0.750 -0.625 -0.500 0.00130 0.00120 0.00100 0.00080 -0.00110 -0.00090 -0.00070 -0.00070 -0.875 -0.750 -0.625 -0.500 0.00130 0.00130 0.00120 0.00050	-0.875 -0.750 -0.625 -0.500 -0.375 0.00130 0.00120 0.00100 0.00080 0.00080 -0.00110 -0.00090 -0.00070 -0.00070 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 0.00130 0.00130 0.00120 0.00050 0.00050	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 0.00130 0.00120 0.00100 0.00080 0.00080 0.00080 -0.00110 -0.00090 -0.00070 -0.00070 -0.00030 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 0.00130 0.00130 0.00120 0.00050 0.00050 0.00040	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00130 0.00120 0.00100 0.00080 0.00080 0.00050 0.00010 -0.00110 -0.00090 -0.00070 -0.00030 -0.00030 -0.00030 -0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00130 0.00130 0.00120 0.00050 0.00050 0.00040 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.00130 0.00120 0.00100 0.00080 0.00080 0.00050 0.00010 0.00000 -0.00110 -0.00090 -0.00070 -0.00030 -0.00030 -0.00020 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.00130 0.00130 0.00120 0.00050 0.00050 0.00040 0.00000 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.00130 0.00120 0.00100 0.00080 0.00080 0.00050 0.00010 0.00000 -0.00010 -0.00110 -0.00090 -0.00070 -0.00030 -0.00030 -0.00020 0.00000 0.00010 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.00130 0.00130 0.00120 0.00050 0.00050 0.00040 0.00000 0.00000 -0.00040	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 0.00130 0.00120 0.00100 0.00080 0.00080 0.00050 0.00010 0.00000 -0.00010 -0.00010 -0.00040 -0.00110 -0.00090 -0.00070 -0.00030 -0.00030 -0.00020 0.00000 0.00010 0.00010 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 0.00130 0.00130 0.00120 0.00050 0.00050 0.00040 0.00000 0.00000 -0.00040 -0.00050	-0.875	-0.875	-0.875	-0.875

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00182 0.10444	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00191 0.10935	
Maximum Angu	ular Difference:	0.00491	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00092 0.05271	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.05271	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure	PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)									
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00300	1.990	0.00151	0.086	YES					
Diameter 2, in (rotated 90°)	0.00160	1.990	0.00080	0.046	YES	Perpendicularity Tolerance Met? YES				
END 2										
Diameter 1, in	0.00320	1.990	0.00161	0.092	YES					
Diameter 2, in (rotated 90°)	0.00210	1.990	0.00106	0.060	YES					

Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:		Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

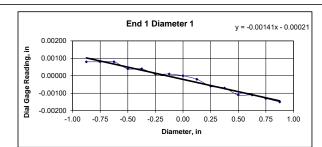
END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

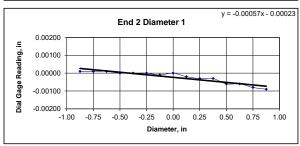
End Flatness Tolerance Met? YES

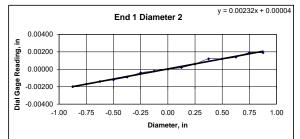
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-048 Sample ID: Depth, ft: 29-30

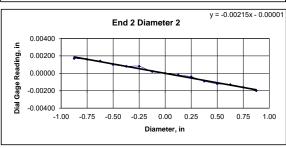
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-051 Sample ID: Depth (ft): 34.07-34.45 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.39	4.40	4.40	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	619.76			
Bulk Density, lb/ft ³	174	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	D FLATNESS AND PARALLELISM (Procedure FP1)														
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00080	0.00080	0.00080	0.00040	0.00040	0.00010	0.00010	0.00000	-0.00020	-0.00060	-0.00070	-0.00110	-0.00110	-0.00130	-0.00150
Diameter 2, in (rotated 90°)	-0.00200	-0.00170	-0.00140	-0.00120	-0.00090	-0.00040	-0.00020	0.00000	0.00020	0.00060	0.00120	0.00120	0.00140	0.00190	0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00230	90° =	0.00390	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	-0.00010	0.00000	-0.00020	-0.00030	-0.00030	-0.00060	-0.00060	-0.00080	-0.00090
Diameter 2, in (rotated 90°)	0.00170	0.00160	0.00140	0.00100	0.00080	0.00080	0.00020	0.00000	-0.00020	-0.00040	-0.00090	-0.00120	-0.00130	-0.00160	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.001	90° =	0.0037	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00195

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00141 0.08054	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00057 0.03258	
Maximum Angı	ular Difference:	0.04796	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00232 0.13293	
DIAMETER 2 End 1: End 2:	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.13293	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00230	1.980	0.00116	0.067	YES	
Diameter 2, in (rotated 90°)	0.00390	1.980	0.00197	0.113	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00100	1.980	0.00051	0.029	YES	
Diameter 2, in (rotated 90°)	0.00370	1.980	0.00187	0.107	YES	

Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-051	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	34.07-34.45	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

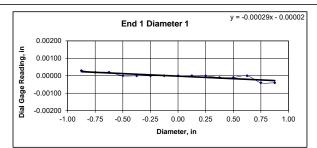
Client: Langan Engineering Upstate Confidential Project Project Name: Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-051 Sample ID:

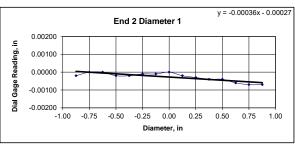
34.07-34.45

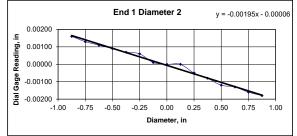
Depth, ft:

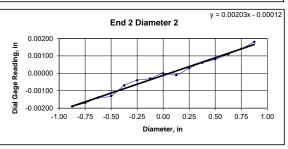
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-055 Sample ID: 35.5-36.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.32	4.32	4.32	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	590.33			
Bulk Density, lb/ft3	170	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

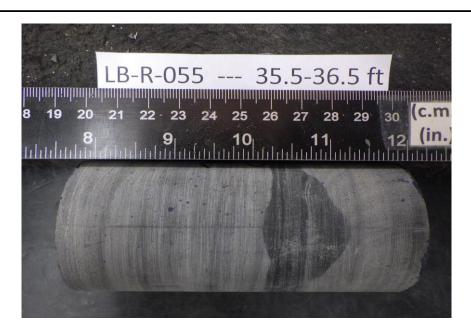
END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00030	0.00020	0.00020	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	0.00000	-0.00040	-0.00040
Diameter 2, in (rotated 90°)	0.00160	0.00130	0.00110	0.00090	0.00070	0.00060	0.00010	0.00000	0.00000	-0.00050	-0.00080	-0.00120	-0.00130	-0.00160	-0.00180
	Difference between max and min readings, in:														
											0° =	0.00070	90° =	0.00340	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00020	0.00000	0.00000	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	-0.00020	-0.00030	-0.00040	-0.00040	-0.00060	-0.00070	-0.00070
Diameter 2, in (rotated 90°)	-0.00190	-0.00170	-0.00140	-0.00130	-0.00070	-0.00040	-0.00030	0.00000	-0.00010	0.00030	0.00060	0.00080	0.00110	0.00140	0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.0007	90° =	0.0037	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185

	Tiutiless Tolerance Met.	110	
·	·		
DIAMETER 1			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00029 0.01670	
Fnd 2:			
Liid Zi	Slope of Best Fit Line	0.00036	
	Angle of Best Fit Line:	0.02063	
Maximum Angu	ular Difference:	0.00393	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2			
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:	Spherically Seated	0.00195	
	Spherically Seated	0.00195 0.11197	
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.11197	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.11197	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11197 0.00203 0.11606	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.11197	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11197 0.00203 0.11606 0.00409	

Flatness Tolerance Met?

NO

TERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00070	1.970	0.00036	0.020	YES					
Diameter 2, in (rotated 90°)	0.00340	1.970	0.00173	0.099	YES	Perpendicularity Tolerance Met? YES				
END 2										
Diameter 1, in	0.00070	1.970	0.00036	0.020	YES					
Diameter 2, in (rotated 90°)	0.00370	1.970	0.00188	0.108	YES					



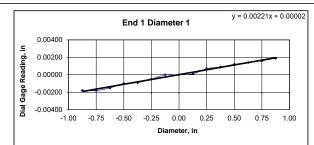
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 000	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

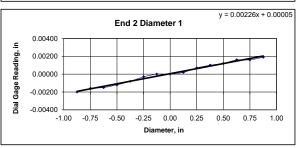
END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
End Flatness Tolerance Met? YES								

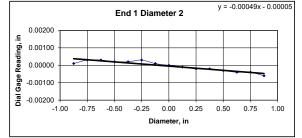
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-055 Sample ID: Depth, ft: 35.5-36.5

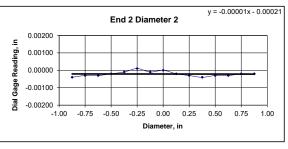
After cutting and grinding

After break




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-055 Sample ID: 39.5-40.5 Depth (ft): Visual Description: See photographs

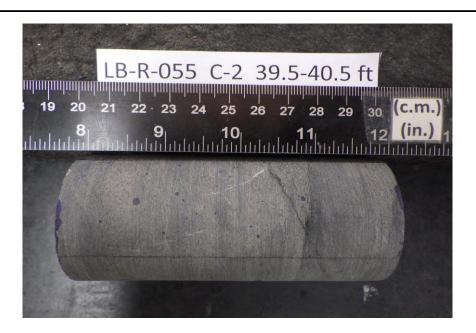

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.21	4.21	4.21	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	594.57			
Bulk Density, lb/ft3	176	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

ID FLATNESS AND PARALLELISM (Procedure FP1)														
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00180	-0.00180	-0.00150	-0.00100	-0.00090	-0.00050	0.00000	0.00000	0.00010	0.00070	0.00090	0.00120	0.00140	0.00160	0.00190
0.00010	0.00030	0.00030	0.00020	0.00020	0.00030	0.00010	0.00000	-0.00010	-0.00020	-0.00020	-0.00030	-0.00040	-0.00040	-0.00060
										Difference between	en max and m	in readings, in:		
										0° =	0.00370	90° =	0.00090	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00200	-0.00160	-0.00150	-0.00120	-0.00080	-0.00030	0.00000	0.00000	0.00020	0.00070	0.00100	0.00120	0.00160	0.00160	0.00190
-0.00040	-0.00030	-0.00030	-0.00020	-0.00010	0.00010	-0.00010	0.00000	-0.00020	-0.00030	-0.00040	-0.00030	-0.00030	-0.00020	-0.00020
										Difference between	en max and m	in readings, in:		
										0° =	0.0039	90° =	0.0005	
										Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00195
	-0.875 -0.00180 0.00010 -0.875 -0.00200	-0.875 -0.750 -0.00180 -0.00180 0.00010 0.00030 -0.875 -0.750 -0.00200 -0.00160	-0.875 -0.750 -0.625 -0.00180 -0.00180 -0.00150 0.00010 0.00030 0.00030 -0.875 -0.750 -0.625 -0.00200 -0.00160 -0.00150	-0.875 -0.750 -0.625 -0.500 -0.00180 -0.00180 -0.00150 -0.00100 0.00010 0.00030 0.00030 0.00020 -0.875 -0.750 -0.625 -0.500 -0.00200 -0.00160 -0.00150 -0.00120	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00180 -0.00180 -0.00150 -0.00100 -0.00090 0.00010 0.00030 0.00030 0.00020 0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00200 -0.00160 -0.00150 -0.00120 -0.00080	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00180 -0.00180 -0.00150 -0.00100 -0.00090 -0.00050 0.00010 0.00030 0.00020 0.00020 0.00020 0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00200 -0.00160 -0.00150 -0.00120 -0.00080 -0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00180 -0.00180 -0.00150 -0.00100 -0.00090 -0.00050 0.00000 0.00010 0.00030 0.00020 0.00020 0.00020 0.00030 0.00010 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00200 -0.00160 -0.00150 -0.00120 -0.00080 -0.00030 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00180 -0.00180 -0.00150 -0.00100 -0.00090 -0.00050 0.00000 0.00000 0.00010 0.00030 0.00020 0.00020 0.00020 0.00030 0.00010 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00200 -0.00160 -0.00150 -0.00120 -0.00080 -0.00030 0.00000 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00180 -0.00180 -0.00150 -0.00100 -0.00090 -0.00050 0.00000 0.00000 0.00010 0.00010 0.00030 0.00030 0.00020 0.00020 0.00030 0.00010 0.00000 -0.00010 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00200 -0.00160 -0.00150 -0.00120 -0.00080 -0.00030 0.00000 0.00000 0.00020	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00180 -0.00180 -0.00150 -0.00100 -0.00090 -0.00050 0.00000 0.00000 0.00010 0.00010 0.00070 0.00010 0.00030 0.00020 0.00020 0.00030 0.00010 0.00000 -0.00010 -0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00200 -0.00160 -0.00150 -0.00120 -0.00080 -0.00030 0.00000 0.00000 0.00020 0.00070	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	-0.875	-0.875

	Circe mast be < 0.0020 m.	
	Flatness Tolerance Met?	NO
DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00221 0.12687
Fnd 2:	Angle of best fit time.	0.12007
2.10 2.1	Slope of Best Fit Line Angle of Best Fit Line:	0.00226 0.12965
Maximum Angu	_	0.00278
	Parallelism Tolerance Met? Spherically Seated	YES
DIAMETER 2		
Fnd 1:		
2.10 2.1	Slope of Best Fit Line Angle of Best Fit Line:	0.00049 0.02783
Fnd 2:		
Liid 2.	Slope of Best Fit Line Angle of Best Fit Line:	0.00001 0.00033
Maximum Angu	ılar Difference:	0.02750
	Parallelism Tolerance Met? Spherically Seated	NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00370	1.970	0.00188	0.108	YES	
Diameter 2, in (rotated 90°)	0.00090	1.970	0.00046	0.026	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00390	1.970	0.00198	0.113	YES	
Diameter 2, in (rotated 90°)	0.00050	1.970	0.00025	0.015	YES	



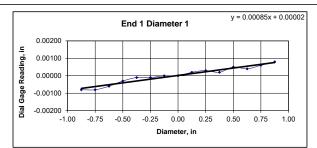
Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-055	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	39.5-40.5	machinist straightedge and feeler gauges to

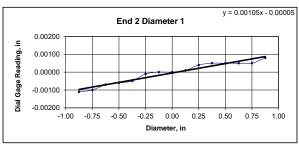
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

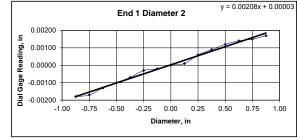
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-055 Sample ID: Depth, ft: 39.5-40.5

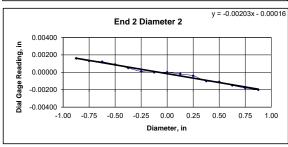
After cutting and grinding

After break




Client: Test Date: 6/19/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-057 Sample ID: Depth (ft): 30.05-30.44 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.42	4.42	4.42	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	612.12			
Bulk Density, lb/ft ³	171	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00080	-0.00080	-0.00060	-0.00030	-0.00010	-0.00010	0.00000	0.00000	0.00020	0.00030	0.00020	0.00050	0.00040	0.00060	0.00080
Diameter 2, in (rotated 90°)	-0.00180	-0.00170	-0.00130	-0.00100	-0.00070	-0.00030	-0.00020	0.00000	0.00010	0.00060	0.00090	0.00120	0.00140	0.00150	0.00170
											Difference between	een max and m	in readings, in:		
											0° =	0.00160	90° =	0.00350	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00110	-0.00100	-0.00070	-0.00060	-0.00050	-0.00010	0.00000	0.00000	0.00010	0.00040	0.00050	0.00050	0.00050	0.00050	0.00080
Diameter 2, in (rotated 90°)	0.00160	0.00130	0.00120	0.00090	0.00050	0.00010	0.00000	0.00000	-0.00020	-0.00040	-0.00100	-0.00110	-0.00150	-0.00180	-0.00200
											Difference between	een max and m	in readings, in:		
											0° =	0.0019	90° =	0.0036	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00180

	Flatness Tolerance Met?	NO	
DIAMETER 1			
Fnd 1:			
	ope of Best Fit Line gle of Best Fit Line:	0.00085 0.04862	
	ope of Best Fit Line gle of Best Fit Line:	0.00105 0.06024	
Maximum Angular	Difference:	0.01162	
	arallelism Tolerance Met? herically Seated	NO	
DIAMETER 2			
	ope of Best Fit Line gle of Best Fit Line:	0.00208 0.11934	
	ope of Best Fit Line gle of Best Fit Line:	0.00203 0.11623	
Maximum Angular	Difference:	0.00311	
	arallelism Tolerance Met? herically Seated	YES	

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00160	1.980	0.00081	0.046	YES	
Diameter 2, in (rotated 90°)	0.00350	1.980	0.00177	0.101	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00190	1.980	0.00096	0.055	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	

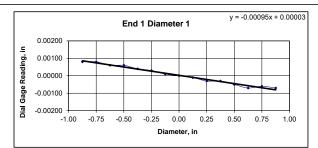
Client:	Langan Engineering	Test Date: 6/19/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-057	Reliable dial gauge measurements could not be
Cample ID:		performed on this rock type. Tolerance
Sample ID:	C-1	li.
Depth (ft):	C-1 30.05-30.44	measurements were performed using a machinist straightedge and feeler gauges to

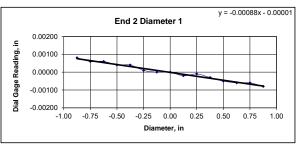
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

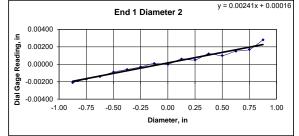
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-057 Sample ID: Depth, ft: 30.05-30.44

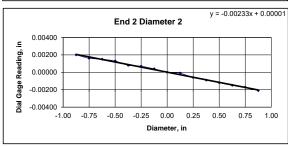
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-058 Sample ID: 30.5-31.5 Depth (ft): Visual Description: See photographs

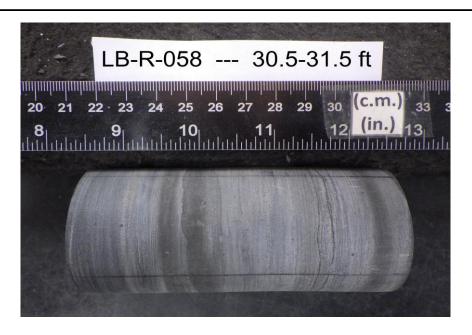

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.25	4.25	4.25	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	588.01			
Bulk Density, lb/ft ³	170	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00080	0.00080	0.00060	0.00060	0.00040	0.00030	0.00010	0.00000	-0.00010	-0.00030	-0.00030	-0.00050	-0.00070	-0.00060	-0.00070
Diameter 2, in (rotated 90°)	-0.00210	-0.00170	-0.00140	-0.00090	-0.00060	-0.00030	0.00010	0.00000	0.00060	0.00050	0.00120	0.00100	0.00150	0.00170	0.00280
											Difference between	een max and m	in readings, in:		
											0° =	0.00150	90° =	0.00490	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00080	0.00060	0.00060	0.00040	0.00040	0.00010	0.00000	0.00000	-0.00020	-0.00010	-0.00030	-0.00050	-0.00060	-0.00060	-0.00080
Diameter 2, in (rotated 90°)	0.00200	0.00160	0.00150	0.00130	0.00080	0.00070	0.00040	0.00000	-0.00010	-0.00060	-0.00090	-0.00120	-0.00150	-0.00170	-0.00210
											Difference between	een max and m	in readings, in:		
											0° =	0.0016	90° =	0.0041	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00245

0.00095 0.05451 0.00088 0.05026 0.00426 YES
0.00088 0.05026 0.00426
0.00088 0.05026 0.00426
0.00088 0.05026 0.00426
0.00088 0.05026 0.00426
0.05026 0.00426
0.05026 0.00426
0.00426
YES
YES
0.00241 0.13800
0.13000
0.00233
0.13374
0.00426
0.00420
YES

PERPENDICULARITY (Procedure	re P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00150	1.984	0.00076	0.043	YES	
Diameter 2, in (rotated 90°)	0.00490	1.984	0.00247	0.142	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00160	1.984	0.00081	0.046	YES	
Diameter 2, in (rotated 90°)	0.00410	1.984	0.00207	0.118	YES	



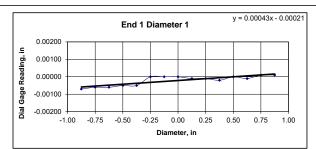
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-058	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	30.5-31.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

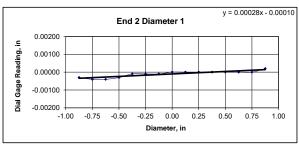
END FLATNESS										
END 1										
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
END 2										
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
	End Flatness Tolerance Met? YES									

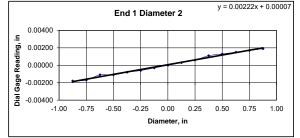
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-058 Sample ID: Depth, ft: 30.5-31.5

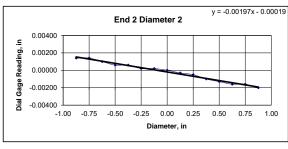
After cutting and grinding

After break




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-058 Sample ID: C-2 36-36.75 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)	
	1	2	Average			
Specimen Length, in:	4.27	4.28	4.28		Maximum gap between side of core and reference surface plate:	
Specimen Diameter, in:	1.98	1.98	1.98		Is the maximum gap ≤ 0.02 in.? NO	
Specimen Mass, g:	611.85					
Bulk Density, lb/ft ³	177	Minimum Diameter Tolereno	e Met?	ES	Maximum difference must be < 0.020 in.	
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met?	ES	Straightness Tolerance Met? NO	

ELISM (Procedu	ire FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00070	-0.00060	-0.00060	-0.00050	-0.00050	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00020	0.00000	-0.00010	0.00010	0.00010
-0.00180	-0.00170	-0.00110	-0.00110	-0.00080	-0.00060	-0.00030	0.00000	0.00030	0.00060	0.00110	0.00130	0.00150	0.00170	0.00190
Difference between max and min readings, in:														
										0° =	0.00080	90° =	0.00370	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00030	-0.00040	-0.00040	-0.00030	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00020
0.00140	0.00140	0.00100	0.00060	0.00060	0.00020	0.00020	0.00000	-0.00030	-0.00050	-0.00100	-0.00130	-0.00160	-0.00160	-0.00200
										Difference between	en max and m	in readings, in:		
										0° =	0.0006	90° =	0.0034	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185
	-0.875 -0.00070 -0.00180 -0.875 -0.00030	-0.00070 -0.00060 -0.00180 -0.00170 -0.875 -0.750 -0.00030 -0.00040	-0.875 -0.750 -0.625 -0.00070 -0.00060 -0.00060 -0.00180 -0.00170 -0.00110 -0.875 -0.750 -0.625 -0.00030 -0.00040 -0.00040	-0.875 -0.750 -0.625 -0.500 -0.00070 -0.00060 -0.00060 -0.00050 -0.00110 -0.00110 -0.00110 -0.00110 -0.00110 -0.00130 -0.0030 -0.00030 -0.00040 -0.00040 -0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00070 -0.00060 -0.00060 -0.00050 -0.00050 -0.00180 -0.00170 -0.00110 -0.00110 -0.00080 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00030 -0.00040 -0.00040 -0.00030 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00070 -0.00060 -0.00060 -0.00050 -0.00050 0.00050 -0.00180 -0.00170 -0.00110 -0.00110 -0.00080 -0.00060 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00030 -0.00040 -0.00040 -0.00030 -0.00010 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00070 -0.00060 -0.00060 -0.00050 -0.00050 0.00000 0.00000 -0.00180 -0.00170 -0.00110 -0.00110 -0.00080 -0.00060 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00030 -0.00040 -0.00040 -0.00030 -0.00010 -0.00010 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00070 -0.00060 -0.00060 -0.00050 -0.00050 0.00000 0.00000 0.00000 -0.00180 -0.00170 -0.00110 -0.00110 -0.00080 -0.00060 -0.00030 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00030 -0.00040 -0.00040 -0.00030 -0.00010 -0.00010 -0.00010 -0.00010 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00070 -0.00060 -0.00060 -0.00050 -0.00050 0.00000 0.00000 0.00000 -0.00010 -0.00180 -0.00170 -0.00110 -0.00110 -0.00080 -0.00060 -0.00030 0.00000 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00030 -0.00040 -0.00040 -0.00030 -0.00010 -0.00010 -0.00010 -0.00010 0.00000 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00070 -0.00060 -0.00050 -0.00050 -0.00050 0.00000 0.00000 0.00000 -0.00010 -0.00010 -0.00180 -0.00170 -0.00110 -0.00110 -0.00080 -0.00060 -0.00030 0.00000 0.00030 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00030 -0.00040 -0.00040 -0.00030 -0.00010 -0.00010 -0.00010 0.00000 0.00000 0.00000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	-0.875	-0.875

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00043 0.02439	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00028 0.01588	
Maximum Angı	ılar Difference:	0.00851	
	Parallelism Tolerance Met? Spherically Seated	NO	
	, ,		
DIAMETER 2			
DIAMETER 2 End 1:		0.00222 0.12703	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12703	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00080	1.980	0.00040	0.023	YES					
Diameter 2, in (rotated 90°)	0.00370	1.980	0.00187	0.107	YES	Perpendicularity Tolerance Met? YES				
END 2										
Diameter 1, in	0.00060	1.980	0.00030	0.017	YES					
Diameter 2, in (rotated 90°)	0.00340	1.980	0.00172	0.098	YES					

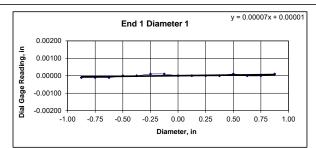
Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-058	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	36-36.75	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

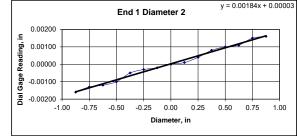
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-058 Sample ID: Depth, ft: 36-36.75

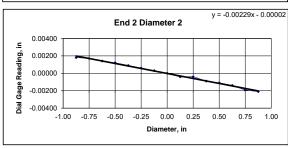
After cutting and grinding

After break




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-059 Sample ID: Depth (ft): 34.54-34.91 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.27	4.27	4.27	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	594.8			
Bulk Density, lb/ft3	174	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ND FLATNESS AND PARALLELISM (Procedure FP1)														
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.00000	0.00000	0.00010
Diameter 2, in (rotated 90°)	-0.00160	-0.00130	-0.00120	-0.00100	-0.00050	-0.00030	-0.00020	0.00000	0.00010	0.00040	0.00080	0.00100	0.00110	0.00150	0.00160
	Difference between max and min readings, in:														
											0° =	0.00020	90° =	0.00320	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00100	-0.00100	-0.00070	-0.00050	-0.00040	-0.00030	-0.00010	0.00000	0.00000	0.00020	0.00030	0.00050	0.00070	0.00080	0.00100
Diameter 2, in (rotated 90°)	0.00180	0.00170	0.00140	0.00120	0.00090	0.00060	0.00030	0.00000	-0.00040	-0.00040	-0.00090	-0.00110	-0.00140	-0.00190	-0.00210
											Difference between	een max and m	in readings, in:		
											0° =	0.002	90° =	0.0039	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00195
Diameter 1, in	-0.00100	-0.00100	-0.00070	-0.00050	-0.00040	-0.00030	-0.00010	0.00000	0.00000	0.00020	0.00030 -0.00090 Difference betwee 0° =	0.00050 -0.00110 een max and m 0.002	0.00070 -0.00140 in readings, in: 90° =	0.00080 -0.00190 0.0039	- (

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00007 0.00426	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00111 0.06384	
Maximum Angı	ılar Difference:	0.05959	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00184 0.10526	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.10526	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure F	PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$					
Diameter 1, in	0.00020	1.970	0.00010	0.006	YES						
Diameter 2, in (rotated 90°)	0.00320	1.970	0.00162	0.093	YES	Perpendicularity Tolerance Met? YES					
END 2											
Diameter 1, in	0.00200	1.970	0.00102	0.058	YES						
Diameter 2, in (rotated 90°)	0.00390	1.970	0.00198	0.113	YES						

Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-059	Reliable dial gauge measurements could not be
borning 1D.	LB-K-059	3 3
Sample ID:		performed on this rock type. Tolerance
3	 34.54-34.91	3 3

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

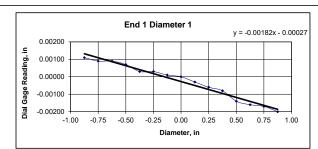
Client: Langan Engineering Upstate Confidential Project Project Name: Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-059 Sample ID:

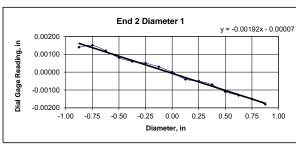
34.54-34.91

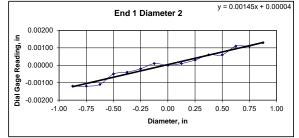
Depth, ft:

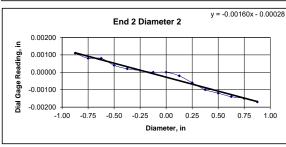
After cutting and grinding

After break




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-059 Sample ID: 40-41 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.30	4.30	4.30	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	599.7			
Bulk Density, lb/ft3	172	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedi	ure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00110	0.00090	0.00090	0.00070	0.00030	0.00030	0.00010	0.00000	-0.00030	-0.00060	-0.00080	-0.00140	-0.00160	-0.00170	-0.00200
Diameter 2, in (rotated 90°)	-0.00120	-0.00120	-0.00110	-0.00050	-0.00040	-0.00020	0.00010	0.00000	0.00010	0.00030	0.00060	0.00060	0.00110	0.00110	0.00130
											Difference between	een max and m	in readings, in:		
											0° =	0.00310	90° =	0.00250	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00150	0.00120	0.00080	0.00060	0.00050	0.00030	0.00000	-0.00040	-0.00050	-0.00070	-0.00110	-0.00130	-0.00150	-0.00180
Diameter 2, in (rotated 90°)	0.00110	0.00080	0.00080	0.00040	0.00020	0.00010	0.00000	0.00000	-0.00020	-0.00060	-0.00100	-0.00120	-0.00140	-0.00150	-0.00170
											Difference between	een max and m	in readings, in:		
											0° =	0.0033	90° =	0.0028	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00165
												Elatrace T	alaranca Mat2	NO	

	Flatness Tolerance Met?	NO	
DIAMETER 1			
DIAMETER 1			
End 1:			
	Slope of Best Fit Line	0.00182	
	Angle of Best Fit Line:	0.10428	
End 2:			
	Slope of Best Fit Line	0.00192	
	Angle of Best Fit Line:	0.10984	
Maximum Angi	ular Difference:	0.00557	
, idxiiiidiii / iiigi	aid. Directice.	0.00557	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line	0.00145	
	Angle of Best Fit Line:	0.08300	
Fnd 2:			
Liiu 2.	Slope of Best Fit Line	0.00160	
	Angle of Best Fit Line:	0.09167	
Mai	Jan Difference	0.00868	
maximum Angi	ular Difference:	0.00008	

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00310	1.980	0.00157	0.090	YES	
Diameter 2, in (rotated 90°)	0.00250	1.980	0.00126	0.072	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00330	1.980	0.00167	0.095	YES	
Diameter 2, in (rotated 90°)	0.00280	1.980	0.00141	0.081	YES	

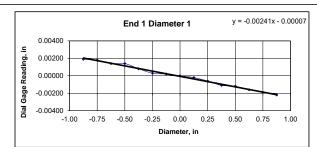
Client:	Langan Engineering	Test Date: 6/18/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 005	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

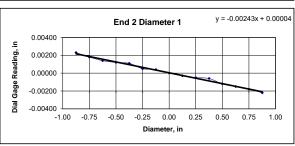
END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

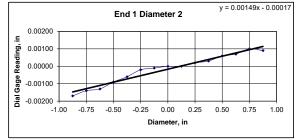
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-059 Sample ID: Depth, ft: 40-41

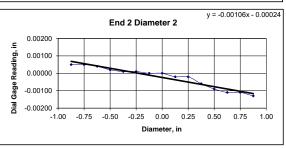
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-060 Sample ID: 30.53-30.91 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

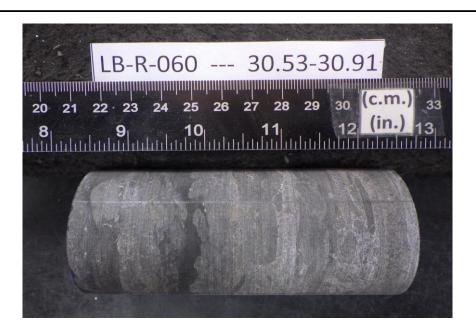

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.22	4.22	4.22	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	591.29			
Bulk Density, lb/ft3	174	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00190	0.00180	0.00140	0.00140	0.00080	0.00030	0.00020	0.00000	-0.00020	-0.00060	-0.00110	-0.00120	-0.00160	-0.00190	-0.00220
Diameter 2, in (rotated 90°)	-0.00170	-0.00140	-0.00130	-0.00090	-0.00060	-0.00020	-0.00010	0.00000	0.00000	0.00020	0.00030	0.00060	0.00070	0.00100	0.00090
											Difference between	en max and m	in readings, in:		
											0° =	0.00410	90° =	0.00270	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00230	0.00180	0.00140	0.00120	0.00110	0.00050	0.00040	0.00000	-0.00030	-0.00050	-0.00060	-0.00120	-0.00150	-0.00180	-0.00220
Diameter 2, in (rotated 90°)	0.00050	0.00050	0.00040	0.00020	0.00010	0.00010	0.00000	0.00000	-0.00020	-0.00020	-0.00060	-0.00090	-0.00110	-0.00110	-0.00130
											Difference between	en max and m	in readings, in:		
											0° =	0.0045	90° =	0.0018	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00225

DIAMETER 1			
End 1:		0.00241 0.13784	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00243 0.13915	
Maximum Angı	ılar Difference:	0.00131	
	Parallelism Tolerance Met? Spherically Seated	YES	
	Spriencally Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:			
		0.00149 0.08545	
DIAMETER 2 End 1: End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.08545	
End 1:	Slope of Best Fit Line Angle of Best Fit Line:		
End 1: End 2:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.08545	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00410	1.976	0.00207	0.119	YES	
Diameter 2, in (rotated 90°)	0.00270	1.976	0.00137	0.078	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00450	1.976	0.00228	0.130	YES	
Diameter 2, in (rotated 90°)	0.00180	1.976	0.00091	0.052	YES	



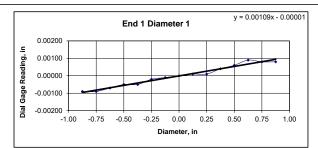
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-060	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance
		measurements were performed using a
Depth (ft):	30.53-30.91	measurements were performed using a machinist straightedge and feeler gauges to

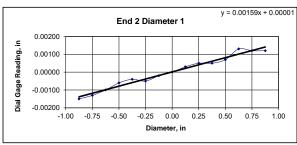
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-060 Sample ID: Depth, ft: 30.53-30.91

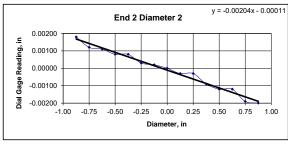
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-062 Sample ID: 32-33 Depth (ft): Visual Description: See photographs

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.36	4.36	4.36	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap \leq 0.02 in.?
Specimen Mass, g:	605.95			
Bulk Density, lb/ft3	172	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00090	-0.00090	-0.00070	-0.00050	-0.00050	-0.00020	-0.00010	0.00000	0.00010	0.00010	0.00040	0.00060	0.00090	0.00080	0.00080
Diameter 2, in (rotated 90°)	-0.00150	-0.00140	-0.00100	-0.00070	-0.00050	-0.00040	-0.00030	0.00000	0.00040	0.00050	0.00100	0.00110	0.00120	0.00140	0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00180	90° =	0.00340	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00150	-0.00130	-0.00100	-0.00060	-0.00040	-0.00050	-0.00020	0.00000	0.00030	0.00050	0.00050	0.00070	0.00130	0.00120	0.00120
Diameter 2, in (rotated 90°)	0.00180	0.00120	0.00110	0.00080	0.00080	0.00030	0.00020	0.00000	-0.00030	-0.00030	-0.00090	-0.00120	-0.00120	-0.00190	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.0028	90° =	0.0038	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00190

maximum umer	ence must be < 0.0020 m.	
	Flatness Tolerance Met?	NO
DIAMETER 1		
End 1:		
	Slope of Best Fit Line Angle of Best Fit Line:	0.00109 0.06221
End 2:	-	
Eliu 2.	Slope of Best Fit Line	0.00159
	Angle of Best Fit Line:	0.09135
Maximum Angu	llar Difference:	0.02914
	Parallelism Tolerance Met? Spherically Seated	NO
	,	
DIAMETER 2		
Fnd 1:		
2.10 2.	Slope of Best Fit Line	0.00188
	Angle of Best Fit Line:	0.10772
End 2:	Slope of Best Fit Line	0.00204
	Angle of Best Fit Line:	0.11705
Maximum Angu	llar Difference:	0.00933
	Parallelism Tolerance Met? Spherically Seated	NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00180	1.980	0.00091	0.052	YES	
Diameter 2, in (rotated 90°)	0.00340	1.980	0.00172	0.098	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00280	1.980	0.00141	0.081	YES	
Diameter 2, in (rotated 90°)	0.00380	1.980	0.00192	0.110	YES	

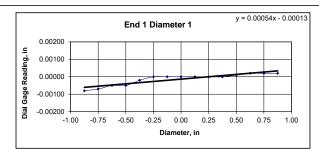
Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-007	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	32-33	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

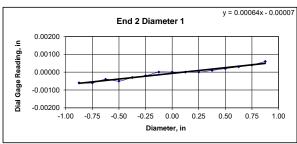
END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

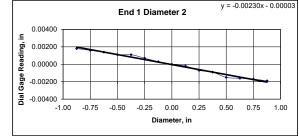
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-062 Sample ID: Depth, ft: 32-33

After cutting and grinding

After break




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-064 Sample ID: Depth (ft): 41.52-41.90 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.39	4.39	4.39	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.96	1.96	1.96	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	591.17			
Bulk Density, lb/ft3	170	Minimum Diameter Tolereno	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00080	-0.00070	-0.00050	-0.00050	-0.00020	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00020	0.00020	0.00020
Diameter 2, in (rotated 90°)	0.00180	0.00160	0.00140	0.00110	0.00110	0.00070	0.00030	0.00000	-0.00020	-0.00070	-0.00090	-0.00150	-0.00160	-0.00170	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00100	90° =	0.00370	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00060	-0.00060	-0.00040	-0.00050	-0.00030	-0.00020	0.00000	0.00000	0.00000	0.00000	0.00010	0.00020	0.00030	0.00040	0.00060
Diameter 2, in (rotated 90°)	-0.00180	-0.00190	-0.00150	-0.00100	-0.00080	-0.00030	-0.00010	0.00000	0.00000	0.00020	0.00060	0.00080	0.00090	0.00120	0.00150
											Difference between	en max and m	in readings, in:		
											0° =	0.0012	90° =	0.0034	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00054 0.03094	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00064 0.03651	
Maximum Angu	ular Difference:	0.00557	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00230 0.13162	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.13162	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00100	1.960	0.00051	0.029	YES	
Diameter 2, in (rotated 90°)	0.00370	1.960	0.00189	0.108	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00120	1.960	0.00061	0.035	YES	
Diameter 2, in (rotated 90°)	0.00340	1.960	0.00173	0.099	YES	

Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-064	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	41.52-41.90	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

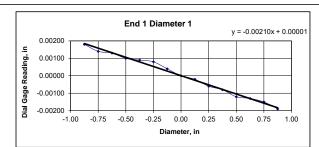
END FLATNESS		
END 1 Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES
END 2		
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES

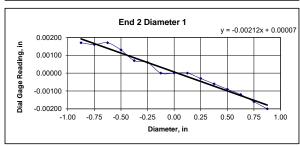
End Flatness Tolerance Met? YES

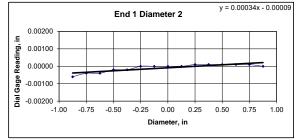
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-064 Sample ID: Depth, ft: 41.52-41.90

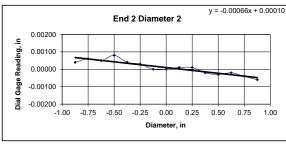
After cutting and grinding

After break




Client: Test Date: 6/19/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-065 Sample ID: 23.54-23.91 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.24	4.24	4.24	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	590.39			
Bulk Density, lb/ft3	172	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00180	0.00140	0.00130	0.00100	0.00090	0.00080	0.00040	0.00000	-0.00020	-0.00060	-0.00080	-0.00120	-0.00130	-0.00150	-0.00190
Diameter 2, in (rotated 90°)	-0.00060	-0.00040	-0.00040	-0.00020	-0.00020	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000
											Difference between	een max and m	in readings, in:		
											0° =	0.00370	90° =	0.00070	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00170	0.00160	0.00170	0.00130	0.00070	0.00060	0.00000	0.00000	0.00000	-0.00030	-0.00060	-0.00090	-0.00120	-0.00160	-0.00200
Diameter 2, in (rotated 90°)	0.00040	0.00060	0.00050	0.00080	0.00040	0.00030	0.00000	0.00000	0.00010	0.00010	-0.00020	-0.00030	-0.00020	-0.00040	-0.00060
											Difference between	een max and m	in readings, in:		
											0° =	0.0037	90° =	0.0014	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00210 0.12048	
End 2: Maximum Angu	Slope of Best Fit Line Angle of Best Fit Line: ular Difference:	0.00212 0.12130 0.00082	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00034 0.01964	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1: End 2:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01964	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00370	1.980	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00070	1.980	0.00035	0.020	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00370	1.980	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00140	1.980	0.00071	0.041	YES	

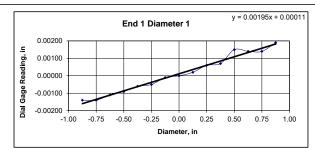
Client:	Langan Engineering	Test Date: 6/19/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-065	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	23.54-23.91	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

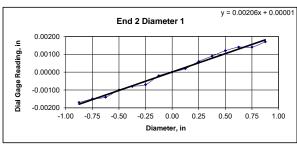
END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
	End Flatness Tolerance Met? YES						

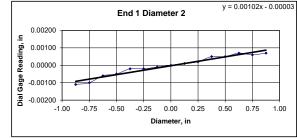
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-065 Sample ID: Depth, ft: 23.54-23.91

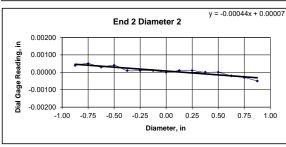
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-066 Sample ID: 25.06-25.45 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.34	4.34	4.34	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	614.15			
Bulk Density, lb/ft3	175	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00140	-0.00140	-0.00110	-0.00090	-0.00060	-0.00050	-0.00010	0.00000	0.00020	0.00060	0.00070	0.00150	0.00140	0.00140	0.00190
Diameter 2, in (rotated 90°)	-0.00110	-0.00100	-0.00060	-0.00050	-0.00020	-0.00020	-0.00010	0.00000	0.00010	0.00020	0.00050	0.00050	0.00070	0.00060	0.00070
											Difference between	en max and m	in readings, in:		
											0° =	0.00330	90° =	0.00180	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00150	-0.00140	-0.00100	-0.00080	-0.00070	-0.00020	0.00000	0.00020	0.00060	0.00090	0.00120	0.00140	0.00140	0.00170
Diameter 2, in (rotated 90°)	0.00040	0.00050	0.00030	0.00040	0.00010	0.00010	0.00010	0.00000	0.00010	0.00010	0.00000	0.00000	-0.00020	-0.00030	-0.00050
											Difference between	en max and m	in readings, in:		
											0° =	0.0034	90° =	0.001	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00170

	Flatness Tolerance Met?	NO	
DIAMETER 1			
End 1:			
Liid 1.	Slope of Best Fit Line	0.00195	
	Angle of Best Fit Line:	0.11197	
F. 12			
End 2:	Slope of Best Fit Line	0.00206	
	Angle of Best Fit Line:	0.11803	
Maximum Angu	lar Difference:	0.00606	
	Parallelism Tolerance Met?	NO	
	Parallelism Tolerance Met? Spherically Seated	NO	
		NO	
		NO	
DIAMETER 2		NO	
DIAMETER 2 End 1:		NO	
	Spherically Seated Slope of Best Fit Line	0.00102	
	Spherically Seated		
End 1:	Spherically Seated Slope of Best Fit Line	0.00102	
	Spherically Seated Slope of Best Fit Line	0.00102	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00102 0.05861	
End 1: End 2:	Sherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00102 0.05861 0.00044 0.02537	
End 1:	Sherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00102 0.05861 0.00044	

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00330	1.980	0.00167	0.095	YES	
Diameter 2, in (rotated 90°)	0.00180	1.980	0.00091	0.052	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.980	0.00172	0.098	YES	
Diameter 2, in (rotated 90°)	0.00100	1.980	0.00051	0.029	YES	

Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-066	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	25.06-25.45	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

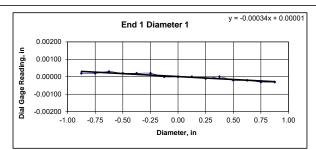
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-066 Sample ID: Depth, ft:

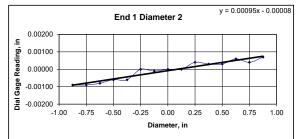
25.06-25.45

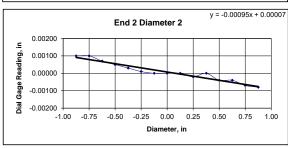
After cutting and grinding

After break



Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-066 Sample ID: 26.31-26.68 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.37	4.37	4.37	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	622.3			
Bulk Density, lb/ft3	175	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ıre FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00020	0.00030	0.00020	0.00020	0.00020	0.00000	0.00000	0.00000	-0.00010	0.00000	-0.00020	-0.00020	-0.00030	-0.00030
Diameter 2, in (rotated 90°)	-0.00090	-0.00090	-0.00080	-0.00060	-0.00060	0.00000	-0.00010	0.00000	0.00000	0.00040	0.00030	0.00030	0.00060	0.00040	0.00070
											Difference between	en max and m	in readings, in:		
											0° =	0.00060	90° =	0.00160	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00030	0.00030	0.00030	0.00020	0.00030	0.00020	0.00020	0.00000	0.00020	0.00020	-0.00010	0.00000	-0.00010	-0.00010	-0.00010
Diameter 2, in (rotated 90°)	0.00100	0.00100	0.00070	0.00050	0.00030	0.00010	0.00000	0.00000	0.00000	-0.00020	0.00000	-0.00040	-0.00040	-0.00070	-0.00080
											Difference between	en max and m	in readings, in:		
											0° =	0.0004	90° =	0.0018	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00090

DIAMETER 1			
F : 1.4			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00034 0.01932	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00026 0.01506	
Maximum Angı	ular Difference:	0.00426	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:			
		0.00095 0.05435	
	Slope of Best Fit Line Angle of Best Fit Line:	0.05435	
End 1:	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.05435	

Flatness Tolerance Met?

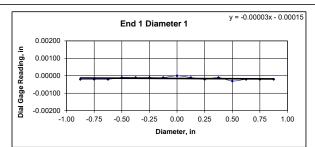
YES

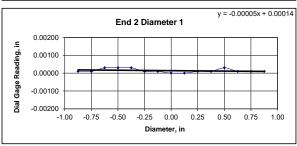
PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00060	1.987	0.00030	0.017	YES	
Diameter 2, in (rotated 90°)	0.00160	1.987	0.00081	0.046	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00040	1.987	0.00020	0.012	YES	
Diameter 2, in (rotated 90°)	0.00180	1.987	0.00091	0.052	YES	

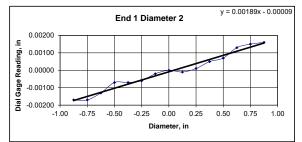
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-066 Sample ID: Depth, ft: 26.31-26.68

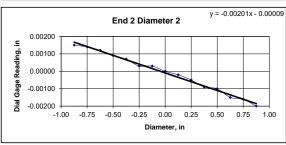
After cutting and grinding

After break




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-069 Sample ID: Depth (ft): 44.54-44.92 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

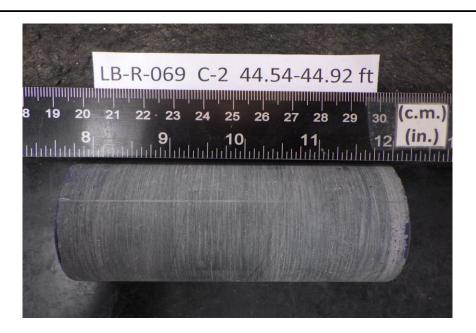

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.36	4.36	4.36	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	600.14			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLE	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00020	-0.00020	-0.00020	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	-0.00010	-0.00020	-0.00010	-0.00030	-0.00020	-0.00020	-0.00020
Diameter 2, in (rotated 90°)	-0.00170	-0.00170	-0.00130	-0.00070	-0.00070	-0.00060	-0.00020	0.00000	-0.00010	0.00010	0.00050	0.00070	0.00130	0.00150	0.00160
											Difference between	en max and m	in readings, in:		
											0° =	0.00030	90° =	0.00330	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00010	0.00030	0.00030	0.00030	0.00010	0.00010	0.00000	0.00000	0.00010	0.00010	0.00030	0.00010	0.00010	0.00010
Diameter 2, in (rotated 90°)	0.00150	0.00140	0.00120	0.00090	0.00070	0.00030	0.00030	0.00000	-0.00020	-0.00050	-0.00090	-0.00100	-0.00150	-0.00160	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.0003	90° =	0.0035	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00175

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00003 0.00164	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00005 0.00278	
Maximum Angı	ular Difference:	0.00115	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00189 0.10804	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.10804	

Flatness Tolerance Met?

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00030	1.975	0.00015	0.009	YES	
Diameter 2, in (rotated 90°)	0.00330	1.975	0.00167	0.096	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00030	1.975	0.00015	0.009	YES	
Diameter 2, in (rotated 90°)	0.00350	1.975	0.00177	0.102	YES	



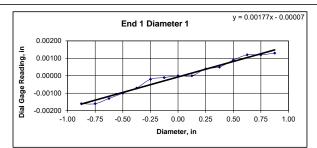
Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-069	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	44.54-44.92	machinist straightedge and feeler gauges to

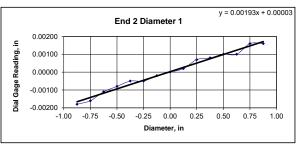
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

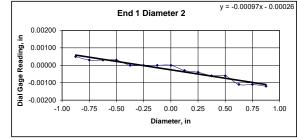
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-069 Sample ID: Depth, ft: 44.54-44.92

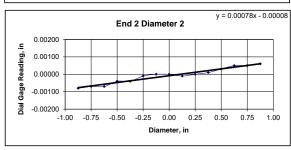
After cutting and grinding

After break




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-070 Sample ID: 36.55-36.93 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.35	4.35	4.35	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.96	1.96	1.96	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	592.04			
Bulk Density, lb/ft ³	171	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00160	-0.00160	-0.00130	-0.00100	-0.00070	-0.00020	-0.00010	0.00000	0.00000	0.00040	0.00050	0.00090	0.00120	0.00120	0.00130
Diameter 2, in (rotated 90°)	0.00050	0.00030	0.00030	0.00030	0.00000	0.00000	0.00000	0.00000	-0.00030	-0.00040	-0.00060	-0.00060	-0.00110	-0.00110	-0.00120
											Difference between	en max and m	in readings, in:		
											0° =	0.00290	90° =	0.00170	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00180	-0.00160	-0.00110	-0.00080	-0.00050	-0.00050	-0.00020	0.00000	0.00020	0.00070	0.00080	0.00100	0.00100	0.00160	0.00160
Diameter 2, in (rotated 90°)	-0.00080	-0.00070	-0.00070	-0.00040	-0.00040	-0.00010	0.00000	0.00000	-0.00010	0.00000	0.00010	0.00030	0.00050	0.00050	0.00060
											Difference between	en max and m	in readings, in:		
											0° =	0.0034	90° =	0.0014	
											Maximum differe	ence must be <	0.0020 in.	Difference = $+$	0.00170

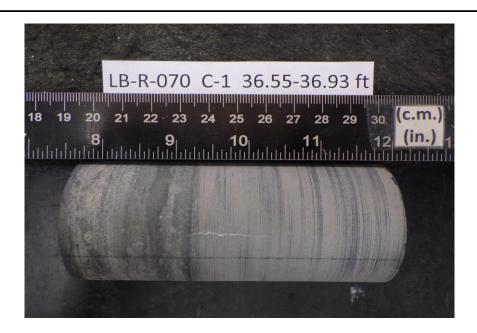
	Flatness Tolerance Met?	NO	
DIAMETER 1			
End 1:			
		0.00177	
	Angle of Best Fit Line:	0.10166	
End 2:			
	Slope of Best Fit Line	0.00193	
	Angle of Best Fit Line:	0.11034	
Mavimum Angi	ular Difference:	0.00868	
iaxiiiaiii 7iiigi	and Direction	0.00000	
	B		
	Parallelism Tolerance Met?	NO	
	Parallelism Tolerance Met? Spherically Seated	NO	
		NO	
DIAMETER 2		NO	
	Spherically Seated	NO	
DIAMETER 2 End 1:	Spherically Seated		
	Spherically Seated	0.00097 0.05533	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00097	
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00097 0.05533	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00097 0.05533 0.00078	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00097 0.05533	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00097 0.05533 0.00078	

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00290	1.960	0.00148	0.085	YES	
Diameter 2, in (rotated 90°)	0.00170	1.960	0.00087	0.050	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.960	0.00173	0.099	YES	
Diameter 2, in (rotated 90°)	0.00140	1.960	0.00071	0.041	YES	



Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-070	Reliable dial gauge measurements could not be
501g 151	LD K 070	3 3
Sample ID:		performed on this rock type. Tolerance
3	 36.55-36.93	3 3

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

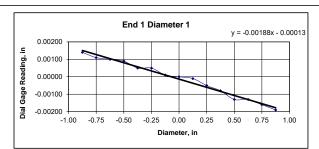
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-070 Sample ID:

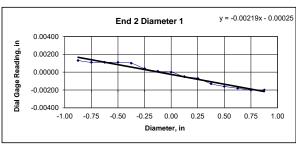
36.55-36.93

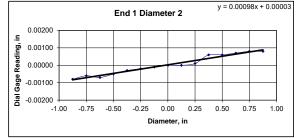
Depth, ft:

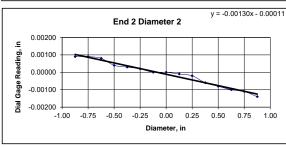
After cutting and grinding

After break




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-070 Sample ID: 41.5-42.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.15	4.15	4.15	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	576.34			
Bulk Density, lb/ft3	173	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00110	0.00100	0.00090	0.00050	0.00050	0.00010	0.00000	-0.00010	-0.00050	-0.00080	-0.00130	-0.00130	-0.00160	-0.00190
Diameter 2, in (rotated 90°)	-0.00080	-0.00060	-0.00070	-0.00050	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00010	0.00060	0.00060	0.00070	0.00080	0.00080
											Difference between	een max and m	in readings, in:		
											0° =	0.00330	90° =	0.00160	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00130	0.00110	0.00110	0.00110	0.00100	0.00040	0.00010	0.00000	-0.00050	-0.00070	-0.00130	-0.00160	-0.00180	-0.00200	-0.00200
Diameter 2, in (rotated 90°)	0.00090	0.00090	0.00080	0.00040	0.00030	0.00020	0.00000	0.00000	-0.00010	-0.00020	-0.00060	-0.00080	-0.00100	-0.00110	-0.00140
											Difference between	een max and m	in readings, in:		
											0° =	0.0033	90° =	0.0023	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00165

		_
	Flatness Tolerance Met?	NO
DIAMETER 1		
DIAMETER I		
End 1:		
	Slope of Best Fit Line	0.00188
	Angle of Best Fit Line:	0.10755
Fnd 2:		
Liiu Z.	Slope of Best Fit Line	0.00219
	Angle of Best Fit Line:	0.12556
Maximum Angu	ılar Difference:	0.01801
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		NO
	Spherically Seated	NO
DIAMETER 2 End 1:	Spherically Seated	NO 0.00098
	Spherically Seated	
End 1:	Spherically Seated Slope of Best Fit Line	0.00098
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00098 0.05631
End 1:	Sherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00098 0.05631 0.00130
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00098 0.05631
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00098 0.05631 0.00130

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00330	1.970	0.00168	0.096	YES	
Diameter 2, in (rotated 90°)	0.00160	1.970	0.00081	0.047	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00330	1.970	0.00168	0.096	YES	
Diameter 2, in (rotated 90°)	0.00230	1.970	0.00117	0.067	YES	

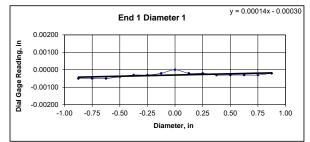
Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-070	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	41.5-42.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

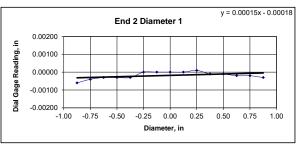
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

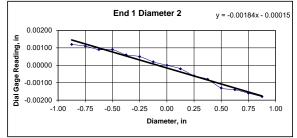
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-070 Sample ID: Depth, ft: 41.5-42.5

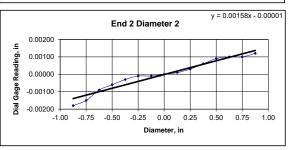
After cutting and grinding

After break




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-074 Sample ID: 63.1-63.6 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)	
	1	2	Average			
Specimen Length, in:	4.35	4.35	4.35		Maximum gap between side of core and reference surface plate:	
Specimen Diameter, in:	1.97	1.97	1.97		Is the maximum gap ≤ 0.02 in.? NO	
Specimen Mass, g:	598.72					
Bulk Density, lb/ft3	172	Minimum Diameter Tolereno	e Met?	ES	Maximum difference must be < 0.020 in.	
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met?	ES	Straightness Tolerance Met? NO	

END FLATNESS AND PARALLE	ELISM (Procedu	ıre FP1)	·	<u> </u>	<u> </u>		<u> </u>	<u> </u>	·		·	<u> </u>	·		
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00050	-0.00050	-0.00050	-0.00040	-0.00030	-0.00030	-0.00020	0.00000	-0.00020	-0.00020	-0.00030	-0.00030	-0.00030	-0.00030	-0.00020
Diameter 2, in (rotated 90°)	0.00120	0.00110	0.00090	0.00090	0.00060	0.00050	0.00020	0.00000	-0.00020	-0.00060	-0.00080	-0.00130	-0.00140	-0.00160	-0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.00050	90° =	0.00300	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00060	-0.00040	-0.00030	-0.00030	-0.00030	0.00000	0.00000	0.00000	0.00000	0.00010	-0.00010	-0.00010	-0.00020	-0.00020	-0.00030
Diameter 2, in (rotated 90°)	-0.00180	-0.00150	-0.00090	-0.00060	-0.00030	-0.00010	-0.00010	0.00000	0.00010	0.00030	0.00060	0.00090	0.00100	0.00100	0.00120
											Difference between	en max and m	in readings, in:		
											0° =	0.0007	90° =	0.003	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00150

DIAMETER 1			
End 1:			
	Slope of Best Fit Line	0.00014	
	Angle of Best Fit Line:	0.00802	
End 2:			
	Slope of Best Fit Line	0.00015	
	Angle of Best Fit Line:	0.00884	
Maximum Angu	lar Difference:	0.00082	
	Parallelism Tolerance Met?	VES	
	Spherically Seated	123	
DIAMETER 2			
DIAMETER 2 Fnd 1:			
	Slope of Best Fit Line	0.00184	
	Slope of Best Fit Line Angle of Best Fit Line:	0.00184 0.10526	
End 1:			
End 1:	Angle of Best Fit Line:	0.10526	
End 1: End 2:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.10526 0.00158 0.09036	
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.10526	
End 1: End 2:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: lar Difference:	0.10526 0.00158 0.09036 0.01490	
End 1: End 2:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: lar Difference: Parallelism Tolerance Met?	0.10526 0.00158 0.09036	
End 1: End 2:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: lar Difference:	0.10526 0.00158 0.09036 0.01490	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00050	1.970	0.00025	0.015	YES	
Diameter 2, in (rotated 90°)	0.00300	1.970	0.00152	0.087	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00070	1.970	0.00036	0.020	YES	
Diameter 2, in (rotated 90°)	0.00300	1.970	0.00152	0.087	YES	

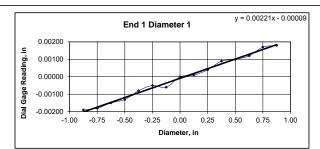
Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-074	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	63.1-63.6	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

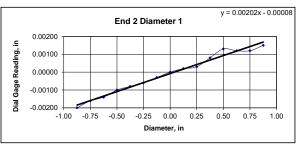
END FLATNESS									
END 1									
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
END 2									
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
	End Flatness Tolerance Met? YES								

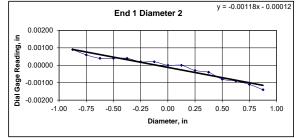
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-074 Sample ID: Depth, ft: 63.1-63.6

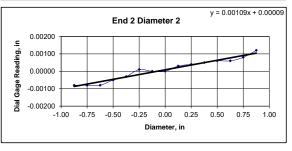
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-074 Sample ID: 65.13-65.50 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.39	4.40	4.40	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	623.93			
Bulk Density, lb/ft3	177	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00180	-0.00150	-0.00130	-0.00080	-0.00050	-0.00060	0.00000	0.00010	0.00040	0.00090	0.00100	0.00120	0.00170	0.00180
Diameter 2, in (rotated 90°)	0.00090	0.00060	0.00040	0.00040	0.00040	0.00020	0.00020	0.00000	0.00000	-0.00030	-0.00040	-0.00080	-0.00090	-0.00110	-0.00140
											Difference between	en max and m	in readings, in:		
											0° =	0.00370	90° =	0.00230	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00200	-0.00160	-0.00140	-0.00100	-0.00080	-0.00060	-0.00030	0.00000	0.00020	0.00030	0.00080	0.00130	0.00120	0.00120	0.00150
Diameter 2, in (rotated 90°)	-0.00080	-0.00080	-0.00080	-0.00050	-0.00030	0.00010	0.00000	0.00000	0.00030	0.00040	0.00050	0.00060	0.00060	0.00080	0.00120
											Difference between	en max and m	in readings, in:		
											0° =	0.0035	90° =	0.002	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00221 0.12638	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00202 0.11557	
Maximum Angu	llar Difference:	0.01080	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00118 0.06745	
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.06745	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00370	1.970	0.00188	0.108	YES	
Diameter 2, in (rotated 90°)	0.00230	1.970	0.00117	0.067	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00350	1.970	0.00178	0.102	YES	
Diameter 2, in (rotated 90°)	0.00200	1.970	0.00102	0.058	YES	
1						

Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-074	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	65.13-65.50	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

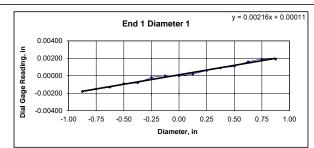
END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

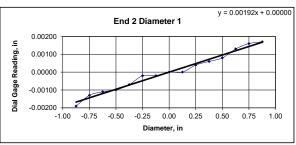
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-074 Sample ID: Depth, ft:

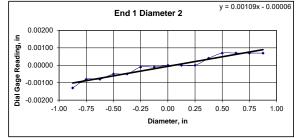
65.13-65.50

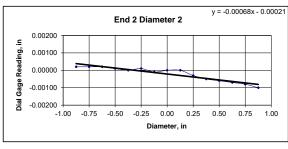
After cutting and grinding

After break




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-080 Sample ID: 53.57-53.95 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.31	4.31	4.31	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	596.21			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00180	-0.00150	-0.00130	-0.00090	-0.00080	-0.00020	0.00000	0.00000	0.00020	0.00060	0.00090	0.00110	0.00160	0.00190	0.00190
Diameter 2, in (rotated 90°)	-0.00130	-0.00080	-0.00080	-0.00050	-0.00050	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00040	0.00070	0.00070	0.00070	0.00070
											Difference between	en max and m	in readings, in:		
											0° =	0.00370	90° =	0.00200	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00130	-0.00110	-0.00100	-0.00070	-0.00020	-0.00020	0.00000	0.00000	0.00040	0.00060	0.00080	0.00130	0.00160	0.00170
Diameter 2, in (rotated 90°)	0.00020	0.00020	0.00020	0.00010	0.00000	0.00010	-0.00010	0.00000	0.00000	-0.00030	-0.00050	-0.00060	-0.00070	-0.00080	-0.00100
											Difference between	en max and m	in readings, in:		
											0° =	0.0036	90° =	0.0012	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00216 0.12392	
	3	0.12532	
End 2:	Slope of Best Fit Line	0.00192	
	Angle of Best Fit Line:	0.10984	
Maximum Angı	ular Difference:	0.01408	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line	0.00109 0.06270	
	Angle of Best Fit Line:	0.06270	
End 2:	Slope of Best Fit Line	0.00068	
	Angle of Best Fit Line:	0.03912	
Maximum Angı	Jar Difference	0.02357	
maximum Angi	nai billerence.	0.02337	
	Parallelism Tolerance Met?	NO	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00370	1.980	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00200	1.980	0.00101	0.058	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00360	1.980	0.00182	0.104	YES	
Diameter 2, in (rotated 90°)	0.00120	1.980	0.00061	0.035	YES	
1						

Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 000	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

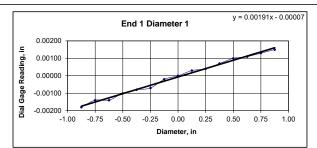
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

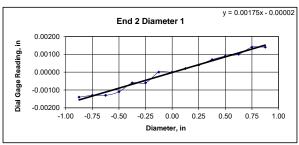
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-080 Sample ID: Depth, ft:

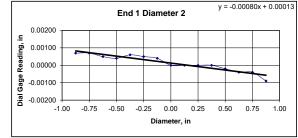
53.57-53.95

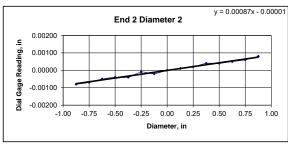
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-081 Sample ID: 35.84-36.21 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.34	4.34	4.34	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.95	1.96	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	614.17			
Bulk Density, lb/ft3	178	Minimum Diameter Tolereno	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

ELISM (Procedu	ire FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00180	-0.00140	-0.00140	-0.00100	-0.00080	-0.00070	-0.00020	0.00000	0.00030	0.00040	0.00070	0.00100	0.00110	0.00130	0.00150
0.00070	0.00070	0.00050	0.00040	0.00060	0.00050	0.00040	0.00000	0.00000	0.00000	0.00000	-0.00020	-0.00040	-0.00040	-0.00090
										Difference between	en max and m	in readings, in:		
										0° =	0.00330	90° =	0.00160	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00140	-0.00130	-0.00130	-0.00110	-0.00060	-0.00060	0.00000	0.00000	0.00020	0.00040	0.00070	0.00090	0.00100	0.00140	0.00140
-0.00080	-0.00070	-0.00050	-0.00040	-0.00040	-0.00010	-0.00020	0.00000	0.00010	0.00020	0.00040	0.00040	0.00050	0.00060	0.00080
										Difference between	en max and m	in readings, in:		
										0° =	0.0028	90° =	0.0016	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00165
	-0.875 -0.00180 0.00070 -0.875 -0.00140	-0.00180 -0.00140 0.00070 0.00070 -0.875 -0.750 -0.00140 -0.00130	-0.875 -0.750 -0.625 -0.00180 -0.00140 -0.00140 0.00070 0.00070 0.00050 -0.875 -0.750 -0.625 -0.00140 -0.00130 -0.00130	-0.875 -0.750 -0.625 -0.500 -0.00180 -0.00140 -0.00140 -0.00100 -0.00070 -0.0050 -0.00040 -0.0070 -0.0050 -0.00140 -0.00140 -0.00130 -0.00130 -0.00110	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00180 -0.00140 -0.00140 -0.00100 -0.00080 0.00070 0.00070 0.00050 0.00040 0.00060 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00140 -0.00130 -0.00110 -0.00060	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00180 -0.00140 -0.00140 -0.00100 -0.00080 -0.00070 0.00070 0.00050 0.00040 0.00060 0.00050 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00140 -0.00130 -0.00130 -0.00110 -0.00060 -0.00060	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00180 -0.00140 -0.00140 -0.00100 -0.00080 -0.00070 -0.00020 0.00070 0.00070 0.00050 0.00040 0.00060 0.00050 0.00040 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00140 -0.00130 -0.00130 -0.00110 -0.00060 -0.00060 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00180 -0.00140 -0.00140 -0.00100 -0.00080 -0.00070 -0.00020 0.00000 0.00070 0.00070 0.00050 0.00040 0.00060 0.00050 0.00040 0.00050 0.00050 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00140 -0.00130 -0.00130 -0.00110 -0.00060 -0.00060 0.00000 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00180 -0.00140 -0.00140 -0.00100 -0.00080 -0.00070 -0.00020 0.00000 0.00030 0.00070 0.00070 0.00050 0.00040 0.00060 0.00050 0.00040 0.00050 0.00040 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00140 -0.00130 -0.00130 -0.00110 -0.00060 -0.00060 0.00000 0.00000 0.00020	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00180 -0.00140 -0.00140 -0.00100 -0.00080 -0.00070 -0.0020 0.00000 0.00030 0.00040 0.00070 0.00070 0.00050 0.00040 0.00050 0.00040 0.00040 0.00000 0.00000 0.00000 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00140 -0.00130 -0.00130 -0.00110 -0.00060 -0.00060 0.00000 0.00000 0.00020 0.00040	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875

Slope of Best Fit Line	0.00191	
Angle of Best Fit Line.	0.10908	
Slope of Best Fit Line Angle of Best Fit Line:	0.00175 0.10051	
ular Difference:	0.00917	
Parallelism Tolerance Met? Spherically Seated	NO	
Slope of Best Fit Line Angle of Best Fit Line:	0.00080 0.04567	
Slope of Best Fit Line		
Slope of Best Fit Line Angle of Best Fit Line:		
Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.04567	
	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: Jlar Difference: Parallelism Tolerance Met?	Slope of Best Fit Line

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00330	1.960	0.00168	0.096	YES	
Diameter 2, in (rotated 90°)	0.00160	1.960	0.00082	0.047	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00280	1.960	0.00143	0.082	YES	
Diameter 2, in (rotated 90°)	0.00160	1.960	0.00082	0.047	YES	
1						

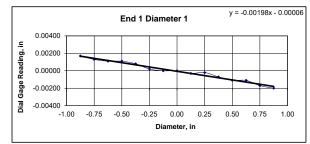
Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-081	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	35.84-36.21	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

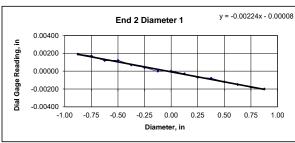
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

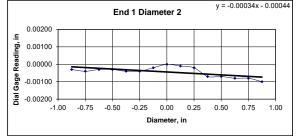
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-081 Sample ID: Depth, ft: 35.84-36.21

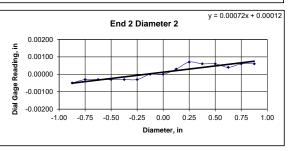
After cutting and grinding

After break




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-086 Sample ID: Depth (ft): 32.04-32.41 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.44	4.44	4.44	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.97	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	624.4			
Bulk Density, lb/ft3	175	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALLE	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00170	0.00130	0.00110	0.00110	0.00080	0.00020	0.00000	0.00000	-0.00030	-0.00020	-0.00070	-0.00110	-0.00110	-0.00170	-0.00200
Diameter 2, in (rotated 90°)	-0.00030	-0.00040	-0.00030	-0.00030	-0.00040	-0.00040	-0.00020	0.00000	-0.00010	-0.00020	-0.00070	-0.00070	-0.00080	-0.00080	-0.00100
											Difference between	een max and m	in readings, in:		
											0° =	0.00370	90° =	0.00100	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00190	0.00170	0.00120	0.00120	0.00070	0.00040	0.00000	0.00000	-0.00030	-0.00070	-0.00080	-0.00120	-0.00150	-0.00180	-0.00200
Diameter 2, in (rotated 90°)	-0.00050	-0.00030	-0.00030	-0.00030	-0.00030	-0.00030	0.00000	0.00000	0.00030	0.00070	0.00060	0.00060	0.00040	0.00060	0.00060
											Difference between	een max and m	in readings, in:		
											0° =	0.0039	90° =	0.0012	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00195

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00198 0.11345	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00224 0.12834	
Maximum Angu	lar Difference:	0.01490	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Sprierically Seated		
DIAMETER 2	Sprierically Seated		
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00034 0.01932	
	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.01932	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00370	1.975	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00100	1.975	0.00051	0.029	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00390	1.975	0.00197	0.113	YES	
Diameter 2, in (rotated 90°)	0.00120	1.975	0.00061	0.035	YES	

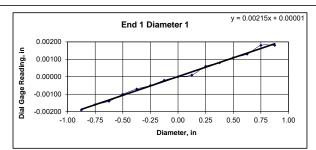
Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-086	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	32.04-32.41	machinist straightedge and feeler gauges to
Visual Description:		ASTM specifications.

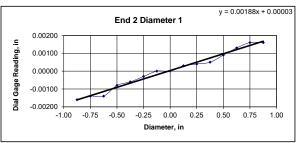
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

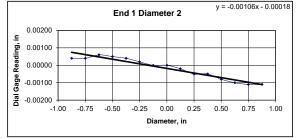
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-086 Sample ID: Depth, ft: 32.04-32.41

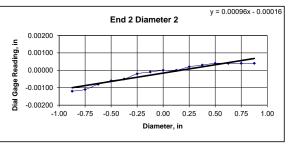
After cutting and grinding

After break




Client: Test Date: 6/19/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-091 Sample ID: 30-30.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.44	4.44	4.44	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.96	1.94	1.95	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	618.6			
Bulk Density, lb/ft3	177	Minimum Diameter Tolereno	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.3	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALLI	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00160	-0.00140	-0.00100	-0.00070	-0.00050	-0.00020	0.00000	0.00010	0.00060	0.00080	0.00110	0.00130	0.00180	0.00180
Diameter 2, in (rotated 90°)	0.00040	0.00040	0.00060	0.00050	0.00040	0.00020	0.00000	0.00000	-0.00020	-0.00050	-0.00050	-0.00080	-0.00100	-0.00110	-0.00110
											Difference between	en max and m	in readings, in:		
											0° =	0.00370	90° =	0.00170	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00160	-0.00140	-0.00140	-0.00080	-0.00060	-0.00030	0.00000	0.00000	0.00030	0.00040	0.00050	0.00090	0.00130	0.00160	0.00160
Diameter 2, in (rotated 90°)	-0.00120	-0.00110	-0.00080	-0.00060	-0.00050	-0.00020	-0.00010	0.00000	0.00000	0.00020	0.00030	0.00040	0.00040	0.00040	0.00040
											Difference between	en max and m	in readings, in:		
											0° =	0.0032	90° =	0.0016	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00215 0.12310	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00188 0.10755	
Maximum Angu	llar Difference:	0.01555	
	Parallelism Tolerance Met? Spherically Seated	NO	
	,		
DIAMETER 2			
DIAMETER 2 End 1:		0.00106 0.06057	
	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.06057	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00370	1.950	0.00190	0.109	YES	
Diameter 2, in (rotated 90°)	0.00170	1.950	0.00087	0.050	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00320	1.950	0.00164	0.094	YES	
Diameter 2, in (rotated 90°)	0.00160	1.950	0.00082	0.047	YES	
1						

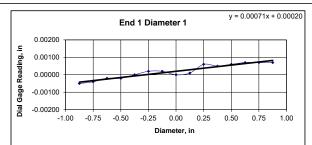
Client:	Langan Engineering	Test Date: 6/19/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-091	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	30-30.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

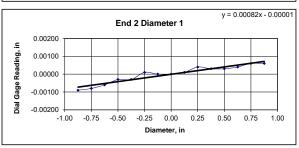
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

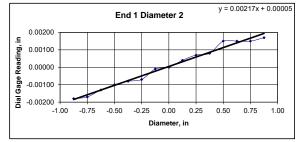
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-091 Sample ID: Depth, ft: 30-30.5

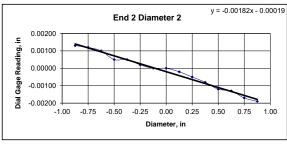
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-098 Sample ID: 29.04-29.42 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.43	4.43	4.43	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	619.85			
Bulk Density, lb/ft3	173	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ıre FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00050	-0.00040	-0.00020	-0.00020	0.00000	0.00020	0.00020	0.00000	0.00010	0.00060	0.00050	0.00060	0.00070	0.00070	0.00070
Diameter 2, in (rotated 90°)	-0.00180	-0.00170	-0.00130	-0.00100	-0.00080	-0.00070	-0.00010	0.00000	0.00040	0.00070	0.00080	0.00150	0.00150	0.00150	0.00170
											Difference between	en max and m	in readings, in:		
											0° =	0.00120	90° =	0.00350	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00090	-0.00080	-0.00060	-0.00030	-0.00030	0.00010	0.00000	0.00000	0.00010	0.00040	0.00030	0.00030	0.00040	0.00060	0.00060
Diameter 2, in (rotated 90°)	0.00130	0.00120	0.00100	0.00050	0.00050	0.00020	0.00000	0.00000	-0.00020	-0.00050	-0.00080	-0.00120	-0.00130	-0.00170	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.0015	90° =	0.0032	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00175

	Flatness Tolerance Met?	NO	
DIAMETER 1			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00071 0.04076	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00082 0.04715	
Maximum Angı	ular Difference:	0.00638	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00217 0.12409	
End 2:	Slope of Best Fit Line	0.00182	
	Angle of Best Fit Line:	0.10411	

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00120	1.980	0.00061	0.035	YES					
Diameter 2, in (rotated 90°)	0.00350	1.980	0.00177	0.101	YES	Perpendicularity Tolerance Met? YES				
END 2										
Diameter 1, in	0.00150	1.980	0.00076	0.043	YES					
Diameter 2, in (rotated 90°)	0.00320	1.980	0.00162	0.093	YES					

Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Davis a ID.	IB B 000	Daliable diel actuer managements actual and be
Boring ID:	LB-R-098	Reliable dial gauge measurements could not be
Sample ID:	LB-R-098 	performed on this rock type. Tolerance
	LB-R-098 29.04-29.42	3 3

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
End Flatness Tolerance Met? YES							

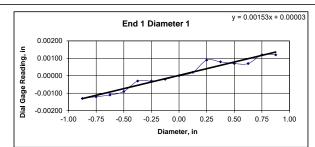
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-098 Sample ID:

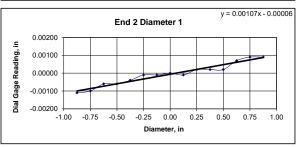
29.04-29.42

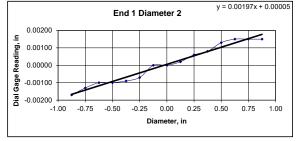
Depth, ft:

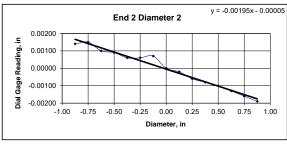
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-098 Sample ID: 35-36 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.33	4.33	4.33	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	608.09			
Bulk Density, lb/ft3	172	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALLE	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00130	-0.00120	-0.00110	-0.00090	-0.00030	-0.00030	-0.00020	0.00000	0.00020	0.00090	0.00080	0.00070	0.00070	0.00120	0.00120
Diameter 2, in (rotated 90°)	-0.00170	-0.00130	-0.00100	-0.00100	-0.00090	-0.00070	0.00000	0.00000	0.00020	0.00060	0.00080	0.00130	0.00150	0.00150	0.00150
	Difference between max and min readings, in:														
											0° =	0.00250	90° =	0.00320	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00110	-0.00100	-0.00060	-0.00060	-0.00040	-0.00010	-0.00010	0.00000	-0.00010	0.00020	0.00020	0.00020	0.00070	0.00090	0.00090
Diameter 2, in (rotated 90°)	0.00140	0.00150	0.00100	0.00090	0.00060	0.00060	0.00070	0.00000	-0.00020	-0.00060	-0.00080	-0.00100	-0.00130	-0.00160	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.002	90° =	0.0034	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00170

DIAMETER 1		
End 1:	Character States	0.00153
	Slope of Best Fit Line Angle of Best Fit Line:	0.08742
Fnd 2:		
2.10 2.1	Slope of Best Fit Line	0.00107
	Angle of Best Fit Line:	0.06139
Maximum Angu	llar Difference:	0.02603
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
DIAMETER 2 End 1:		
	Slope of Best Fit Line	0.00197
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00197 0.11263
End 1:	Angle of Best Fit Line:	0.11263
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11263 0.00195
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11263 0.00195 0.11181
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11263 0.00195 0.11181 0.00082

Flatness Tolerance Met?

PERPENDICULARITY (Procedure I	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00250	1.990	0.00126	0.072	YES	
Diameter 2, in (rotated 90°)	0.00320	1.990	0.00161	0.092	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00200	1.990	0.00101	0.058	YES	
Diameter 2, in (rotated 90°)	0.00340	1.990	0.00171	0.098	YES	

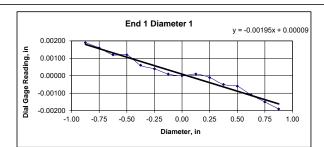
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 050	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
D H- (6)		Integration were performed using a
Depth (ft):	35-36	machinist straightedge and feeler gauges to

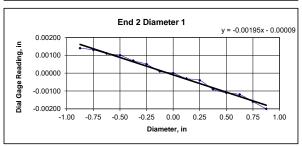
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

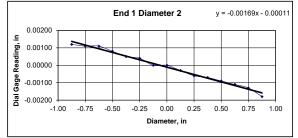
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-098 Sample ID: Depth, ft: 35-36

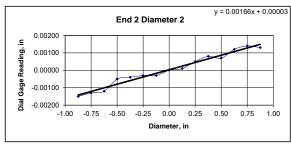
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-102 Sample ID: 25.52-25.90 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.33	4.33	4.33	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap \leq 0.02 in.? NO
Specimen Mass, g:	590.88			
Bulk Density, lb/ft3	170	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00190	0.00160	0.00120	0.00120	0.00060	0.00040	0.00010	0.00000	0.00010	-0.00010	-0.00050	-0.00060	-0.00110	-0.00150	-0.00190
Diameter 2, in (rotated 90°)	0.00120	0.00110	0.00110	0.00080	0.00050	0.00040	0.00000	0.00000	-0.00030	-0.00060	-0.00070	-0.00090	-0.00110	-0.00130	-0.00180
	Difference between max and min readings, in:														
											0° =	0.00380	90° =	0.00300	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00130	0.00110	0.00100	0.00070	0.00050	0.00010	0.00000	-0.00030	-0.00040	-0.00090	-0.00110	-0.00120	-0.00160	-0.00200
Diameter 2, in (rotated 90°)	-0.00150	-0.00130	-0.00120	-0.00050	-0.00040	-0.00030	-0.00030	0.00000	0.00010	0.00050	0.00080	0.00070	0.00120	0.00140	0.00130
											Difference between	een max and m	in readings, in:		
											0° =	0.0034	90° =	0.0029	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00190

DIAMETER 1			
End 1:		0.00195	
	Slope of Best Fit Line Angle of Best Fit Line:	0.00195	
End 2:			
		0.00195	
	Angle of Best Fit Line:	0.11148	
Maximum Angı	ular Difference:	0.00016	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2			
DIAMETER 2 End 1:		0.00169	
		0.00169 0.09675	
	Slope of Best Fit Line Angle of Best Fit Line:	0.09675	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.09675	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.09675 0.00166 0.09527	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.09675	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.09675 0.00166 0.09527 0.00147	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure I	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00380	1.973	0.00193	0.110	YES	
Diameter 2, in (rotated 90°)	0.00300	1.973	0.00152	0.087	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.973	0.00172	0.099	YES	
Diameter 2, in (rotated 90°)	0.00290	1.973	0.00147	0.084	YES	

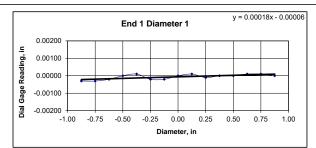
Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-102	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	25.52-25.90	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

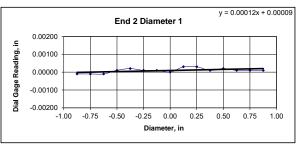
END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

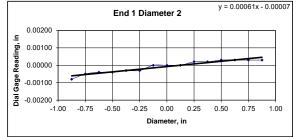
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-102 Sample ID: Depth, ft: 25.52-25.90

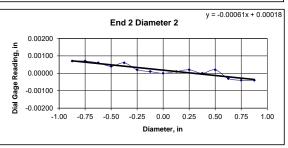
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-102 Sample ID: 32.97-33.34 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.33	4.33	4.33	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	608.35			
Bulk Density, lb/ft3	175	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00030	-0.00020	0.00000	0.00010	-0.00020	-0.00020	0.00000	0.00010	-0.00010	0.00000	0.00000	0.00010	0.00010	0.00000
Diameter 2, in (rotated 90°)	-0.00080	-0.00050	-0.00040	-0.00040	-0.00030	-0.00030	0.00000	0.00000	0.00000	0.00020	0.00020	0.00030	0.00030	0.00030	0.00030
	Difference between max and min readings, in:														
											0° =	0.00040	90° =	0.00110	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00010	-0.00010	-0.00010	0.00010	0.00020	0.00010	0.00010	0.00000	0.00030	0.00030	0.00010	0.00020	0.00010	0.00010	0.00010
Diameter 2, in (rotated 90°)	0.00070	0.00070	0.00060	0.00040	0.00060	0.00020	0.00010	0.00000	0.00010	0.00020	0.00000	0.00020	-0.00030	-0.00040	-0.00040
											Difference between	en max and m	in readings, in:		
											0° =	0.0004	90° =	0.0011	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00055

DIAMETER 1			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00018 0.01015	
Fnd 2:			
Eliu 2.	Slope of Best Fit Line	0.00012	
	Angle of Best Fit Line:	0.00704	
Maximum Angu	ular Difference:	0.00311	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
Fnd 1:			
	Slope of Best Fit Line	0.00061	
	Angle of Best Fit Line:	0.03487	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00061 0.03503	
Ma	_	0.00016	
ımaxımum Angl	ular Difference:	0.00016	
	Parallelism Tolerance Met?		

Flatness Tolerance Met?

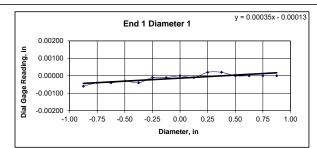
YES

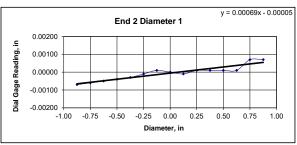
PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00040	1.970	0.00020	0.012	YES	
Diameter 2, in (rotated 90°)	0.00110	1.970	0.00056	0.032	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00040	1.970	0.00020	0.012	YES	
Diameter 2, in (rotated 90°)	0.00110	1.970	0.00056	0.032	YES	
1						

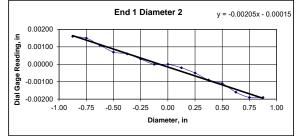
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-102 Sample ID: Depth, ft: 32.97-33.34

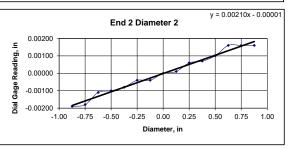
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-106 Sample ID: 55-56 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	3.72	3.72	3.72	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	512.63			
Bulk Density, lb/ft ³	171	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	1.9	Length to Diameter Ratio To	lerance Met? NO	Straightness Tolerance Met? YES

END FLATNESS AND PARALLE	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00060	-0.00040	-0.00040	-0.00030	-0.00040	-0.00010	-0.00010	0.00000	-0.00010	0.00020	0.00020	0.00000	0.00000	0.00000	0.00000
Diameter 2, in (rotated 90°)	0.00160	0.00150	0.00110	0.00070	0.00060	0.00030	0.00000	0.00000	-0.00020	-0.00050	-0.00090	-0.00110	-0.00160	-0.00190	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00080	90° =	0.00350	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00070	-0.00060	-0.00050	-0.00040	-0.00030	-0.00010	0.00010	0.00000	-0.00010	0.00010	0.00010	0.00010	0.00010	0.00070	0.00070
Diameter 2, in (rotated 90°)	-0.00190	-0.00180	-0.00110	-0.00100	-0.00080	-0.00040	-0.00040	0.00000	0.00010	0.00060	0.00070	0.00100	0.00160	0.00160	0.00160
											Difference between	en max and m	in readings, in:		
											0° =	0.0014	90° =	0.0035	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00175

DIAMETER 1			
End 1:	Slope of Best Fit Line	0.00035	
	Angle of Best Fit Line:	0.01997	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00069 0.03929	
Maximum Angu	ılar Difference:	0.01932	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00205 0.11770	
End 1:			
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11770	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure I	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00080	1.975	0.00041	0.023	YES	
Diameter 2, in (rotated 90°)	0.00350	1.975	0.00177	0.102	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00140	1.975	0.00071	0.041	YES	
Diameter 2, in (rotated 90°)	0.00350	1.975	0.00177	0.102	YES	

Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-106	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	55-56	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

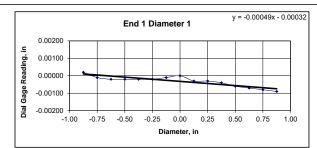
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap < +0.001 in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
· · · · · · · · · · · · · · · · · · ·	- '			

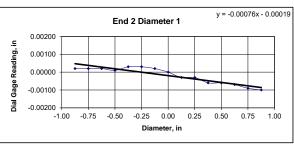
End Flatness Tolerance Met? YES

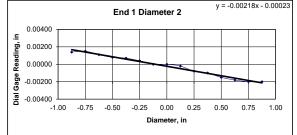
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-106 Sample ID: Depth, ft: 55-56

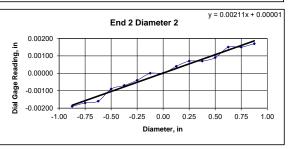
After cutting and grinding

After break




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-106 Sample ID: 56.5-57.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.30	4.30	4.30	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	609.98			
Bulk Density, lb/ft3	175	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	-0.00010	-0.00020	-0.00020	-0.00020	-0.00020	-0.00010	0.00000	-0.00030	-0.00030	-0.00040	-0.00060	-0.00070	-0.00080	-0.00090
Diameter 2, in (rotated 90°)	0.00140	0.00150	0.00110	0.00080	0.00070	0.00040	0.00000	0.00000	-0.00020	-0.00080	-0.00100	-0.00150	-0.00180	-0.00200	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.00110	90° =	0.00350	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00020	0.00020	0.00010	0.00030	0.00030	0.00020	0.00000	-0.00030	-0.00030	-0.00060	-0.00060	-0.00070	-0.00090	-0.00100
Diameter 2, in (rotated 90°)	-0.00190	-0.00170	-0.00160	-0.00090	-0.00070	-0.00040	0.00000	0.00000	0.00040	0.00070	0.00070	0.00090	0.00150	0.00150	0.00170
											Difference between	en max and m	in readings, in:		
											0° =	0.0013	90° =	0.0036	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00180

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00049 0.02783
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00076 0.04371
Maximum Angu	ılar Difference:	0.01588
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
Fnd 1:		
Elia 1.	Slope of Best Fit Line Angle of Best Fit Line:	0.00218 0.12474
End 2:		
	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.12474

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00110	1.980	0.00056	0.032	YES	
Diameter 2, in (rotated 90°)	0.00350	1.980	0.00177	0.101	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00130	1.980	0.00066	0.038	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	

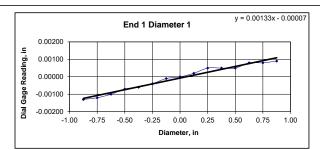
Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-106	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	56.5-57.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

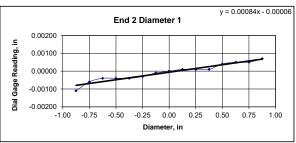
END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
	End Flatness Tolerance Met? YES							

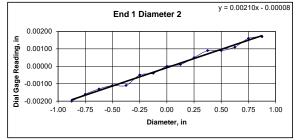
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-106 Sample ID: Depth, ft: 56.5-57.5

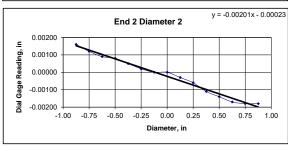
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-108 Sample ID: 25.5-26 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.23	4.23	4.23	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.95	1.96	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	585.39			
Bulk Density, lb/ft3	174	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALLE	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00130	-0.00120	-0.00100	-0.00070	-0.00060	-0.00040	-0.00010	0.00000	0.00020	0.00050	0.00050	0.00050	0.00080	0.00080	0.00090
Diameter 2, in (rotated 90°)	-0.00200	-0.00160	-0.00130	-0.00110	-0.00110	-0.00050	-0.00040	0.00000	0.00010	0.00050	0.00090	0.00090	0.00110	0.00160	0.00170
											Difference between	en max and m	in readings, in:		
											0° =	0.00220	90° =	0.00370	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00110	-0.00060	-0.00040	-0.00040	-0.00040	-0.00030	-0.00010	0.00000	0.00010	0.00010	0.00010	0.00040	0.00050	0.00050	0.00070
Diameter 2, in (rotated 90°)	0.00160	0.00120	0.00090	0.00080	0.00050	0.00020	0.00000	0.00000	-0.00030	-0.00060	-0.00110	-0.00140	-0.00170	-0.00180	-0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.0018	90° =	0.0034	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00133 0.07629	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00084 0.04813	
Maximum Angı	ular Difference:	0.02816	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Sprierically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00210 0.12048	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12048	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00220	1.960	0.00112	0.064	YES	
Diameter 2, in (rotated 90°)	0.00370	1.960	0.00189	0.108	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00180	1.960	0.00092	0.053	YES	
Diameter 2, in (rotated 90°)	0.00340	1.960	0.00173	0.099	YES	



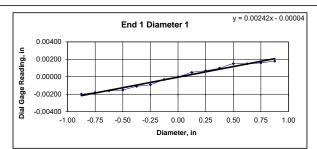
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-108	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	25.5-26	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

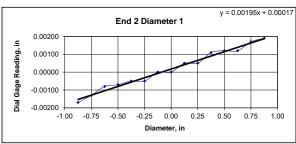
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

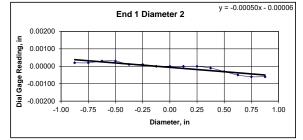
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-108 Sample ID: Depth, ft: 25.5-26

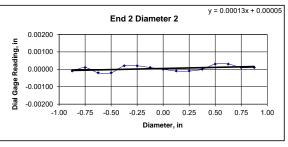
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-111 Sample ID: 23.5-24.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.24	4.24	4.24	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	596.47			
Bulk Density, lb/ft3	175	Minimum Diameter Tolereno	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLI	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00200	-0.00180	-0.00160	-0.00150	-0.00110	-0.00090	-0.00030	0.00000	0.00050	0.00070	0.00100	0.00150	0.00150	0.00160	0.00180
Diameter 2, in (rotated 90°)	0.00020	0.00020	0.00030	0.00030	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00030	-0.00050	-0.00060	-0.00060
											Difference between	een max and m	in readings, in:		
											0° =	0.00380	90° =	0.00090	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00130	-0.00080	-0.00070	-0.00050	-0.00050	0.00000	0.00000	0.00050	0.00050	0.00110	0.00120	0.00120	0.00170	0.00190
Diameter 2, in (rotated 90°)	-0.00010	0.00010	-0.00020	-0.00020	0.00020	0.00020	0.00010	0.00000	-0.00010	-0.00010	0.00000	0.00030	0.00030	0.00010	0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.0036	90° =	0.0005	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00190

	Flatness Tolerance Met?	NO	
DIAMETER 1			
End 1:			
	Slope of Best Fit Line	0.00242 0.13882	
	Angle of Best Fit Line:	0.13882	
End 2:			
	Slope of Best Fit Line	0.00195	
	Angle of Best Fit Line:	0.11148	
	I D:#	0.02734	
Maximum Angu	iar Difference:	0.02/34	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2		NO	
		NO	
DIAMETER 2 End 1:		NO 0.00050	
	Spherically Seated		
End 1:	Spherically Seated Slope of Best Fit Line	0.00050	
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00050 0.02881	
End 1:	Spherically Seated Slope of Best Fit Line	0.00050	
End 1:	Sherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00050 0.02881 0.00013	

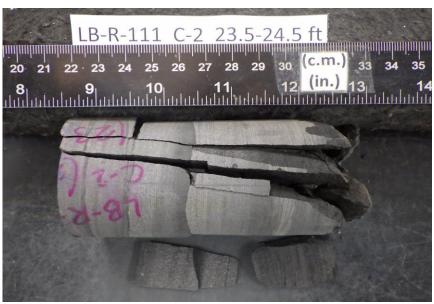
Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure I	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00380	1.975	0.00192	0.110	YES	
Diameter 2, in (rotated 90°)	0.00090	1.975	0.00046	0.026	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00360	1.975	0.00182	0.104	YES	
Diameter 2, in (rotated 90°)	0.00050	1.975	0.00025	0.015	YES	

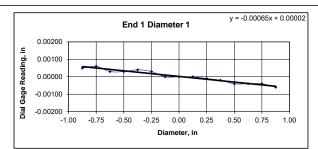
Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-111	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	23.5-24.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

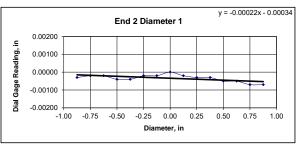

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

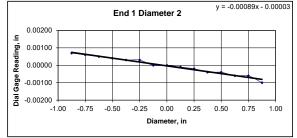
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NY GTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-111 Sample ID: Depth, ft: 23.5-24.5

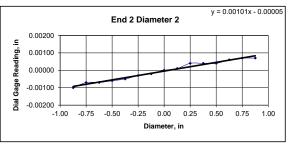
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-115 Sample ID: 33.79-34.16 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.41	4.41	4.41		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	616.1				
Bulk Density, lb/ft3	174	Minimum Diameter Tolerence	e Met?	/ES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio Tol	lerance Met?	/ES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00050	0.00060	0.00030	0.00030	0.00040	0.00030	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00040	-0.00040	-0.00040	-0.00060
Diameter 2, in (rotated 90°)	0.00070	0.00060	0.00050	0.00040	0.00030	0.00030	0.00000	0.00000	-0.00010	-0.00020	-0.00040	-0.00040	-0.00060	-0.00060	-0.00100
											Difference between	een max and m	in readings, in:		
											0° =	0.00120	90° =	0.00170	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00020	-0.00020	-0.00040	-0.00040	-0.00020	-0.00020	0.00000	-0.00020	-0.00030	-0.00030	-0.00050	-0.00050	-0.00070	-0.00070
Diameter 2, in (rotated 90°)	-0.00100	-0.00070	-0.00070	-0.00060	-0.00050	-0.00030	-0.00020	0.00000	0.00010	0.00040	0.00040	0.00040	0.00060	0.00070	0.00070
											Difference between	een max and m	in readings, in:		
											0° =	0.0007	90° =	0.0017	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00085

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00065 0.03700
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00022 0.01244
Maximum Angu	llar Difference:	0.02456
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00089 0.05075
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.05075

Flatness Tolerance Met? YES

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00120	1.970	0.00061	0.035	YES	
Diameter 2, in (rotated 90°)	0.00170	1.970	0.00086	0.049	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00070	1.970	0.00036	0.020	YES	
Diameter 2, in (rotated 90°)	0.00170	1.970	0.00086	0.049	YES	
1						

Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-115	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		,
Deptil (It).	33.79-34.16	machinist straightedge and feeler gauges to

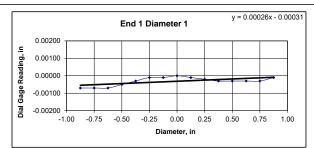
END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

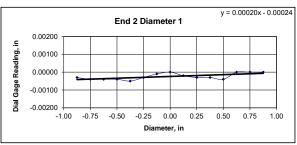
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-115 Sample ID: Depth, ft:

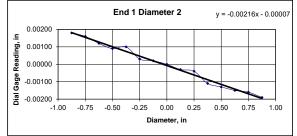
33.79-34.16

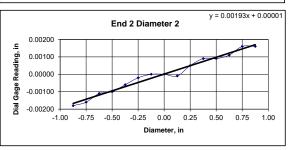
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-115 Sample ID: Depth (ft): 36.60-36.98 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.37	4.37	4.37	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	614.85			
Bulk Density, lb/ft3	175	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

ELISM (Procedu	ire FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00070	-0.00070	-0.00070	-0.00050	-0.00030	-0.00010	-0.00010	0.00000	-0.00010	-0.00020	-0.00030	-0.00030	-0.00030	-0.00030	-0.00010
0.00180	0.00160	0.00120	0.00090	0.00100	0.00030	0.00020	0.00000	-0.00030	-0.00040	-0.00110	-0.00130	-0.00150	-0.00160	-0.00190
										Difference between	en max and m	in readings, in:		
										0° =	0.00070	90° =	0.00370	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00030	-0.00040	-0.00040	-0.00040	-0.00050	-0.00030	-0.00010	0.00000	-0.00020	-0.00030	-0.00030	-0.00040	0.00000	0.00000	0.00000
-0.00180	-0.00160	-0.00110	-0.00100	-0.00060	-0.00020	0.00000	0.00000	-0.00010	0.00050	0.00090	0.00090	0.00110	0.00160	0.00160
										Difference between	en max and m	in readings, in:		
										0° =	0.0005	90° =	0.0034	
										Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00185
	-0.875 -0.00070 0.00180 -0.875 -0.00030	-0.00070 -0.00070 0.00180 0.00160 -0.875 -0.750 -0.00030 -0.00040	-0.875 -0.750 -0.625 -0.00070 -0.00070 -0.00070 0.00180 0.00160 0.00120 -0.875 -0.750 -0.625 -0.00030 -0.00040 -0.00040	-0.875 -0.750 -0.625 -0.500 -0.00070 -0.00070 -0.00070 -0.00050 0.00180 0.00160 0.00120 0.00090 -0.875 -0.750 -0.625 -0.500 -0.00030 -0.00040 -0.00040 -0.00040	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00070 -0.00070 -0.00050 -0.00030 0.00180 0.00160 0.00120 0.00090 0.00100 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00030 -0.00040 -0.00040 -0.00040 -0.00040	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00070 -0.00070 -0.00050 -0.00030 -0.00010 0.00180 0.00160 0.00120 0.00090 0.00100 0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00030 -0.00040 -0.00040 -0.00040 -0.00050 -0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00070 -0.00070 -0.00070 -0.00050 -0.00030 -0.00010 -0.00010 0.00180 0.00160 0.00120 0.00090 0.00100 0.00030 0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00030 -0.00040 -0.00040 -0.00050 -0.00030 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00070 -0.00070 -0.00070 -0.00050 -0.00030 -0.00010 -0.00010 0.00000 0.00180 0.00160 0.00120 0.00090 0.00100 0.00030 0.00020 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00030 -0.00040 -0.00040 -0.00050 -0.00030 -0.00010 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00070 -0.00070 -0.00070 -0.00050 -0.00030 -0.00010 -0.00010 0.00000 -0.00010 0.00180 0.00160 0.00120 0.00090 0.00100 0.00030 0.00020 0.00000 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00030 -0.00040 -0.00040 -0.00050 -0.00030 -0.00010 0.00000 -0.00020	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00070 -0.00070 -0.00070 -0.00050 -0.00030 -0.00010 -0.00010 0.00000 -0.00010 -0.00020 0.00180 0.00160 0.00120 0.00090 0.00100 0.00030 0.00020 0.00000 -0.00030 -0.00040 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00030 -0.00040 -0.00040 -0.00050 -0.00030 -0.0010 0.00000 -0.00030 -0.00030	-0.875	-0.875	-0.875	-0.875

1			
DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00026 0.01506	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00020 0.01146	
Maximum Angu	ılar Difference:	0.00360	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00216 0.12376	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.12376	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00070	1.970	0.00036	0.020	YES	
Diameter 2, in (rotated 90°)	0.00370	1.970	0.00188	0.108	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00050	1.970	0.00025	0.015	YES	
Diameter 2, in (rotated 90°)	0.00340	1.970	0.00173	0.099	YES	
1						

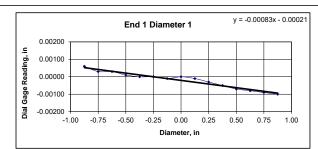
Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-115	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	36.60-36.98	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

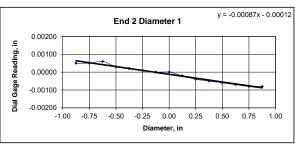
END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

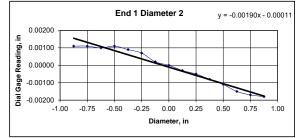
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-115 Sample ID: Depth, ft: 36.60-36.98

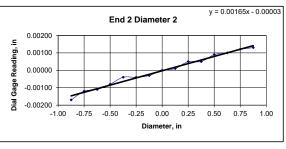
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-116 Sample ID: 40.58-40.95 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.35	4.35	4.35	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	605.02			
Bulk Density, lb/ft ³	173	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ND FLATNESS AND PARALLELISM (Procedure FP1)														
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00060	0.00030	0.00030	0.00010	0.00000	0.00000	-0.00010	0.00000	-0.00010	-0.00030	-0.00050	-0.00070	-0.00080	-0.00090	-0.00100
Diameter 2, in (rotated 90°)	0.00110	0.00110	0.00100	0.00110	0.00090	0.00070	0.00020	0.00000	-0.00030	-0.00050	-0.00080	-0.00110	-0.00150	-0.00170	-0.00180
Difference between max and min readings, in:															
											0° =	0.00160	90° =	0.00290	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00050	0.00050	0.00060	0.00030	0.00020	0.00010	0.00000	0.00000	-0.00020	-0.00040	-0.00050	-0.00060	-0.00070	-0.00080	-0.00080
Diameter 2, in (rotated 90°)	-0.00170	-0.00120	-0.00110	-0.00080	-0.00040	-0.00040	-0.00030	0.00000	0.00010	0.00050	0.00050	0.00090	0.00100	0.00120	0.00130
											Difference between	en max and m	in readings, in:		
											0° =	0.0014	90° =	0.003	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00150

DIAMETER 1			
D1/11/21/21/12			
End 1:			
	Slope of Best Fit Line	0.00083	
	Angle of Best Fit Line:	0.04780	
Fnd 2:			
2.10 2.1	Slope of Best Fit Line	0.00087	
	Angle of Best Fit Line:	0.04960	
Maximum Angu	ilar Difference:	0.00180	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
DIAMETER 2 Fnd 1:			
	Slope of Best Fit Line	0.00190	
		0.00190 0.10870	
End 1:	Slope of Best Fit Line		
	Slope of Best Fit Line Angle of Best Fit Line:	0.10870	
End 1:	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.10870 0.00165 0.09429	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.10870	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.10870 0.00165 0.09429	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$				
Diameter 1, in	0.00160	1.970	0.00081	0.047	YES					
Diameter 2, in (rotated 90°)	0.00290	1.970	0.00147	0.084	YES	Perpendicularity Tolerance Met? YES				
END 2										
Diameter 1, in	0.00140	1.970	0.00071	0.041	YES					
Diameter 2, in (rotated 90°)	0.00300	1.970	0.00152	0.087	YES					

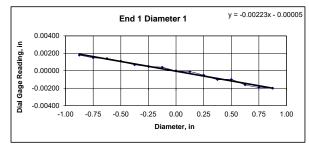
Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-116	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	40.58-40.95	machinist straightedge and feeler gauges to
		ASTM specifications.

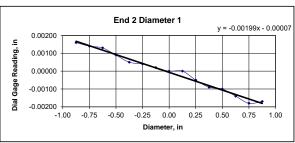
END FLATNESS									
END 1									
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
END 2									
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
	End Flatness Tolerance Met? YES								

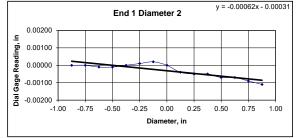
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-116 Sample ID: Depth, ft: 40.58-40.95

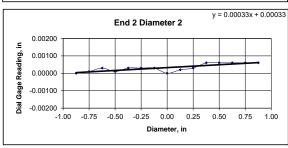
After cutting and grinding

After break




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-118 Sample ID: Depth (ft): 41.05-41.42 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.20	4.20	4.20		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98		Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	565.75				
Bulk Density, lb/ft3	166	Minimum Diameter Tolerence Me	et?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio Tolera	nce Met?	YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00180	0.00150	0.00140	0.00110	0.00070	0.00050	0.00040	0.00000	-0.00010	-0.00050	-0.00100	-0.00100	-0.00160	-0.00190	-0.00200
Diameter 2, in (rotated 90°)	0.00000	0.00000	-0.00010	-0.00010	0.00000	0.00010	0.00020	0.00000	-0.00040	-0.00050	-0.00050	-0.00070	-0.00070	-0.00090	-0.00110
	Difference between max and min readings, in:														
											0° =	0.00380	90° =	0.00130	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00160	0.00140	0.00130	0.00090	0.00050	0.00040	0.00020	0.00000	0.00000	-0.00050	-0.00090	-0.00100	-0.00140	-0.00180	-0.00170
Diameter 2, in (rotated 90°)	0.00000	0.00010	0.00030	0.00010	0.00030	0.00030	0.00030	0.00000	0.00020	0.00030	0.00060	0.00060	0.00060	0.00060	0.00060
											Difference between	en max and m	in readings, in:		
											0° =	0.0034	90° =	0.0006	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00190

End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00223 0.12769	
End 2: Maximum Angu	Angle of Best Fit Line:	0.00199 0.11394 0.01375	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00062 0.03569	
	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.03569	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00380	1.980	0.00192	0.110	YES	
Diameter 2, in (rotated 90°)	0.00130	1.980	0.00066	0.038	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.980	0.00172	0.098	YES	
Diameter 2, in (rotated 90°)	0.00060	1.980	0.00030	0.017	YES	

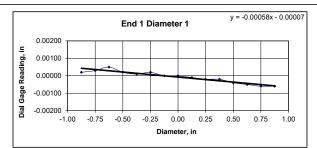
Client:	Langan Engineering	Test Date: 6/11/2025				
Project Name:	Upstate Confidential Project	Tested By: rik				
Project Location:	NY	Checked By: smd				
GTX #:	321096					
Boring ID:	LB-R-118	Reliable dial gauge measurements could not be				
Sample ID:		performed on this rock type. Tolerance measurements were performed using a				
Depth (ft):	41.05-41.42	machinist straightedge and feeler gauges to				
Visual Description:	See photographs	ASTM specifications.				

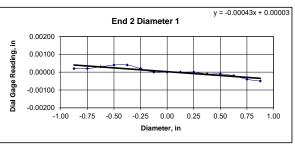
END FLATNESS									
END 1									
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
END 2									
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES							
	End Flatness Tolerance Met? YES								

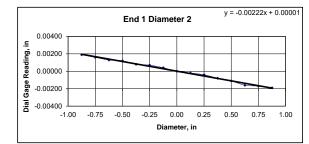
Client: Langan Engineering Upstate Confidential Project Project Name: Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-118 Sample ID: Depth, ft: 41.05-41.42

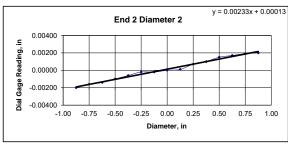
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-120 Sample ID: 49.58-49.95 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.37	4.37	4.37	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	608.3			
Bulk Density, lb/ft3	173	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00030	0.00050	0.00020	0.00010	0.00020	0.00000	0.00000	-0.00010	-0.00020	-0.00020	-0.00040	-0.00050	-0.00060	-0.00060
Diameter 2, in (rotated 90°)	0.00190	0.00160	0.00130	0.00120	0.00080	0.00070	0.00040	0.00000	-0.00020	-0.00040	-0.00080	-0.00110	-0.00160	-0.00170	-0.00190
											Difference between	een max and m	in readings, in:		
											0° =	0.00110	90° =	0.00380	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00020	0.00030	0.00040	0.00040	0.00020	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00020	-0.00040	-0.00050
Diameter 2, in (rotated 90°)	-0.00200	-0.00160	-0.00140	-0.00100	-0.00060	-0.00020	-0.00020	0.00000	0.00010	0.00070	0.00100	0.00150	0.00170	0.00190	0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.0009	90° =	0.004	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00200

Flatness Tolerance Met?	NO	
Aligie of Best Fit Line.	0.03307	
Angle of Best Fit Line:	0.02439	
ular Difference:	0.00868	
Daniellalian Talanana Mat2	NO	
	NO	
Spherically Seated		
· · ·		
	0.00222	
Slope of Best Fit Line	0.00222 0.12720	
	0.00222 0.12720	
Slope of Best Fit Line Angle of Best Fit Line:	0.12720	
Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12720	
Slope of Best Fit Line Angle of Best Fit Line:	0.12720	
Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12720	
	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line ular Difference: Parallelism Tolerance Met?	Slope of Best Fit Line

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00110	1.975	0.00056	0.032	YES	
Diameter 2, in (rotated 90°)	0.00380	1.975	0.00192	0.110	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00090	1.975	0.00046	0.026	YES	
Diameter 2, in (rotated 90°)	0.00400	1.975	0.00203	0.116	YES	

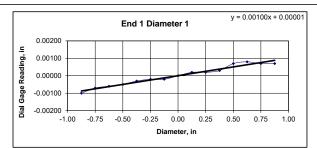
Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-120	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	49.58-49.95	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

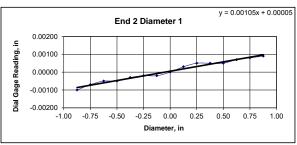
END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
	End Flatness Tolerance Met? YES						

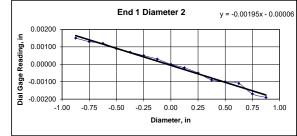
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-120 Sample ID: Depth, ft: 49.58-49.95

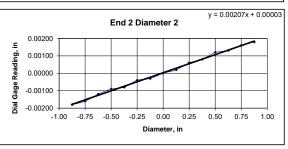
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-124 Sample ID: 49.5-50.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.31	4.31	4.31	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	606.24			
Bulk Density, lb/ft ³	175	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLE	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00100	-0.00070	-0.00060	-0.00050	-0.00030	-0.00020	-0.00020	0.00000	0.00020	0.00020	0.00030	0.00070	0.00080	0.00070	0.00070
Diameter 2, in (rotated 90°)	0.00150	0.00130	0.00120	0.00090	0.00070	0.00050	0.00030	0.00000	-0.00020	-0.00050	-0.00090	-0.00100	-0.00110	-0.00170	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00180	90° =	0.00340	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00100	-0.00070	-0.00050	-0.00050	-0.00030	-0.00020	-0.00020	0.00000	0.00030	0.00050	0.00050	0.00050	0.00070	0.00080	0.00090
Diameter 2, in (rotated 90°)	-0.00180	-0.00160	-0.00120	-0.00090	-0.00080	-0.00040	-0.00030	0.00000	0.00020	0.00060	0.00080	0.00120	0.00130	0.00160	0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.0019	90° =	0.0036	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00180

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00100 0.05746	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00105 0.05991	
Maximum Angu	llar Difference:	0.00246	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00195 0.11164	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00207 0.11885	
Maximum Angu	llar Difference:	0.00720	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00180	1.970	0.00091	0.052	YES	
Diameter 2, in (rotated 90°)	0.00340	1.970	0.00173	0.099	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00190	1.970	0.00096	0.055	YES	
Diameter 2, in (rotated 90°)	0.00360	1.970	0.00183	0.105	YES	

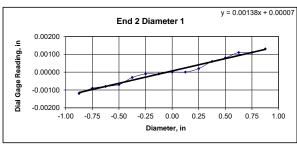
Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-124	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	49.5-50.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

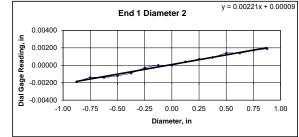
END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
	End Flatness Tolerance Met? YES						

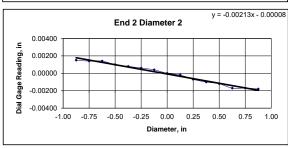
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-124 Sample ID: Depth, ft: 49.5-50.5

After cutting and grinding

After break


Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-124 Sample ID: Depth (ft): 46.56-46.93 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.31	4.31	4.31	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	609.1			
Bulk Density, lb/ft ³	176	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00110	-0.00100	-0.00070	-0.00050	-0.00020	-0.00020	-0.00010	0.00000	0.00010	0.00020	0.00050	0.00060	0.00070	0.00080	0.00090
Diameter 2, in (rotated 90°)	-0.00190	-0.00140	-0.00140	-0.00120	-0.00090	-0.00030	0.00000	0.00000	0.00040	0.00070	0.00090	0.00140	0.00140	0.00170	0.00190
	Difference between max and min readings, in:														
											0° =	0.00200	90° =	0.00380	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00120	-0.00090	-0.00080	-0.00070	-0.00030	-0.00010	-0.00010	0.00000	0.00000	0.00020	0.00060	0.00080	0.00110	0.00110	0.00130
Diameter 2, in (rotated 90°)	0.00150	0.00140	0.00140	0.00100	0.00080	0.00060	0.00040	0.00000	-0.00020	-0.00070	-0.00100	-0.00120	-0.00170	-0.00170	-0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.0025	90° =	0.0033	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00190

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00112 0.06433	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00138 0.07923	
Maximum Angu	ılar Difference:	0.01490	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00221 0.12671	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.12671	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00200	1.970	0.00102	0.058	YES	
Diameter 2, in (rotated 90°)	0.00380	1.970	0.00193	0.111	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00250	1.970	0.00127	0.073	YES	
Diameter 2, in (rotated 90°)	0.00330	1.970	0.00168	0.096	YES	

Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-124	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	46.56-46.93	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

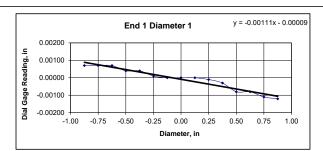
END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
	End Flatness Tolerance Met? YES							

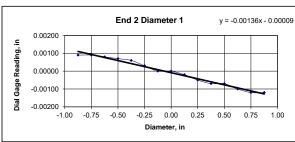
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/19/2025 Tested By: gp Checked By: smd Boring ID: LB-R-124 Sample ID: Depth, ft:

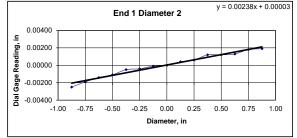
46.56-46.93

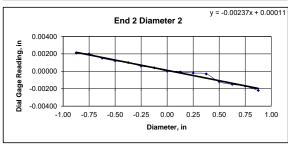
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-126 Sample ID: Depth (ft): 19.54-19.91 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average		
Specimen Length, in:	4.25	4.25	4.25		Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98		Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	604.52				
Bulk Density, lb/ft3	175	Minimum Diameter Tolerenc	e Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00070	0.00070	0.00070	0.00040	0.00040	0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00030	-0.00080	-0.00080	-0.00110	-0.00120
Diameter 2, in (rotated 90°)	-0.00250	-0.00190	-0.00140	-0.00110	-0.00050	-0.00040	-0.00010	0.00000	0.00040	0.00060	0.00120	0.00120	0.00130	0.00180	0.00190
											Difference between	een max and m	in readings, in:		
											0° =	0.00190	90° =	0.00440	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00090	0.00090	0.00080	0.00070	0.00060	0.00030	0.00000	0.00000	-0.00020	-0.00050	-0.00070	-0.00070	-0.00100	-0.00120	-0.00120
Diameter 2, in (rotated 90°)	0.00210	0.00200	0.00150	0.00120	0.00100	0.00060	0.00040	0.00000	-0.00010	-0.00020	-0.00030	-0.00120	-0.00150	-0.00170	-0.00220
											Difference between	een max and m	in readings, in:		
											0° =	0.0021	90° =	0.0043	
											Maximum differe	ence must be <	0.0020 in.	Difference = $+$	0.00220

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00111 0.06368	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00136 0.07792	
Maximum Angu	ılar Difference:	0.01424	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Sprierically Seateu		
DIAMETER 2	Spirerically Seated		
DIAMETER 2 End 1:		0.00238 0.13636	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.13636	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$					
Diameter 1, in	0.00190	1.981	0.00096	0.055	YES						
Diameter 2, in (rotated 90°)	0.00440	1.981	0.00222	0.127	YES	Perpendicularity Tolerance Met? YES					
END 2											
Diameter 1, in	0.00210	1.981	0.00106	0.061	YES						
Diameter 2, in (rotated 90°)	0.00430	1.981	0.00217	0.124	YES						

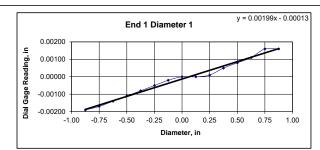
Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-126	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	19.54-19.91	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

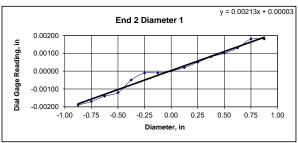
END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
	End Flatness Tolerance Met? YES							

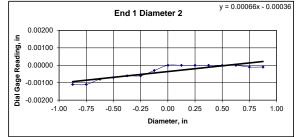
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-R-126 Sample ID: Depth, ft: 19.54-19.91

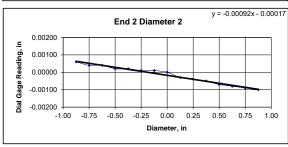
After cutting and grinding

After break




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-127 Sample ID: Depth (ft): 31.80-32.16 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.24	4.24	4.24	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	575.67			
Bulk Density, lb/ft3	168	Minimum Diameter Tolereno	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00170	-0.00140	-0.00110	-0.00080	-0.00050	-0.00020	0.00000	0.00000	0.00010	0.00050	0.00080	0.00110	0.00160	0.00160
Diameter 2, in (rotated 90°)	-0.00110	-0.00110	-0.00080	-0.00070	-0.00060	-0.00060	-0.00030	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010
											Difference between	een max and m	in readings, in:		
											0° =	0.00350	90° =	0.00110	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00170	-0.00140	-0.00120	-0.00050	-0.00010	-0.00010	0.00000	0.00020	0.00050	0.00080	0.00100	0.00130	0.00180	0.00180
Diameter 2, in (rotated 90°)	0.00060	0.00040	0.00040	0.00020	0.00020	0.00010	0.00010	0.00000	-0.00030	-0.00040	-0.00050	-0.00070	-0.00080	-0.00090	-0.00100
											Difference between	een max and m	in readings, in:		
											0° =	0.0037	90° =	0.0016	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00199 0.11410	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00213 0.12212	
Maximum Angı	ular Difference:	0.00802	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00066 0.03782	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.03782	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	nents above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00350	1.975	0.00177	0.102	YES	
Diameter 2, in (rotated 90°)	0.00110	1.975	0.00056	0.032	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00370	1.975	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00160	1.975	0.00081	0.046	YES	

Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-127	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	31.80-32.16	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

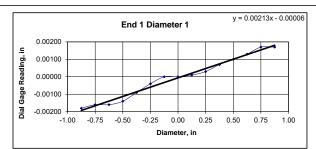
END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

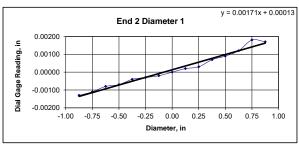
End Flatness Tolerance Met? YES

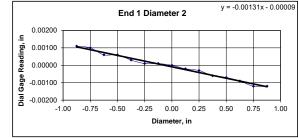
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/18/2025 Tested By: gp Checked By: smd Boring ID: LB-R-127 Sample ID: Depth, ft: 31.80-32.16

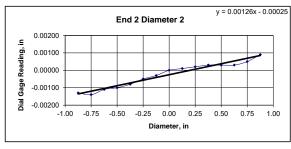
After cutting and grinding

After break




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-128 Sample ID: 35.75-36.25 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.23	4.23	4.23	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	581.71			
Bulk Density, lb/ft3	171	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00180	-0.00160	-0.00160	-0.00140	-0.00090	-0.00040	0.00000	0.00000	0.00010	0.00030	0.00070	0.00100	0.00130	0.00170	0.00170
Diameter 2, in (rotated 90°)	0.00110	0.00100	0.00060	0.00060	0.00030	0.00010	0.00010	0.00000	-0.00020	-0.00030	-0.00060	-0.00070	-0.00090	-0.00120	-0.00120
											Difference between	een max and m	in readings, in:		
											0° =	0.00350	90° =	0.00230	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00130	-0.00110	-0.00080	-0.00070	-0.00040	-0.00030	-0.00020	0.00000	0.00020	0.00030	0.00070	0.00090	0.00120	0.00180	0.00170
Diameter 2, in (rotated 90°)	-0.00130	-0.00140	-0.00110	-0.00100	-0.00080	-0.00050	-0.00030	0.00000	0.00010	0.00020	0.00030	0.00030	0.00030	0.00050	0.00090
											Difference between	een max and m	in readings, in:		
											0° =	0.0031	90° =	0.0023	
											Maximum differe	ence must be <	0.0020 in.	$Difference = \underline{+}$	0.00175

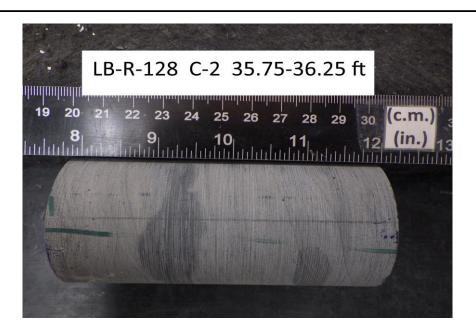
	Flatness Tolerance Met?	NO	
DIAMETER 1			
Fnd 1:			
2.10 1.	Slope of Best Fit Line	0.00213	
	Angle of Best Fit Line:	0.12229	
End 2:			
	Slope of Best Fit Line	0.00171	
	Angle of Best Fit Line:	0.09773	
Maximum Angi	ular Difference:	0.02456	
_			
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2			
End 1:			
	Slope of Best Fit Line	0.00131	
	Angle of Best Fit Line:	0.07498	
End 2:			
	Slope of Best Fit Line	0.00126	
	Angle of Best Fit Line:	0.07219	
Maximum Angı	ular Difference:	0.00278	

Parallelism Tolerance Met?

Spherically Seated

YES

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00350	1.975	0.00177	0.102	YES	
Diameter 2, in (rotated 90°)	0.00230	1.975	0.00116	0.067	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00310	1.975	0.00157	0.090	YES	
Diameter 2, in (rotated 90°)	0.00230	1.975	0.00116	0.067	YES	



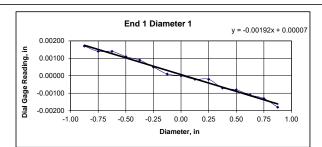
Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 120	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

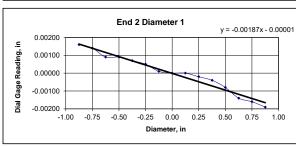
END FLATNESS										
END 1										
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
END 2										
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES								
	End Flatness Toler	ance Met?	End Flatness Tolerance Met? YES							

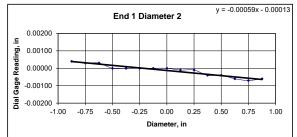
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/16/2025 Tested By: jss Checked By: smd Boring ID: LB-R-128 Sample ID: Depth, ft: 35.75-36.25

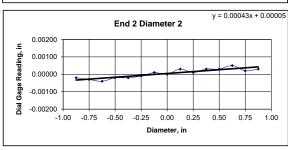
After cutting and grinding

After break




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-129 Sample ID: Depth (ft): 44.61-44.99 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.20	4.20	4.20	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	600.95			
Bulk Density, lb/ft3	177	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALLI	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00170	0.00140	0.00140	0.00110	0.00090	0.00050	0.00010	0.00000	-0.00020	-0.00020	-0.00070	-0.00080	-0.00110	-0.00130	-0.00180
Diameter 2, in (rotated 90°)	0.00040	0.00030	0.00030	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00040	-0.00040	-0.00060	-0.00070	-0.00060
											Difference between	en max and m	in readings, in:		
											0° =	0.00350	90° =	0.00110	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00160	0.00140	0.00090	0.00090	0.00070	0.00050	0.00010	0.00000	0.00000	-0.00020	-0.00040	-0.00080	-0.00140	-0.00160	-0.00190
Diameter 2, in (rotated 90°)	-0.00020	-0.00030	-0.00040	-0.00020	-0.00020	-0.00010	0.00010	0.00000	0.00030	0.00010	0.00030	0.00030	0.00050	0.00020	0.00030
											Difference between	en max and m	in readings, in:		
											0° =	0.0035	90° =	0.0009	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00175

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00192 0.11017	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00187 0.10739	
Maximum Angu	ular Difference:	0.00278	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00059 0.03372	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.03372	

Flatness Tolerance Met?

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00350	1.980	0.00177	0.101	YES	
Diameter 2, in (rotated 90°)	0.00110	1.980	0.00056	0.032	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00350	1.980	0.00177	0.101	YES	
Diameter 2, in (rotated 90°)	0.00090	1.980	0.00045	0.026	YES	

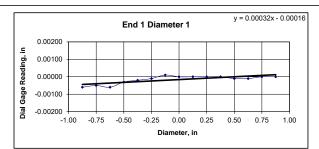
Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-129	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	44.61-44.99	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

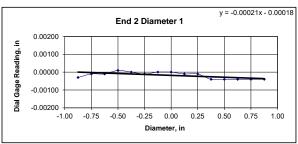
END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
	End Flatness Tolerance Met? YES					

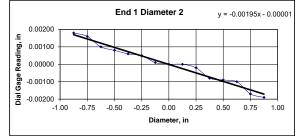
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-129 Sample ID: Depth, ft: 44.61-44.99

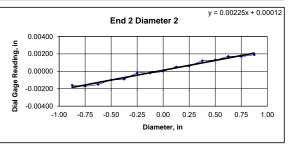
After cutting and grinding

After break




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-130 Sample ID: 30.74-31.11 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.23	4.23	4.23	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	595.89			
Bulk Density, lb/ft3	172	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

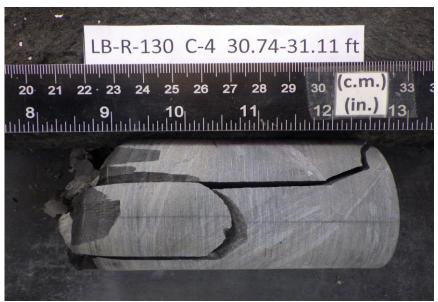
END FLATNESS AND PARALLE	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00060	-0.00050	-0.00060	-0.00030	-0.00020	-0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	0.00000	0.00000
Diameter 2, in (rotated 90°)	0.00180	0.00160	0.00100	0.00080	0.00060	0.00050	0.00010	0.00000	0.00000	-0.00020	-0.00080	-0.00090	-0.00100	-0.00170	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00070	90° =	0.00370	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00010	-0.00010	0.00010	0.00000	-0.00010	0.00000	0.00000	-0.00010	-0.00010	-0.00040	-0.00040	-0.00040	-0.00040	-0.00040
Diameter 2, in (rotated 90°)	-0.00160	-0.00170	-0.00150	-0.00100	-0.00090	-0.00020	-0.00020	0.00000	0.00050	0.00060	0.00120	0.00130	0.00170	0.00170	0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.0005	90° =	0.0036	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00032 0.01833	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00021 0.01195	
Maximum Angu	llar Difference:	0.00638	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Spriencially Scatca		
DIAMETER 2	Spirenean, Seated		
DIAMETER 2 End 1:		0.00195 0.11164	
	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.11164	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure F	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00070	1.990	0.00035	0.020	YES	
Diameter 2, in (rotated 90°)	0.00370	1.990	0.00186	0.107	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00050	1.990	0.00025	0.014	YES	
Diameter 2, in (rotated 90°)	0.00360	1.990	0.00181	0.104	YES	

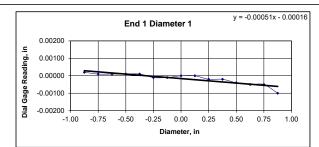
Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-130	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	30.74-31.11	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

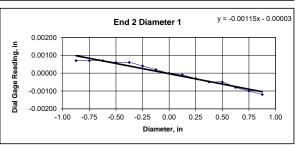

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
	End Flatness Tolerance Met? YES						

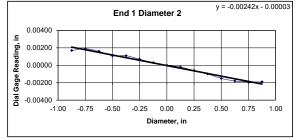
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/13/2025 Tested By: jss Checked By: smd Boring ID: LB-R-130 Sample ID: Depth, ft: 30.74-31.11

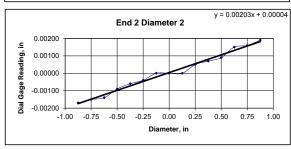
After cutting and grinding

After break




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-132 Sample ID: Depth (ft): 32.08-32.45 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Avera	ige	
Specimen Length, in:	4.29	4.29	4.2	9	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.9	8	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	609.26				
Bulk Density, lb/ft3	175	Minimum Diameter Tolerence	ce Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met?	YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00010	0.00010	0.00010	0.00010	-0.00010	-0.00010	0.00000	0.00000	-0.00020	-0.00020	-0.00040	-0.00050	-0.00050	-0.00100
Diameter 2, in (rotated 90°)	0.00170	0.00190	0.00160	0.00110	0.00110	0.00070	0.00030	0.00000	-0.00020	-0.00060	-0.00100	-0.00150	-0.00180	-0.00190	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00120	90° =	0.00380	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00070	0.00070	0.00070	0.00060	0.00060	0.00040	0.00020	0.00000	-0.00010	-0.00030	-0.00050	-0.00050	-0.00080	-0.00100	-0.00120
Diameter 2, in (rotated 90°)	-0.00170	-0.00150	-0.00140	-0.00090	-0.00060	-0.00040	0.00000	0.00000	0.00000	0.00050	0.00070	0.00090	0.00150	0.00160	0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.0019	90° =	0.0036	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00190

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00051 0.02947	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00115 0.06614	
Maximum Angu	lar Difference:	0.03667	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00242 0.13882	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00203 0.11656	
Maximum Angu	lar Difference:	0.02226	
	Parallelism Tolerance Met? Spherically Seated	NO	

Flatness Tolerance Met?

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00120	1.980	0.00061	0.035	YES	
Diameter 2, in (rotated 90°)	0.00380	1.980	0.00192	0.110	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00190	1.980	0.00096	0.055	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	

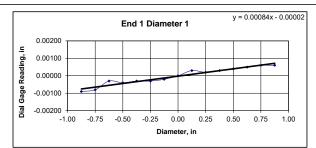
Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-132	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	32.08-32.45	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

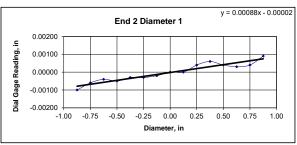
END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

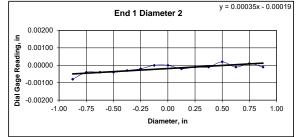
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/16/2025 Tested By: jss Checked By: smd Boring ID: LB-R-132 Sample ID: Depth, ft: 32.08-32.45

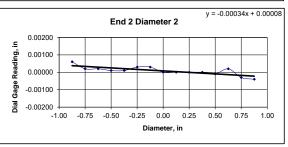
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-135 Sample ID: 27-28 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.36	4.36	4.36	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.00	1.99	2.00	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	608.33			
Bulk Density, lb/ft3	170	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00090	-0.00080	-0.00030	-0.00040	-0.00030	-0.00030	-0.00020	0.00000	0.00030	0.00020	0.00030	0.00040	0.00050	0.00060	0.00060
Diameter 2, in (rotated 90°)	-0.00080	-0.00040	-0.00040	-0.00040	-0.00030	-0.00020	0.00000	0.00000	-0.00020	-0.00010	-0.00010	0.00020	-0.00010	0.00010	-0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.00150	90° =	0.00100	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00100	-0.00060	-0.00040	-0.00050	-0.00030	-0.00030	-0.00020	0.00000	0.00000	0.00040	0.00060	0.00040	0.00030	0.00040	0.00090
Diameter 2, in (rotated 90°)	0.00060	0.00020	0.00020	0.00010	0.00010	0.00030	0.00030	0.00000	0.00000	0.00000	0.00000	-0.00010	0.00020	-0.00030	-0.00040
											Difference between	en max and m	in readings, in:		
											0° =	0.0019	90° =	0.001	
1											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00095

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00084 0.04813	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00088 0.05026	
Maximum Angu	llar Difference:	0.00213	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00035 0.02030	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.02030	

Flatness Tolerance Met?

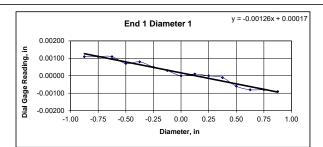
YES

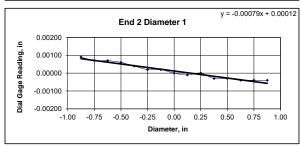
PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00150	1.995	0.00075	0.043	YES	
Diameter 2, in (rotated 90°)	0.00100	1.995	0.00050	0.029	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00190	1.995	0.00095	0.055	YES	
Diameter 2, in (rotated 90°)	0.00100	1.995	0.00050	0.029	YES	

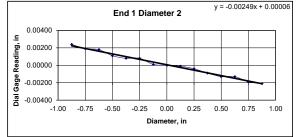
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-135 Sample ID: Depth, ft: 27-28

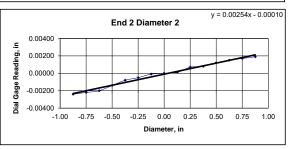
After cutting and grinding

After break




Client: Test Date: 6/9/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-R-136 Sample ID: 24.75-25.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.44	4.44	4.44	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	622.97			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLE	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00110	0.00110	0.00110	0.00070	0.00080	0.00050	0.00030	0.00000	0.00010	0.00000	-0.00010	-0.00060	-0.00080	-0.00080	-0.00090
Diameter 2, in (rotated 90°)	0.00240	0.00190	0.00180	0.00110	0.00080	0.00080	0.00010	0.00000	-0.00010	-0.00040	-0.00090	-0.00130	-0.00130	-0.00190	-0.00210
											Difference between	en max and m	in readings, in:		
											0° =	0.00200	90° =	0.00450	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00090	0.00070	0.00070	0.00060	0.00040	0.00020	0.00020	0.00000	-0.00010	0.00000	-0.00030	-0.00030	-0.00040	-0.00040	-0.00040
Diameter 2, in (rotated 90°)	-0.00240	-0.00220	-0.00200	-0.00140	-0.00080	-0.00050	-0.00010	0.00000	0.00010	0.00070	0.00080	0.00120	0.00150	0.00170	0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.0013	90° =	0.0043	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00225

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00126 0.07203	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00079 0.04518	
Maximum Angu	lar Difference:	0.02685	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00249 0.14258	
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.14258	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00200	1.993	0.00100	0.058	YES	
Diameter 2, in (rotated 90°)	0.00450	1.993	0.00226	0.129	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00130	1.993	0.00065	0.037	YES	
Diameter 2, in (rotated 90°)	0.00430	1.993	0.00216	0.124	YES	

Client:	Langan Engineering	Test Date: 6/9/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-136	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	24.75-25.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

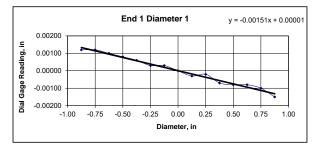
END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
End Flatness Tolerance Met? YES					

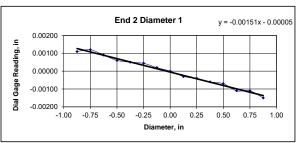
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/12/2025 Tested By: gp Checked By: smd Boring ID: LB-R-136 Sample ID: Depth, ft:

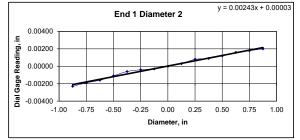
24.75-25.5

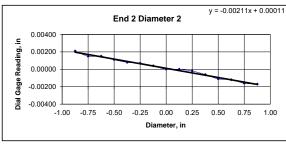
After cutting and grinding

After break




Client: Test Date: 6/10/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: smd GTX #: 321096 Boring ID: LB-X-003 Sample ID: 32.53-32.92 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

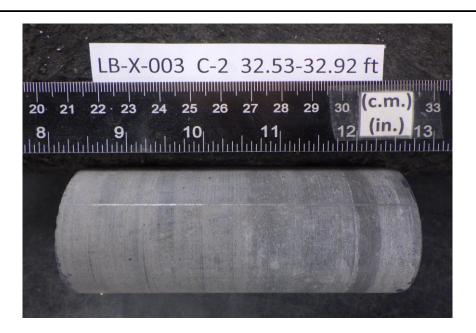

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.40	4.40	4.40	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	615.79			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00120	0.00120	0.00100	0.00080	0.00060	0.00030	0.00030	0.00000	-0.00030	-0.00020	-0.00070	-0.00080	-0.00080	-0.00100	-0.00150
Diameter 2, in (rotated 90°)	-0.00230	-0.00190	-0.00160	-0.00110	-0.00060	-0.00040	-0.00030	0.00000	0.00030	0.00080	0.00090	0.00120	0.00160	0.00180	0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.00270	90° =	0.00430	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00110	0.00120	0.00090	0.00060	0.00050	0.00044	0.00020	0.00000	-0.00030	-0.00040	-0.00060	-0.00070	-0.00110	-0.00110	-0.00150
Diameter 2, in (rotated 90°)	0.00210	0.00150	0.00150	0.00110	0.00080	0.00070	0.00040	0.00000	0.00000	-0.00020	-0.00060	-0.00110	-0.00120	-0.00160	-0.00170
											Difference between	en max and m	in readings, in:		
											0° =	0.0027	90° =	0.0038	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00215

DIAMETER 1			
End 1:			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00151 0.08676	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00151 0.08624	
Maximum Angı	ular Difference:	0.00052	
	Parallelism Tolerance Met?	YES	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:			
		0.00243 0.13915	
	Slope of Best Fit Line Angle of Best Fit Line:	0.13915	
End 1:	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.13915	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00270	1.988	0.00136	0.078	YES	
Diameter 2, in (rotated 90°)	0.00430	1.988	0.00216	0.124	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00270	1.988	0.00136	0.078	YES	
Diameter 2, in (rotated 90°)	0.00380	1.988	0.00191	0.110	YES	

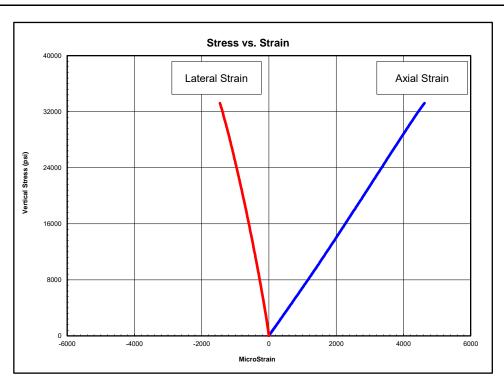


Client:	Langan Engineering	Test Date: 6/10/2025
Project Name:	Upstate Confidential Project	Tested By: jss
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-X-003	Reliable dial gauge measurements could not be
borning 1D.	LD-X-003	3 3
Sample ID:	LB-A-003	performed on this rock type. Tolerance
3	 32.53-32.92	3 3

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
	End Flatness Tolerance Met? YES					

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/9/2025 Tested By: gp Checked By: smd Boring ID: LB-X-003 Sample ID: Depth, ft: 32.53-32.92

After cutting and grinding



After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/20/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-005
Sample ID:	C-1
Depth, ft:	24.39-24.77
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Peak Compressive Stress: 33,275 psi

Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
3300-12200	6,990,000	0.26
3300-21100	7,340,000	0.32
21100-29900	7,410,000	0.37

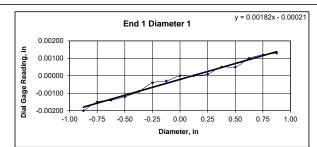
Notes:

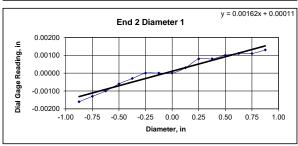
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

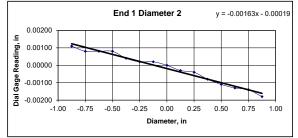
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

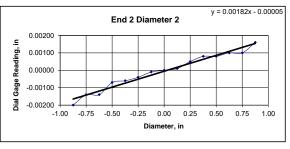
Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.

Calculations assume samples are isotropic, which is not necessarily the case.




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-005 Sample ID: C-1 Depth (ft): 24.39-24.77 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.32	4.32	4.32	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	618.28			
Bulk Density, lb/ft3	179	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00200	-0.00150	-0.00140	-0.00120	-0.00090	-0.00040	-0.00030	0.00000	0.00000	0.00010	0.00050	0.00050	0.00100	0.00120	0.00130
Diameter 2, in (rotated 90°)	0.00110	0.00080	0.00080	0.00080	0.00040	0.00020	0.00020	0.00000	-0.00030	-0.00040	-0.00080	-0.00110	-0.00130	-0.00140	-0.00180
											Difference between	een max and m	in readings, in:		
											0° =	0.00330	90° =	0.00290	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00160	-0.00130	-0.00100	-0.00060	-0.00030	0.00000	0.00000	0.00000	0.00030	0.00080	0.00080	0.00100	0.00110	0.00110	0.00130
Diameter 2, in (rotated 90°)	-0.00200	-0.00140	-0.00140	-0.00070	-0.00060	-0.00040	-0.00010	0.00000	0.00010	0.00050	0.00080	0.00080	0.00100	0.00100	0.00160
											Difference between	een max and m	in readings, in:		
											0° =	0.0029	90° =	0.0036	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00180

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00182 0.10411	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00162 0.09298	
Maximum Angu	lar Difference:	0.01113	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00163 0.09315	
End 2:			
End 2: Maximum Angu	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.09315 0.00182	

Flatness Tolerance Met?

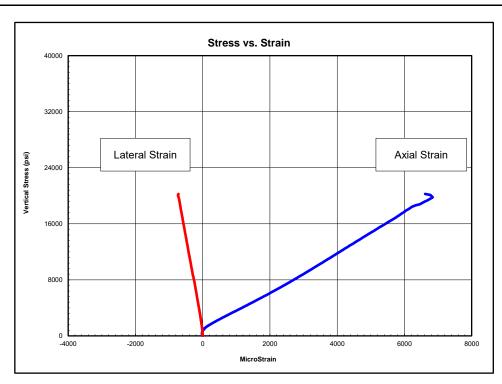
PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00330	1.970	0.00168	0.096	YES	
Diameter 2, in (rotated 90°)	0.00290	1.970	0.00147	0.084	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00290	1.970	0.00147	0.084	YES	
Diameter 2, in (rotated 90°)	0.00360	1.970	0.00183	0.105	YES	

Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-005	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	24.39-24.77	machinist straightedge and feeler gauges to
Visual Description:		ASTM specifications.

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/20/2025 Tested By: gp Checked By: smd Boring ID: LB-R-005 Sample ID: C-1 Depth, ft: 24.39-24.77

After cutting and grinding



After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/24/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-007
Sample ID:	C-1
Depth, ft:	22.75-23.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Peak Compressive Stress: 20,257 psi

Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2000-7400	2,500,000	0.09
7400-12800	2,920,000	0.12
12800-18200	2,960,000	0.11

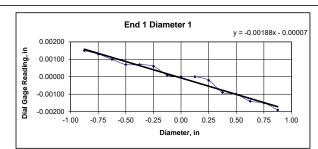
Notes:

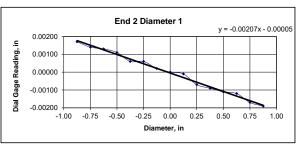
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

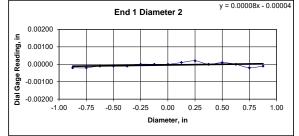
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

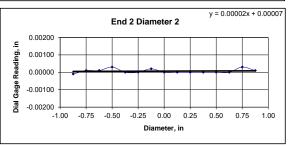
 $Young's\ Modulus\ and\ Poisson's\ Ratio\ calculated\ using\ the\ tangent\ to\ the\ line\ in\ the\ stress\ range\ listed.$

Calculations assume samples are isotropic, which is not necessarily the case.




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-007 Sample ID: C-1 22.75-23.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)	
	1	2	Average			
Specimen Length, in:	4.36	4.36	4.36		Maximum gap between side of core and reference surface plate:	
Specimen Diameter, in:	1.96	1.96	1.96		Is the maximum gap ≤ 0.02 in.? NO	
Specimen Mass, g:	621.64					
Bulk Density, lb/ft3	180	Minimum Diameter Tolerend	ce Met?	YES	Maximum difference must be < 0.020 in.	
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met?	YES	Straightness Tolerance Met? NO	

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00150	0.00130	0.00100	0.00070	0.00070	0.00060	0.00010	0.00000	0.00000	-0.00020	-0.00090	-0.00100	-0.00140	-0.00150	-0.00190
Diameter 2, in (rotated 90°)	-0.00020	-0.00020	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00010	0.00020	0.00000	0.00010	0.00000	-0.00020	-0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.00340	90° =	0.00040	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00170	0.00140	0.00130	0.00110	0.00060	0.00060	0.00020	0.00000	-0.00010	-0.00070	-0.00090	-0.00110	-0.00120	-0.00170	-0.00190
Diameter 2, in (rotated 90°)	-0.00010	0.00010	0.00010	0.00030	0.00000	0.00000	0.00020	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00030	0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.0036	90° =	0.0004	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00180

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00188 0.10788	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00207 0.11868	
Maximum Angu	ılar Difference:	0.01080	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Sprierically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00008 0.00458	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00458	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00340	1.960	0.00173	0.099	YES	
Diameter 2, in (rotated 90°)	0.00040	1.960	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00360	1.960	0.00184	0.105	YES	
Diameter 2, in (rotated 90°)	0.00040	1.960	0.00020	0.012	YES	

Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 007	Reliable dial gauge measurements could not be
Sample ID:	C=1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	22.75-23.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

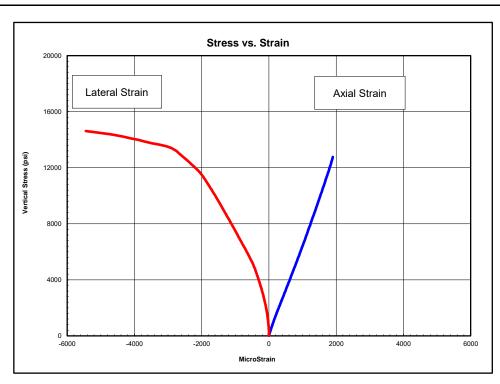
END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/24/2025 Tested By: gp Checked By: smd Boring ID: LB-R-007 Sample ID: C-1 Depth, ft: 22.75-23.5

After cutting and grinding



After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/20/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-012
Sample ID:	
Depth, ft:	24.10-24.50
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Peak Compressive Stress: 14,842 psi

Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1500-5400	6,150,000	
5400-9400	6,650,000	
9400-13400	7,820,000	

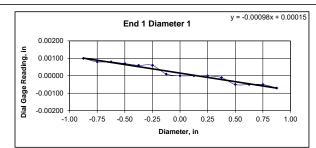
Notes:

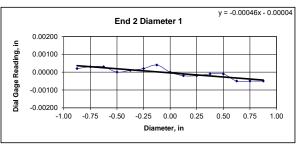
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

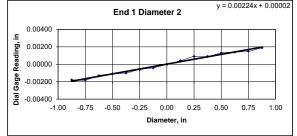
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

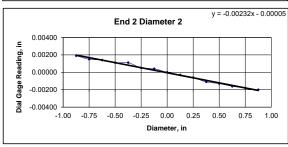
Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.

Calculations assume samples are isotropic, which is not necessarily the case.




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-012 Sample ID: Depth (ft): 24.10-24.50 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.39	4.39	4.39	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	624.4			
Bulk Density, lb/ft3	176	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00100	0.00080	0.00080	0.00070	0.00060	0.00060	0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00050	-0.00050	-0.00050	-0.00070
Diameter 2, in (rotated 90°)	-0.00180	-0.00180	-0.00130	-0.00110	-0.00100	-0.00060	-0.00040	0.00000	0.00040	0.00090	0.00090	0.00130	0.00140	0.00150	0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.00170	90° =	0.00370	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00030	0.00030	0.00000	0.00010	0.00020	0.00040	0.00000	-0.00020	-0.00020	-0.00010	-0.00010	-0.00050	-0.00050	-0.00050
Diameter 2, in (rotated 90°)	0.00190	0.00150	0.00140	0.00110	0.00110	0.00050	0.00040	0.00000	-0.00030	-0.00060	-0.00110	-0.00130	-0.00160	-0.00180	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.0009	90° =	0.0039	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00195

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00098 0.05631	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00046 0.02636	
Maximum Angı	ılar Difference:	0.02996	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00224 0.12818	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12818	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00170	1.975	0.00086	0.049	YES	
Diameter 2, in (rotated 90°)	0.00370	1.975	0.00187	0.107	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00090	1.975	0.00046	0.026	YES	
Diameter 2, in (rotated 90°)	0.00390	1.975	0.00197	0.113	YES	
1						

Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-012	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	24.10-24.50	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

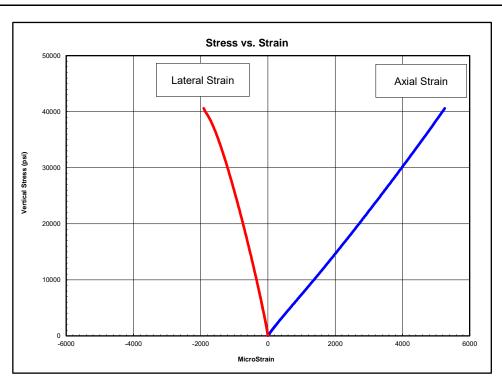
END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
End Flatness Tolerance Met? YES						

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/20/2025 Tested By: gp Checked By: smd Boring ID: LB-R-012 Sample ID:

24.10-24.50

Depth, ft:

After cutting and grinding



After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/20/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-026
Sample ID:	C-1
Depth, ft:	29.05-29.42
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Peak Compressive Stress: 40,607 psi

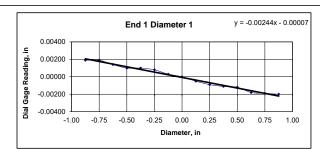
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
4100-14900	7,170,000	0.27
14900-25700	7,690,000	0.33
25700-36500	8,090,000	0.42

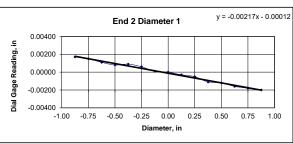
Notes:

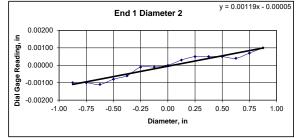
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature. The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

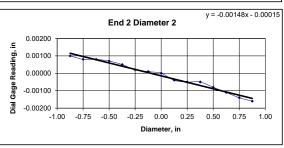
Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.

Calculations assume samples are isotropic, which is not necessarily the case.




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-026 Sample ID: C-1 29.05-29.42 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY					DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Avera	ge	
Specimen Length, in:	4.23	4.23	4.2	3	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	3	Is the maximum gap \leq 0.02 in.?
Specimen Mass, g:	604.57				
Bulk Density, lb/ft3	176	Minimum Diameter Tolerence	e Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met?	YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00190	0.00190	0.00140	0.00100	0.00100	0.00080	0.00030	0.00000	-0.00050	-0.00090	-0.00110	-0.00120	-0.00180	-0.00190	-0.00200
Diameter 2, in (rotated 90°)	-0.00100	-0.00100	-0.00110	-0.00080	-0.00060	-0.00010	-0.00010	0.00000	0.00030	0.00050	0.00050	0.00050	0.00040	0.00070	0.00100
											Difference between	en max and m	in readings, in:		
											0° =	0.00390	90° =	0.00210	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00170	0.00150	0.00110	0.00080	0.00090	0.00060	0.00010	0.00000	-0.00030	-0.00050	-0.00110	-0.00120	-0.00160	-0.00180	-0.00200
Diameter 2, in (rotated 90°)	0.00100	0.00080	0.00080	0.00070	0.00050	0.00020	0.00010	0.00000	-0.00040	-0.00050	-0.00050	-0.00080	-0.00110	-0.00140	-0.00160
											Difference between	en max and m	in readings, in:		
											0° =	0.0037	90° =	0.0026	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00195

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00244 0.13980	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00217 0.12409	
Maximum Angı	ular Difference:	0.01572	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2 End 1:		0.00119 0.06843	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 2:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.06843	

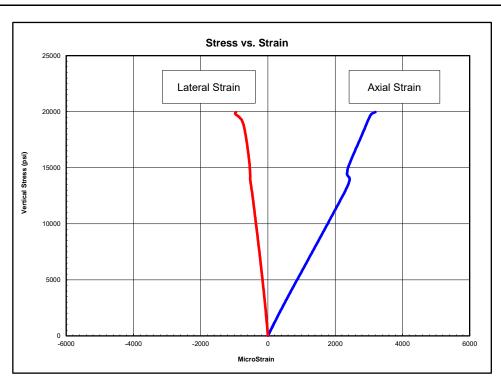
Flatness Tolerance Met?

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00390	1.980	0.00197	0.113	YES	
Diameter 2, in (rotated 90°)	0.00210	1.980	0.00106	0.061	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00370	1.980	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00260	1.980	0.00131	0.075	YES	

Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-026	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	29.05-29.42	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/20/2025 Tested By: gp Checked By: smd Boring ID: LB-R-026 Sample ID: C-1 Depth, ft: 29.05-29.42


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/24/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-041
Sample ID:	C-1
Depth, ft:	17.6-18.6
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 19,968 psi

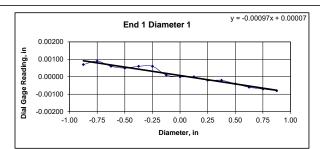
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2000-7300	5,540,000	0.20
7300-12600	5,540,000	0.22
12600-18000	9,920,000	0.34

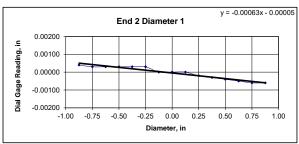
Notes:

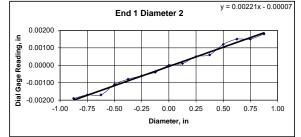
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

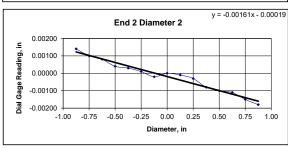
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-041 Sample ID: C-1 Depth (ft): 17.6-18.6 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

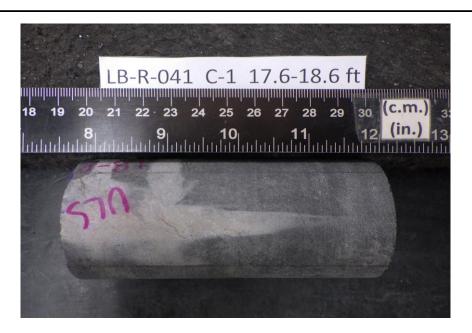

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.29	4.30	4.30	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap \leq 0.02 in.? YES
Specimen Mass, g:	611.53			
Bulk Density, lb/ft3	176	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00070	0.00090	0.00060	0.00050	0.00060	0.00060	0.00010	0.00000	0.00000	-0.00020	-0.00020	-0.00040	-0.00060	-0.00070	-0.00080
Diameter 2, in (rotated 90°)	-0.00190	-0.00170	-0.00170	-0.00110	-0.00080	-0.00060	-0.00040	0.00000	0.00010	0.00050	0.00060	0.00120	0.00150	0.00150	0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.00170	90° =	0.00370	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00040	0.00030	0.00030	0.00030	0.00030	0.00030	0.00000	0.00000	0.00000	-0.00020	-0.00030	-0.00040	-0.00050	-0.00060	-0.00060
Diameter 2, in (rotated 90°)	0.00140	0.00100	0.00080	0.00040	0.00030	0.00010	-0.00020	0.00000	-0.00010	-0.00030	-0.00080	-0.00100	-0.00110	-0.00150	-0.00180
											Difference between	en max and m	in readings, in:		
											0° =	0.001	90° =	0.0032	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00097 0.05533	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00063 0.03601	
Maximum Angı	ular Difference:	0.01932	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00221 0.12638	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12638	

Flatness Tolerance Met?

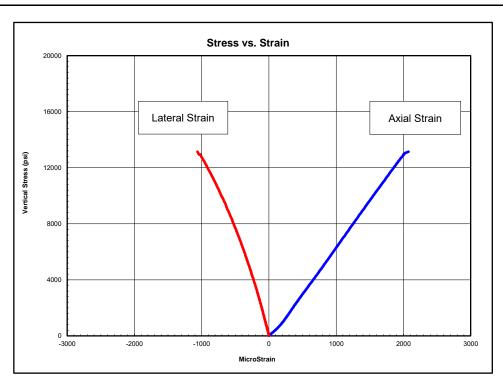
PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00170	1.980	0.00086	0.049	YES	
Diameter 2, in (rotated 90°)	0.00370	1.980	0.00187	0.107	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00100	1.980	0.00051	0.029	YES	
Diameter 2, in (rotated 90°)	0.00320	1.980	0.00162	0.093	YES	



Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-041	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	17.6-18.6	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
End Flatness Tolerance Met? YES							

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/24/2025 Tested By: gp Checked By: smd Boring ID: LB-R-041 Sample ID: C-1 Depth, ft: 17.6-18.6


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/24/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-129
Sample ID:	C-2
Depth, ft:	35.53-35.91
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 13,145 psi

The strain values recorded within the second and third stress ranges for this test produce values of Poisson's Ratio that exceed maximum values found in rocks.

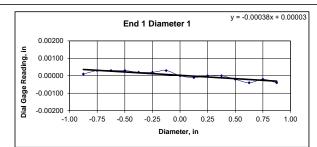
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1300-4800	6,650,000	0.40
4800-8300	6,780,000	
8300-11800	6,630,000	

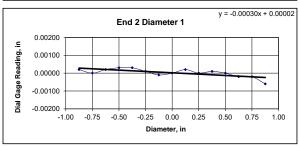
Notes:

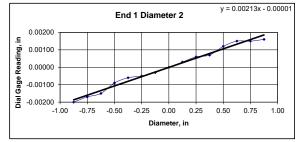
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

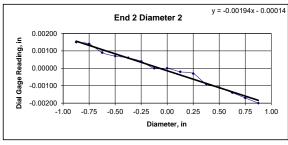
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-129 Sample ID: C-2 Depth (ft): 35.53-35.91 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.37	4.37	4.37	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	616.17			
Bulk Density, lb/ft3	174	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	D FLATNESS AND PARALLELISM (Procedure FP1)														
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00030	0.00030	0.00030	0.00020	0.00020	0.00030	0.00000	-0.00010	0.00000	0.00000	-0.00020	-0.00040	-0.00020	-0.00040
Diameter 2, in (rotated 90°)	-0.00200	-0.00170	-0.00150	-0.00090	-0.00060	-0.00050	-0.00030	0.00000	0.00030	0.00060	0.00070	0.00120	0.00150	0.00150	0.00160
											Difference between	en max and m	in readings, in:		
											0° =	0.00070	90° =	0.00360	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00000	0.00020	0.00030	0.00030	0.00010	-0.00010	0.00000	0.00020	0.00000	0.00010	0.00000	-0.00020	-0.00020	-0.00060
Diameter 2, in (rotated 90°)	0.00150	0.00140	0.00090	0.00070	0.00060	0.00040	0.00000	0.00000	-0.00020	-0.00030	-0.00090	-0.00110	-0.00140	-0.00170	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.0009	90° =	0.0035	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00180

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00038 0.02194	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00030 0.01719	
Maximum Angu	ılar Difference:	0.00475	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00213 0.12196	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.12196 0.00194	

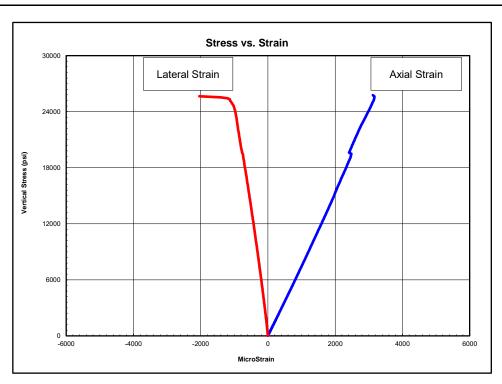
Flatness Tolerance Met? NO

PERPENDICULARITY (Procedu	re P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00070	1.980	0.00035	0.020	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00090	1.980	0.00045	0.026	YES	
Diameter 2, in (rotated 90°)	0.00350	1.980	0.00177	0.101	YES	

Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 225	Reliable dial gauge measurements could not be
Sample ID:	(°-)	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
End Flatness Tolerance Met? YES						

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/24/2025 Tested By: gp Checked By: smd Boring ID: LB-R-129 Sample ID: C-2 Depth, ft: 35.53-35.91


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/20/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-130
Sample ID:	C-2
Depth, ft:	22.55-22.92
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

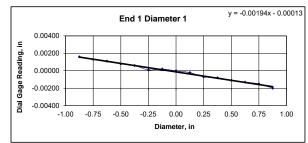
Peak Compressive Stress: 25,773 psi

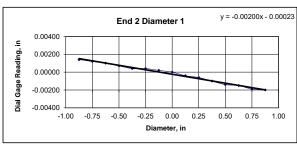
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2600-9500	7,530,000	0.27
9500-16300	7,950,000	0.32
16300-23200	9,890,000	0.48

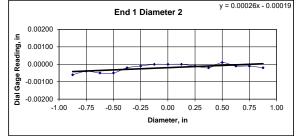
Notes:

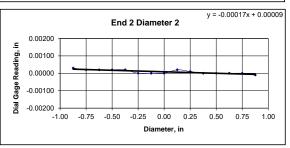
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-130 Sample ID: C-2 22.55-22.92 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.30	4.30	4.30	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	619.61			
Bulk Density, lb/ft ³	176	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00160	0.00130	0.00110	0.00080	0.00060	0.00010	0.00020	0.00000	-0.00020	-0.00070	-0.00080	-0.00110	-0.00130	-0.00150	-0.00200
Diameter 2, in (rotated 90°)	-0.00060	-0.00040	-0.00050	-0.00050	-0.00020	-0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00020	0.00010	-0.00010	-0.00010	-0.00020
											Difference between	een max and m	in readings, in:		
											0° =	0.00360	90° =	0.00070	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00120	0.00100	0.00070	0.00040	0.00040	0.00020	0.00000	-0.00040	-0.00060	-0.00100	-0.00140	-0.00150	-0.00190	-0.00200
Diameter 2, in (rotated 90°)	0.00030	0.00020	0.00020	0.00020	0.00020	0.00000	0.00000	0.00000	0.00020	0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010
											Difference between	een max and m	in readings, in:		
											0° =	0.0034	90° =	0.0004	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00180

Slope of Best Fit Line Angle of Best Fit Line:	0.00194 0.11099	
Slope of Best Fit Line Angle of Best Fit Line:	0.00200 0.11476	
ılar Difference:	0.00377	
Parallelism Tolerance Met? Spherically Seated	YES	
Slope of Best Fit Line Angle of Best Fit Line:	0.00026 0.01473	
Slope of Best Fit Line		
Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.01473	
	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: ular Difference: Parallelism Tolerance Met?	Slope of Best Fit Line

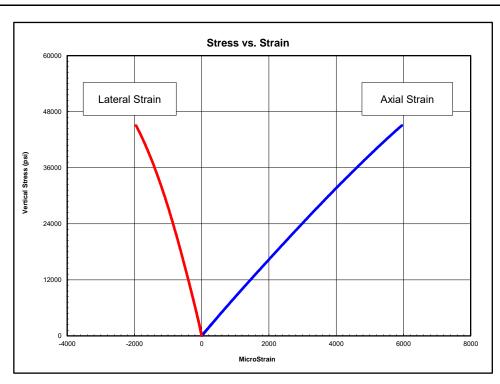
Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure F	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$					
Diameter 1, in	0.00360	1.990	0.00181	0.104	YES						
Diameter 2, in (rotated 90°)	0.00070	1.990	0.00035	0.020	YES	Perpendicularity Tolerance Met? YES					
END 2											
Diameter 1, in	0.00340	1.990	0.00171	0.098	YES						
Diameter 2, in (rotated 90°)	0.00040	1.990	0.00020	0.012	YES						

Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 100	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance
Sample ID: Depth (ft):	C-2 22.55-22.92	performed on this rock type. Tolerance measurements were performed using a machinist straightedge and feeler gauges to

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Tole	rance Met?	? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/20/2025 Tested By: gp Checked By: smd Boring ID: LB-R-130 Sample ID: C-2 Depth, ft: 22.55-22.92


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/24/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-135
Sample ID:	C-1
Depth, ft:	22.5-23.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 45,054 psi

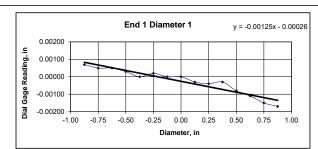
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
4500-16500	8,070,000	0.28
16500-28500	7,710,000	0.31
28500-40500	7,150,000	0.36

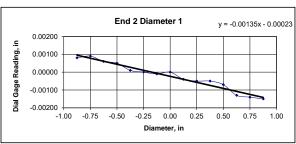
Notes:

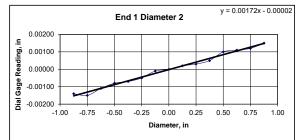
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

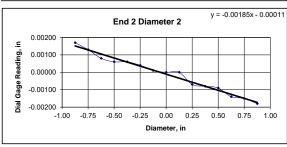
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/11/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-135 Sample ID: C-1 22.5-23.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.37	4.37	4.37	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.99	1.99	1.99	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	616.07			
Bulk Density, lb/ft3	172	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00070	0.00050	0.00050	0.00030	0.00000	0.00020	0.00000	0.00000	-0.00030	-0.00040	-0.00030	-0.00080	-0.00110	-0.00150	-0.00170
Diameter 2, in (rotated 90°)	-0.00140	-0.00150	-0.00110	-0.00080	-0.00070	-0.00050	-0.00010	0.00000	0.00020	0.00030	0.00050	0.00100	0.00110	0.00120	0.00150
											Difference between	een max and m	in readings, in:		
											0° =	0.00240	90° =	0.00300	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00080	0.00090	0.00060	0.00050	0.00010	0.00000	-0.00010	0.00000	-0.00040	-0.00050	-0.00050	-0.00070	-0.00130	-0.00140	-0.00150
Diameter 2, in (rotated 90°)	0.00170	0.00130	0.00080	0.00060	0.00060	0.00040	0.00010	0.00000	0.00000	-0.00070	-0.00080	-0.00090	-0.00140	-0.00150	-0.00180
											Difference between	een max and m	in readings, in:		
											0° =	0.0024	90° =	0.0035	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00175

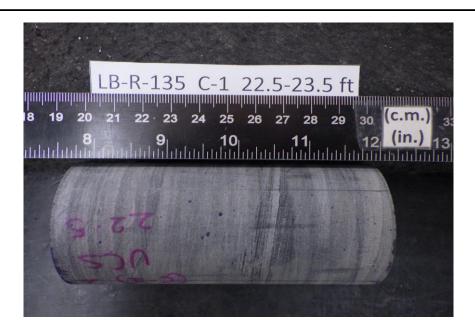
	Flatness Tolerance Met?	NO	
DIAMETER 1			
End 1:			
Elia 1.	Slope of Best Fit Line	0.00125	
	Angle of Best Fit Line:	0.07137	
End 2:			
	Slope of Best Fit Line	0.00135	
	Angle of Best Fit Line:	0.07743	
Maximum Angu	ılar Difference:	0.00606	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2		NO	
DIAMETER 2	Spherically Seated	NO	
	Spherically Seated Slope of Best Fit Line	0.00172	
	Spherically Seated		
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00172 0.09855	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00172 0.09855 0.00185	
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00172 0.09855	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00172 0.09855 0.00185	

Parallelism Tolerance Met?

Spherically Seated

NO

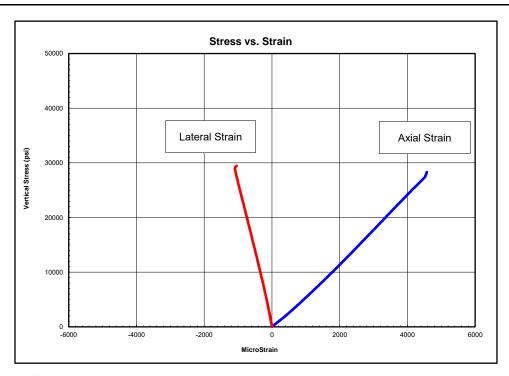
PERPENDICULARITY (Procedure I	RPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)										
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$					
Diameter 1, in	0.00240	1.990	0.00121	0.069	YES						
Diameter 2, in (rotated 90°)	0.00300	1.990	0.00151	0.086	YES	Perpendicularity Tolerance Met? YES					
END 2											
Diameter 1, in	0.00240	1.990	0.00121	0.069	YES						
Diameter 2, in (rotated 90°)	0.00350	1.990	0.00176	0.101	YES						



Client:	Langan Engineering	Test Date: 6/11/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-135	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	22.5-23.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
End Flatness Tolerance Met? YES						

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/24/2025 Tested By: gp Checked By: smd Boring ID: LB-R-135 Sample ID: C-1 Depth, ft: 22.5-23.5


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-027
Sample ID:	C-1
Depth, ft:	28.10-28.47
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 29,446 psi

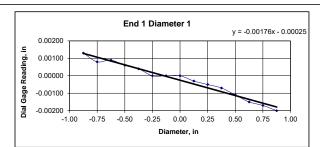
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2900-10800	5,870,000	0.21
10800-18600	6,390,000	0.25
18600-26500	6,390,000	0.26

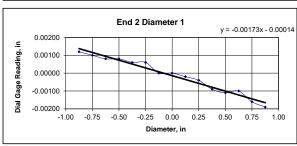
Notes:

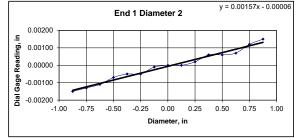
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

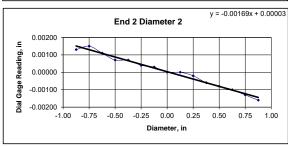
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/19/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-027 Sample ID: C-1 Depth (ft): 28.10-28.47 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.44	4.44	4.44	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	640.52			
Bulk Density, lb/ft3	178	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)	•	•	•			•		•	•	•			
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00130	0.00080	0.00090	0.00060	0.00040	0.00000	0.00000	0.00000	-0.00030	-0.00050	-0.00070	-0.00110	-0.00150	-0.00170	-0.00200
Diameter 2, in (rotated 90°)	-0.00150	-0.00130	-0.00110	-0.00070	-0.00050	-0.00050	-0.00010	0.00000	0.00000	0.00020	0.00060	0.00060	0.00070	0.00120	0.00150
											Difference between	een max and m	in readings, in:		
											0° =	0.00330	90° =	0.00300	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00120	0.00100	0.00080	0.00080	0.00060	0.00060	0.00000	0.00000	-0.00020	-0.00040	-0.00090	-0.00110	-0.00100	-0.00160	-0.00190
Diameter 2, in (rotated 90°)	0.00130	0.00150	0.00110	0.00070	0.00070	0.00040	0.00030	0.00000	0.00000	-0.00020	-0.00060	-0.00080	-0.00100	-0.00130	-0.00160
											Difference between	een max and m	in readings, in:		
											0° =	0.0031	90° =	0.0031	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00165

Flatne	ess Tolerance Met?	NO	
DIAMETER 1			
End 1:			
	est Fit Line	0.00176	
Angle of B	est Fit Line:	0.10068	
End 2:	ant Fit Line	0.00173	
	est Fit Line est Fit Line:	0.00173	
Maximum Angular Differer		0.00147	
Maximum Angular Dillerei	ice:	0.00147	
Paralleli	sm Tolerance Met?	YES	
Sphericall		123	
DIAMETER 2			
Fnd 1:			
Slope of B	est Fit Line	0.00157	
Angle of B	est Fit Line:	0.09004	
End 2:			
	est Fit Line	0.00169	
Angle of B	est Fit Line:	0.09658	
I			
Maximum Angular Differer	nce:	0.00655	

Parallelism Tolerance Met?

Spherically Seated

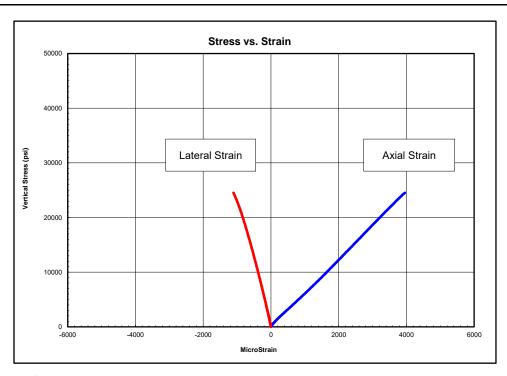
NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00330	1.980	0.00167	0.095	YES	
Diameter 2, in (rotated 90°)	0.00300	1.980	0.00152	0.087	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00310	1.980	0.00157	0.090	YES	
Diameter 2, in (rotated 90°)	0.00310	1.980	0.00157	0.090	YES	

Client:	Langan Engineering	Test Date: 6/19/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-027	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	28.10-28.47	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
End Flatness Tolerance Met? YES						

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-027 Sample ID: C-1 Depth, ft: 28.10-28.47


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-042
Sample ID:	C-1
Depth, ft:	25.24-25.62
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 24,520 psi

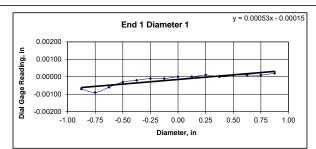
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2500-9000	5,830,000	0.22
9000-15500	6,350,000	0.27
15500-22100	6,380,000	0.31

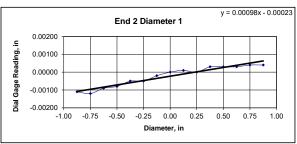
Notes:

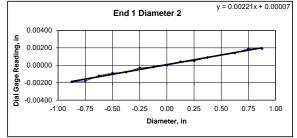
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

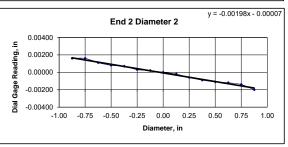
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-042 Sample ID: C-1 25.24-25.62 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.24	4.24	4.24	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	602.83			
Bulk Density, lb/ft ³	176	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

ELISM (Procedu	ire FP1)	•		•			•			•	•	•		
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00070	-0.00090	-0.00060	-0.00030	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00010	0.00000	0.00010	0.00010	0.00010	0.00020
-0.00190	-0.00180	-0.00120	-0.00090	-0.00080	-0.00030	-0.00020	0.00000	0.00040	0.00050	0.00090	0.00120	0.00140	0.00190	0.00190
										Difference between	en max and m	in readings, in:		
										0° =	0.00110	90° =	0.00380	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00110	-0.00120	-0.00090	-0.00080	-0.00050	-0.00050	-0.00020	0.00000	0.00010	0.00000	0.00030	0.00030	0.00030	0.00040	0.00040
0.00160	0.00160	0.00110	0.00080	0.00070	0.00030	0.00020	0.00000	-0.00020	-0.00060	-0.00090	-0.00110	-0.00120	-0.00140	-0.00200
										Difference between	en max and m	in readings, in:		
										0° =	0.0016	90° =	0.0036	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00190
	-0.875 -0.00070 -0.00190 -0.875 -0.00110	-0.00070 -0.00090 -0.00190 -0.00180 -0.875 -0.750 -0.00110 -0.00120	-0.875 -0.750 -0.625 -0.00070 -0.00090 -0.00060 -0.00190 -0.00180 -0.00120 -0.875 -0.750 -0.625 -0.00110 -0.00120 -0.00090	-0.875 -0.750 -0.625 -0.500 -0.00070 -0.00090 -0.00060 -0.00030 -0.00190 -0.00180 -0.00120 -0.00090 -0.875 -0.750 -0.625 -0.500 -0.00110 -0.00120 -0.00090 -0.00080	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00070 -0.00090 -0.00060 -0.00030 -0.00020 -0.00190 -0.00180 -0.00120 -0.00090 -0.00080 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00110 -0.00120 -0.00090 -0.00080 -0.00050	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00070 -0.00090 -0.00060 -0.00030 -0.00020 -0.00010 -0.00190 -0.00180 -0.00120 -0.00090 -0.00080 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00110 -0.00120 -0.00090 -0.00080 -0.00050 -0.00050	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00070 -0.00090 -0.00060 -0.00030 -0.00020 -0.00010 -0.0010 -0.00190 -0.00180 -0.00120 -0.00090 -0.00080 -0.00030 -0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00110 -0.00120 -0.00090 -0.00080 -0.00050 -0.00050 -0.00050	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00070 -0.00090 -0.00060 -0.00030 -0.00020 -0.00010 -0.00010 0.00000 -0.00190 -0.00180 -0.00120 -0.00090 -0.00080 -0.00030 -0.00020 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00110 -0.00120 -0.00090 -0.00050 -0.00050 -0.00050 -0.00020 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00070 -0.00090 -0.00060 -0.00030 -0.00020 -0.00010 -0.00010 0.00000 0.00000 -0.00190 -0.00180 -0.00120 -0.00090 -0.00080 -0.00030 -0.00020 0.00000 0.00040 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00110 -0.00120 -0.00090 -0.00080 -0.00050 -0.00050 -0.00020 0.00000 0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00070 -0.00090 -0.00060 -0.00030 -0.00020 -0.00010 -0.0010 0.00000 0.00000 0.00010 -0.00190 -0.00180 -0.00120 -0.00090 -0.00080 -0.00030 -0.00020 0.00000 0.00040 0.00050 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00110 -0.00120 -0.00090 -0.00050 -0.00050 -0.00020 0.00000 0.00010 0.00000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	-0.875	-0.875

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00053 0.03028	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00098 0.05599	
Maximum Angu	llar Difference:	0.02570	
	Parallelism Tolerance Met? Spherically Seated	NO	
	Sprictically Scatca		
DIAMETER 2	Sprintally Stated		
DIAMETER 2 End 1:		0.00221 0.12687	
	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.12687	

Flatness Tolerance Met?

NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00110	1.980	0.00056	0.032	YES	
Diameter 2, in (rotated 90°)	0.00380	1.980	0.00192	0.110	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00160	1.980	0.00081	0.046	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	

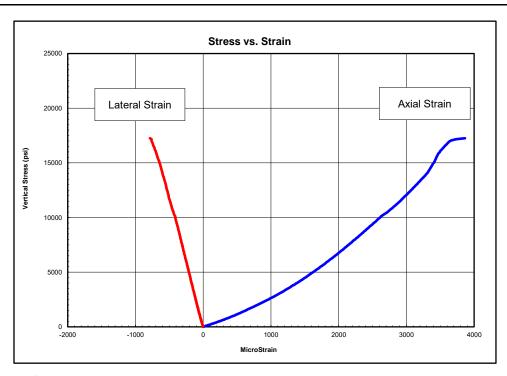
Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-042	Reliable dial gauge measurements could not be
	LD IT OIL	3 3
Sample ID:	C-1	performed on this rock type. Tolerance
Sample ID: Depth (ft):	25 11 0 12	3 3

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-042 Sample ID: C-1 Depth, ft: 25.24-25.62


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-045
Sample ID:	
Depth, ft:	21.54-21.92
Sample Type:	rock core
Sample Description:	See photographs Intact material failure
	Best Effort end preparation performed

Peak Compressive Stress: 17,250 psi

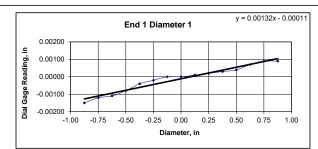
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1700-6300	3,760,000	0.15
6300-10900	5,250,000	0.22
10900-15500	6,780,000	0.30

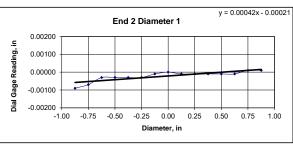
Notes:

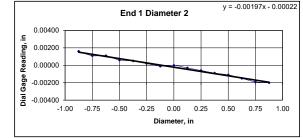
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

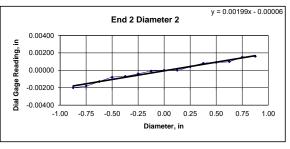
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-045 Sample ID: Depth (ft): 21.54-21.92 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.32	4.33	4.33	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	609.65			
Bulk Density, lb/ft3	174	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00150	-0.00120	-0.00110	-0.00080	-0.00040	-0.00020	0.00000	0.00000	0.00010	0.00020	0.00030	0.00040	0.00070	0.00090	0.00090
Diameter 2, in (rotated 90°)	0.00160	0.00110	0.00110	0.00060	0.00050	0.00020	-0.00010	0.00000	-0.00030	-0.00060	-0.00090	-0.00110	-0.00150	-0.00190	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.00240	90° =	0.00360	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00090	-0.00070	-0.00030	-0.00030	-0.00030	-0.00030	-0.00010	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00010	0.00010
Diameter 2, in (rotated 90°)	-0.00200	-0.00180	-0.00130	-0.00080	-0.00070	-0.00040	-0.00010	0.00000	0.00000	0.00040	0.00080	0.00090	0.00100	0.00150	0.00160
											Difference between	en max and m	in readings, in:		
											0° =	0.001	90° =	0.0036	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00180

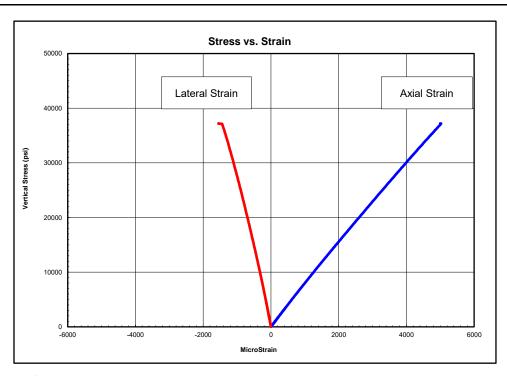
	Flatness Tolerance Met?	NO	
DIAMETER 1			
Fnd 1:			
	ope of Best Fit Line ngle of Best Fit Line:	0.00132 0.07563	
	ope of Best Fit Line ngle of Best Fit Line:	0.00042 0.02390	
Maximum Angular	Difference:	0.05173	
	Parallelism Tolerance Met? pherically Seated	NO	
DIAMETER 2			
	ope of Best Fit Line ngle of Best Fit Line:	0.00197 0.11295	
	ope of Best Fit Line ngle of Best Fit Line:	0.00199 0.11377	
Maximum Angular	Difference:	0.00082	
	Parallelism Tolerance Met? pherically Seated	YES	

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00240	1.980	0.00121	0.069	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00100	1.980	0.00051	0.029	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	
1						

Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-045	Reliable dial gauge measurements could not be
501g 151	25 11 0 15	3 3
Sample ID:	25 11 0 15	performed on this rock type. Tolerance
3	25 11 0 15	3 3

END FLATNESS END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	? YES	

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-045 Sample ID: Depth, ft: 21.54-21.92


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/24/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-059
Sample ID:	
Depth, ft:	37-38
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 37,214 psi

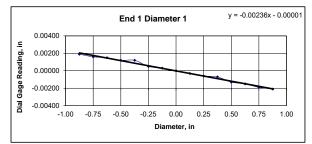
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
3700-13600	7,750,000	0.26
13600-23600	7,360,000	0.28
23600-33500	7,120,000	0.31

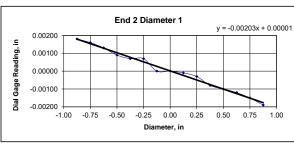
Notes:

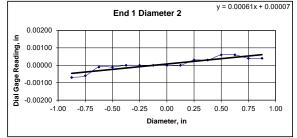
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

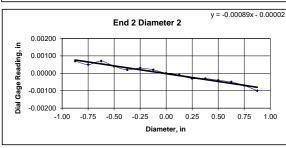
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-059 Sample ID: 37-38 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.35	4.35	4.35	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	607.88			
Bulk Density, lb/ft3	173	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00190	0.00160	0.00150	0.00120	0.00120	0.00050	0.00030	0.00000	-0.00030	-0.00060	-0.00070	-0.00130	-0.00150	-0.00190	-0.00210
Diameter 2, in (rotated 90°)	-0.00070	-0.00060	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00030	0.00030	0.00060	0.00060	0.00040	0.00040
											Difference between	en max and m	in readings, in:		
											0° =	0.00400	90° =	0.00130	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00180	0.00160	0.00130	0.00090	0.00070	0.00070	0.00000	0.00000	-0.00010	-0.00030	-0.00080	-0.00100	-0.00120	-0.00150	-0.00190
Diameter 2, in (rotated 90°)	0.00070	0.00050	0.00070	0.00040	0.00020	0.00030	0.00020	0.00000	-0.00010	-0.00030	-0.00030	-0.00040	-0.00050	-0.00070	-0.00100
											Difference between	en max and m	in readings, in:		
											0° =	0.0037	90° =	0.0017	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00200

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00236 0.13505	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00203 0.11656	
Maximum Angu	ılar Difference:	0.01850	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00061 0.03520	
End 1: End 2:			
	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.03520	

Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00400	1.980	0.00202	0.116	YES	
Diameter 2, in (rotated 90°)	0.00130	1.980	0.00066	0.038	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00370	1.980	0.00187	0.107	YES	
Diameter 2, in (rotated 90°)	0.00170	1.980	0.00086	0.049	YES	

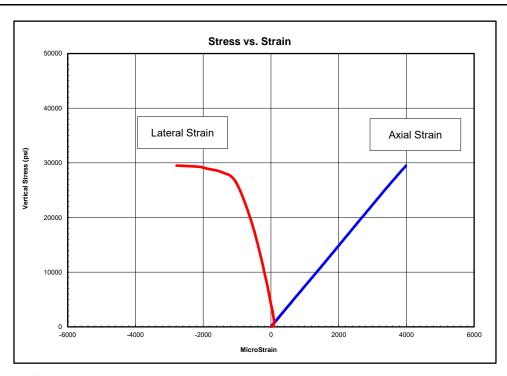
Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-059	Reliable dial gauge measurements could not be
0 1 70		performed on this rock type. Tolerance
Sample ID:	C-2	
Depth (ft):	C-2 37-38	measurements were performed using a machinist straightedge and feeler gauges to

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/20/2025 Tested By: gp Checked By: smd Boring ID: LB-R-059 Sample ID: Depth, ft: 37-38


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-062
Sample ID:	C-1
Depth, ft:	28-28.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 29,565 psi

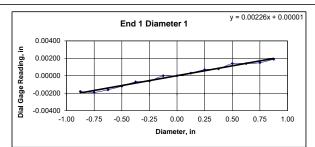
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
3000-10800	7,370,000	0.25
10800-18700	7,490,000	0.31
18700-26600	7,430,000	0.45

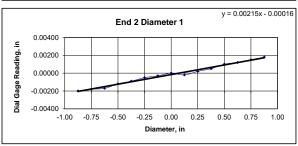
Notes:

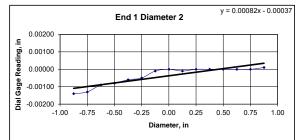
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

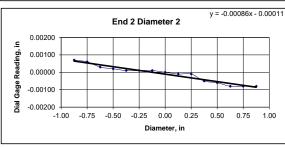
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-062 Sample ID: C-1 Depth (ft): 28-28.5 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.28	4.28	4.28	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap \leq 0.02 in.?
Specimen Mass, g:	611.34			
Bulk Density, lb/ft ³	176	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00180	-0.00190	-0.00160	-0.00120	-0.00070	-0.00060	0.00000	0.00000	0.00030	0.00070	0.00080	0.00140	0.00140	0.00150	0.00190
Diameter 2, in (rotated 90°)	-0.00140	-0.00130	-0.00090	-0.00080	-0.00060	-0.00050	-0.00010	0.00000	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.00380	90° =	0.00150	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00200	-0.00180	-0.00170	-0.00120	-0.00090	-0.00050	-0.00030	0.00000	-0.00020	0.00020	0.00050	0.00100	0.00120	0.00150	0.00180
Diameter 2, in (rotated 90°)	0.00070	0.00060	0.00030	0.00020	0.00010	0.00010	0.00010	0.00000	-0.00010	-0.00010	-0.00050	-0.00060	-0.00080	-0.00080	-0.00080
											Difference between	en max and m	in readings, in:		
											0° =	0.0038	90° =	0.0015	
											Maximum differe	ence must be <	0.0020 in.	Difference = +	0.00190

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00226 0.12949	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00215 0.12343	
Maximum Angu	ılar Difference:	0.00606	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00082 0.04715	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.04715	

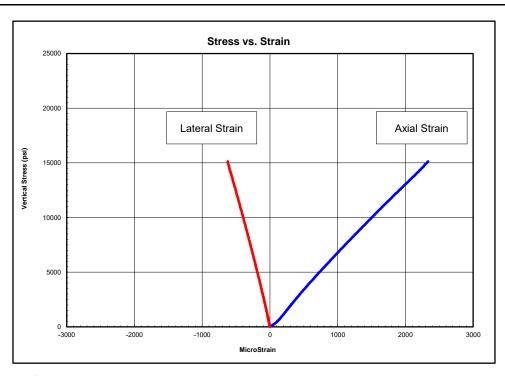
Flatness Tolerance Met? NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00380	1.980	0.00192	0.110	YES	
Diameter 2, in (rotated 90°)	0.00150	1.980	0.00076	0.043	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00380	1.980	0.00192	0.110	YES	
Diameter 2, in (rotated 90°)	0.00150	1.980	0.00076	0.043	YES	
1						

Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-062	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	28-28.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS			
END 1			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
END 2			
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES	
	End Flatness Toler	ance Met?	? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-062 Sample ID: C-1 Depth, ft: 28-28.5


After cutting and grinding

After break

Client:	Langan Engineering						
Project Name:	Upstate Confidential Project						
Project Location:	NY						
GTX #:	321096						
Test Date:	7/1/2025						
Tested By:	gp						
Checked By:	jsc						
Boring ID:	LB-R-064						
Sample ID:							
Depth, ft:	36-37						
Sample Type:	rock core						
Sample Description:	See photographs Intact material failure Best Effort end preparation performed						

Peak Compressive Stress: 15,127 psi

Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1500-5500	7,160,000	0.27
5500-9600	6,470,000	0.27
9600-13600	6,110,000	0.27

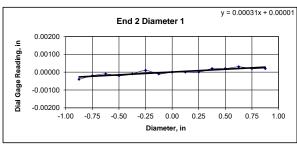
Notes:

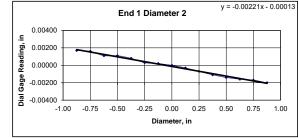
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

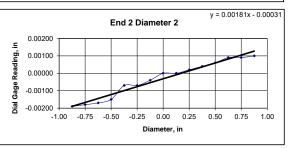
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-064 Sample ID: 36-37 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

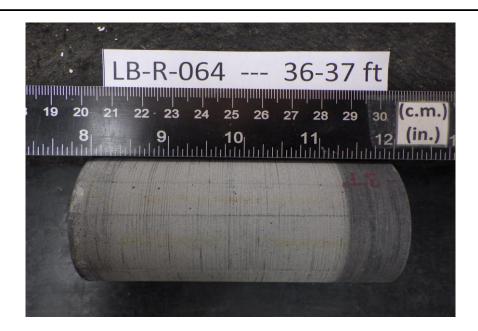

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.09	4.09	4.09	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.96	1.96	1.96	Is the maximum gap \leq 0.02 in.? YES
Specimen Mass, g:	548.21			
Bulk Density, lb/ft3	169	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLE	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00070	-0.00040	-0.00040	0.00000	-0.00020	0.00000	0.00000	0.00000	0.00010	0.00050	0.00050	0.00060	0.00050	0.00060	0.00050
Diameter 2, in (rotated 90°)	0.00170	0.00160	0.00110	0.00110	0.00080	0.00030	0.00020	0.00000	-0.00030	-0.00070	-0.00110	-0.00140	-0.00160	-0.00170	-0.00200
											Difference between	een max and m	in readings, in:		
											0° =	0.00130	90° =	0.00370	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00040	-0.00020	-0.00010	-0.00020	-0.00010	0.00010	-0.00010	0.00000	0.00000	0.00000	0.00020	0.00020	0.00030	0.00020	0.00020
Diameter 2, in (rotated 90°)	-0.00190	-0.00180	-0.00170	-0.00150	-0.00070	-0.00070	-0.00040	0.00000	0.00000	0.00020	0.00040	0.00060	0.00090	0.00090	0.00100
											Difference between	een max and m	in readings, in:		
											0° =	0.0007	90° =	0.0029	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00070 0.04011	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00031 0.01801	
Maximum Angu	lar Difference:	0.02210	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:		0.00221 0.12671	
	Slope of Best Fit Line Angle of Best Fit Line:	0.12671	
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.12671	

Flatness Tolerance Met?

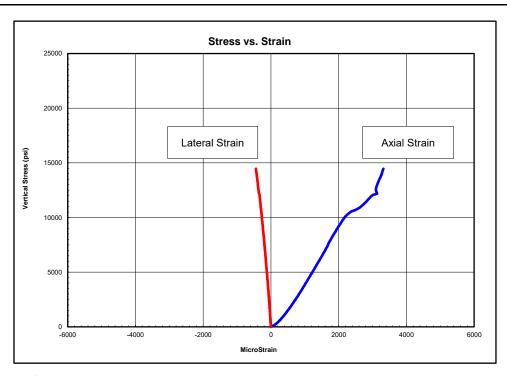
PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00130	1.960	0.00066	0.038	YES	
Diameter 2, in (rotated 90°)	0.00370	1.960	0.00189	0.108	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00070	1.960	0.00036	0.020	YES	
Diameter 2, in (rotated 90°)	0.00290	1.960	0.00148	0.085	YES	
1						


Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-064	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	36-37	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-064 Sample ID: Depth, ft: 36-37


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-065
Sample ID:	
Depth, ft:	28-29
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 14,459 psi

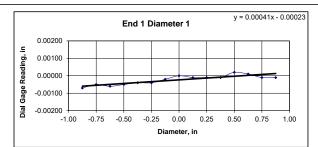
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1400-5300	4,850,000	0.12
5300-9200	5,530,000	0.16
9200-13000	2,710,000	0.10

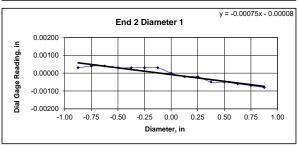
Notes:

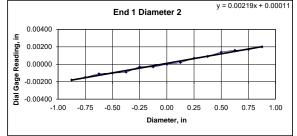
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

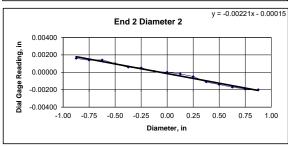
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/18/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-065 Sample ID: 28-29 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.22	4.22	4.22	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	605.66			
Bulk Density, lb/ft3	177	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

ELISM (Procedu	ire FP1)			•			•		•		•			•
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00070	-0.00050	-0.00060	-0.00050	-0.00040	-0.00040	-0.00020	0.00000	-0.00010	-0.00010	-0.00010	0.00020	0.00010	-0.00010	-0.00010
-0.00180	-0.00150	-0.00110	-0.00100	-0.00090	-0.00030	-0.00030	0.00000	0.00020	0.00070	0.00090	0.00140	0.00160	0.00170	0.00200
										Difference between	een max and m	in readings, in:		
										0° =	0.00090	90° =	0.00380	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
0.00030	0.00040	0.00040	0.00030	0.00030	0.00030	0.00030	0.00000	-0.00020	-0.00020	-0.00050	-0.00050	-0.00060	-0.00070	-0.00080
0.00160	0.00140	0.00140	0.00100	0.00060	0.00050	0.00010	0.00000	-0.00020	-0.00050	-0.00110	-0.00140	-0.00170	-0.00190	-0.00200
										Difference between	een max and m	in readings, in:		
										0° =	0.0012	90° =	0.0036	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00190
	-0.875 -0.00070 -0.00180 -0.875 0.00030	-0.00070 -0.00050 -0.00180 -0.00150 -0.875 -0.750 0.00030 0.00040	-0.875 -0.750 -0.625 -0.00070 -0.00050 -0.00060 -0.00180 -0.00150 -0.00110 -0.875 -0.750 -0.625 0.00030 0.00040 0.00040	-0.875 -0.750 -0.625 -0.500 -0.00070 -0.00050 -0.00060 -0.00050 -0.00110 -0.00100 -0.00150 -0.00110 -0.00100 -0	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00070 -0.00050 -0.00060 -0.00050 -0.00040 -0.00180 -0.00150 -0.00110 -0.00100 -0.00090 -0.875 -0.750 -0.625 -0.500 -0.375 0.00030 0.00040 0.00040 0.00030 0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00070 -0.00050 -0.00060 -0.00050 -0.00040 -0.00040 -0.00180 -0.00150 -0.00110 -0.00100 -0.00090 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 0.00030 0.00040 0.00040 0.00030 0.00030 0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00070 -0.00050 -0.00060 -0.00050 -0.00040 -0.00040 -0.00020 -0.00180 -0.00150 -0.00110 -0.00100 -0.00090 -0.00030 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00030 0.00040 0.00040 0.00030 0.00030 0.00030 0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00070 -0.00050 -0.00060 -0.00050 -0.00040 -0.00040 -0.00020 0.00000 -0.00180 -0.00150 -0.00110 -0.00100 -0.00090 -0.00030 -0.00030 0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.00030 0.00040 0.00040 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00070 -0.00050 -0.00050 -0.00040 -0.00040 -0.00020 0.00000 -0.00010 -0.00180 -0.00150 -0.00110 -0.00100 -0.00090 -0.00030 -0.00030 0.00000 0.00020 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.00030 0.00040 0.00040 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00070 -0.00050 -0.00050 -0.00040 -0.00040 -0.00020 0.00000 -0.00010 -0.00010 -0.00180 -0.00150 -0.00110 -0.00100 -0.00090 -0.00030 -0.0030 0.00000 0.00020 0.00070 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 0.00030 0.00040 0.00040 0.00030 0.00030 0.00030 0.00030 0.00030 -0.00020 -0.00020	-0.875	-0.875	-0.875	-0.875

IAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00041 0.02374	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00075 0.04322	
Maximum Angı	ılar Difference:	0.01948	
	Parallelism Tolerance Met?	NO	
	Spherically Seated		
DIAMETER 2	Spherically Seated		
DIAMETER 2			
DIAMETER 2 End 1:		0.00219 0.12572	
	Slope of Best Fit Line Angle of Best Fit Line:	0.12572	
End 1:	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.12572	

Flatness Tolerance Met?

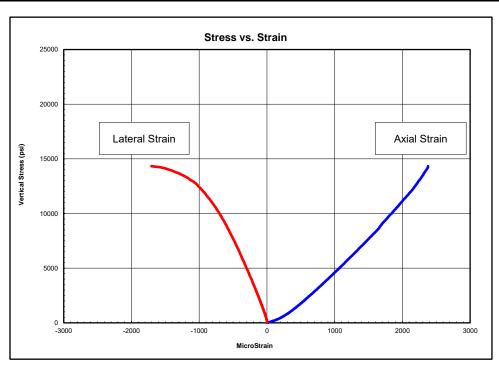
NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00090	1.980	0.00045	0.026	YES	
Diameter 2, in (rotated 90°)	0.00380	1.980	0.00192	0.110	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00120	1.980	0.00061	0.035	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	

Client:	Langan Engineering	Test Date: 6/18/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-065	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	28-29	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
End Flatness Tolerance Met? YES					

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-065 Sample ID: Depth, ft: 28-29


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-069
Sample ID:	C-1
Depth, ft:	41-41.5
Sample Type:	rock core
Sample Description:	See photographs
	Intact material failure
	Best Effort end preparation performed

Peak Compressive Stress: 14,326 psi

The strain values recorded within the third stress range for this test produce values of Poisson's Ratio that exceed maximum values found in rocks.

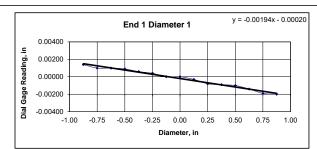
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1400-5300	5,640,000	0.37
5300-9100	6,330,000	0.49
9100-12900	7,100,000	

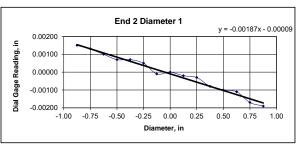
Notes:

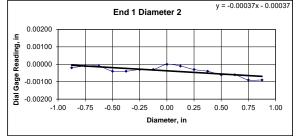
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

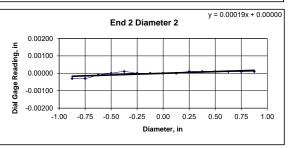
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-069 Sample ID: C-1 Depth (ft): 41-41.5 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.44	4.44	4.44	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	619.77			
Bulk Density, lb/ft3	172	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALLE	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00100	0.00100	0.00090	0.00060	0.00040	0.00000	0.00000	-0.00030	-0.00080	-0.00090	-0.00100	-0.00140	-0.00190	-0.00200
Diameter 2, in (rotated 90°)	-0.00020	-0.00010	-0.00010	-0.00040	-0.00040	-0.00030	-0.00030	0.00000	-0.00010	-0.00030	-0.00040	-0.00060	-0.00060	-0.00090	-0.00090
	Difference between max and min readings, in:														
											0° =	0.00340	90° =	0.00090	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00150	0.00130	0.00100	0.00070	0.00070	0.00050	-0.00010	0.00000	-0.00020	-0.00030	-0.00080	-0.00100	-0.00110	-0.00170	-0.00190
Diameter 2, in (rotated 90°)	-0.00030	-0.00030	-0.00010	0.00000	0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010
											Difference between	een max and m	in readings, in:		
											0° =	0.0034	90° =	0.0004	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00170

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00194 0.11132	
End 2:	Slope of Best Fit Line Angle of Best Fit Line: ular Difference:	0.00187 0.10690 0.00442	
. iaaaiii Alige	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00037 0.02095	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.02095	

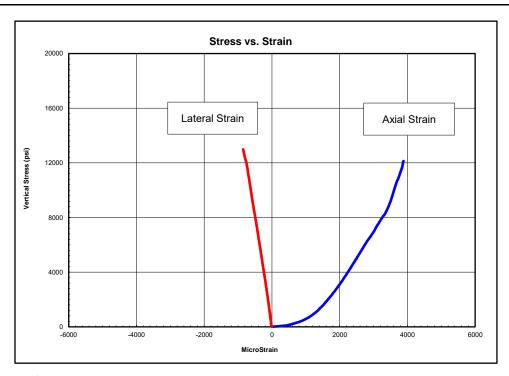
Flatness Tolerance Met?

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00340	1.980	0.00172	0.098	YES	
Diameter 2, in (rotated 90°)	0.00090	1.980	0.00045	0.026	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.980	0.00172	0.098	YES	
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES	

Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-069	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	41-41.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-069 Sample ID: C-1 Depth, ft: 41-41.5


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-071
Sample ID:	C-2
Depth, ft:	33.07-33.44
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 12,985 psi

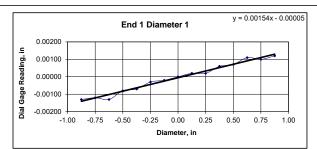
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1300-4800	3,330,000	0.20
4800-8200	3,900,000	0.25
8200-11700	6,800,000	0.44

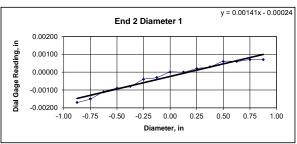
Notes:

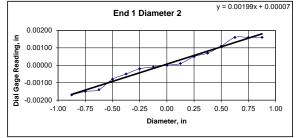
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

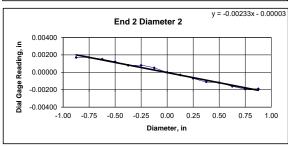
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/18/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-071 Sample ID: C-2 33.07-33.44 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.25	4.25	4.25	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	584.77			
Bulk Density, lb/ft3	170	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00130	-0.00120	-0.00130	-0.00080	-0.00070	-0.00030	-0.00020	0.00000	0.00020	0.00020	0.00060	0.00070	0.00110	0.00100	0.00120
Diameter 2, in (rotated 90°)	-0.00170	-0.00150	-0.00140	-0.00080	-0.00050	-0.00020	-0.00010	0.00000	0.00010	0.00050	0.00070	0.00110	0.00160	0.00160	0.00160
											Difference between	en max and m	in readings, in:		
											0° =	0.00250	90° =	0.00330	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00150	-0.00110	-0.00090	-0.00080	-0.00040	-0.00030	0.00000	0.00000	0.00020	0.00030	0.00060	0.00060	0.00070	0.00070
Diameter 2, in (rotated 90°)	0.00170	0.00170	0.00150	0.00120	0.00080	0.00080	0.00050	0.00000	-0.00030	-0.00070	-0.00110	-0.00120	-0.00160	-0.00190	-0.00190
											Difference between	en max and m	in readings, in:		
											0° =	0.0024	90° =	0.0036	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00180

: Slope of Best Fit Line Angle of Best Fit Line:	0.00154 0.08840	
: Slope of Best Fit Line Angle of Best Fit Line:	0.00141 0.08071	
ular Difference:	0.00769	
Parallelism Tolerance Met? Spherically Seated	NO	
: Slope of Best Fit Line Angle of Best Fit Line:	0.00199 0.11377	
Slope of Best Fit Line		
Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.11377	
	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line: ular Difference: Parallelism Tolerance Met?	Slope of Best Fit Line

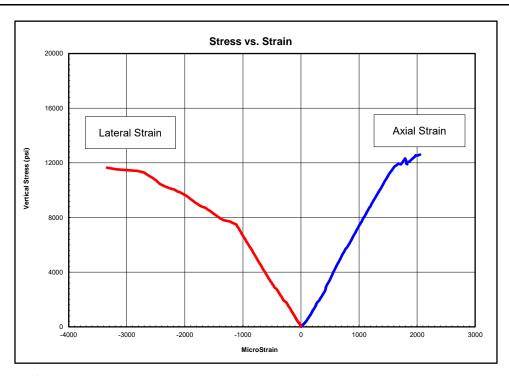
Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00250	1.980	0.00126	0.072	YES	
Diameter 2, in (rotated 90°)	0.00330	1.980	0.00167	0.095	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00240	1.980	0.00121	0.069	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	
1						

Client:	Langan Engineering	Test Date: 6/18/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-071	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance
Depth (ft):	33.07-33.44	measurements were performed using a machinist straightedge and feeler gauges to

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
End Flatness Tolerance Met? YES							

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-071 Sample ID: C-2 Depth, ft: 33.07-33.44


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-075
Sample ID:	C-2
Depth, ft:	29-29.75
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 12,607 psi

The strain values recorded for this test produce values of Poisson's Ratio that exceed maximum values found in rocks.

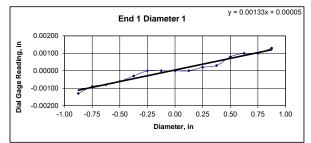
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1300-4600	8,080,000	
4600-8000	7,430,000	
8000-11300	7,310,000	

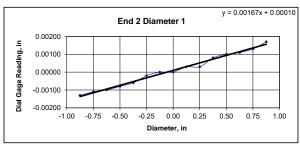
Notes:

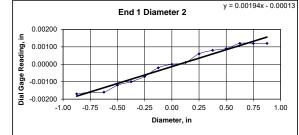
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

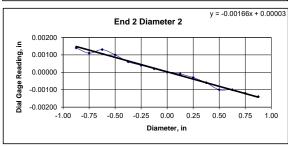
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/19/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-075 Sample ID: C-2 29-29.75 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.27	4.27	4.27	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	608.81			
Bulk Density, lb/ft3	176	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? YES

ND FLATNESS AND PARALLELISM (Procedure FP1)															
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00130	-0.00090	-0.00080	-0.00060	-0.00030	0.00000	0.00000	0.00000	0.00000	0.00020	0.00030	0.00080	0.00100	0.00100	0.00130
Diameter 2, in (rotated 90°)	-0.00170	-0.00160	-0.00160	-0.00120	-0.00100	-0.00070	-0.00020	0.00000	0.00010	0.00060	0.00080	0.00090	0.00120	0.00120	0.00120
											Difference between	en max and m	in readings, in:		
											0° =	0.00260	90° =	0.00290	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00130	-0.00110	-0.00100	-0.00080	-0.00060	-0.00020	0.00000	0.00000	0.00030	0.00030	0.00080	0.00100	0.00110	0.00130	0.00170
Diameter 2, in (rotated 90°)	0.00140	0.00110	0.00130	0.00100	0.00060	0.00040	0.00020	0.00000	-0.00010	-0.00030	-0.00060	-0.00100	-0.00100	-0.00120	-0.00140
											Difference between	en max and m	in readings, in:		
											0° =	0.003	90° =	0.0028	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00150

	Flatness Tolerance Met?	NO	
DIAMETER 1			
Fnd 1:			
Liid I.	Slope of Best Fit Line	0.00133	
	Angle of Best Fit Line:	0.07596	
End 2:			
	Slope of Best Fit Line	0.00167	
	Angle of Best Fit Line:	0.09593	
Maximum Angu	lar Difference:	0.01997	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line	0.00194	
	Angle of Best Fit Line:	0.11099	
End 2:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00166 0.09527	
	Angle of Best Fit Line.	0.09527	
Maximum Angu	lar Difference:	0.01572	

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00260	1.980	0.00131	0.075	YES		
Diameter 2, in (rotated 90°)	0.00290	1.980	0.00146	0.084	YES	Perpendicularity Tolerance Met? YES	
END 2							
Diameter 1, in	0.00300	1.980	0.00152	0.087	YES		
Diameter 2, in (rotated 90°)	0.00280	1.980	0.00141	0.081	YES		

Client:	Langan Engineering	Test Date: 6/19/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-075	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	29-29.75	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-075 Sample ID: C-2 Depth, ft: 29-29.75

After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/20/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-082
Sample ID:	
Depth, ft:	36.02-36.40
Sample Type:	rock core
Sample Description:	See photographs
,	Intact material failure
	Best Effort end preparation performed

Peak Compressive Stress: 13,903 ps

The strain values recorded within the second and third stress ranges for this test produce values of Poisson's Ratio that exceed maximum values found in rocks.

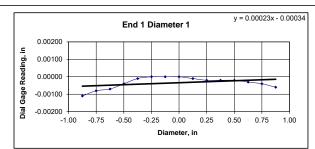
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1400-5100	5,380,000	0.35
5100-8800	4,650,000	
8800-12500	4,830,000	

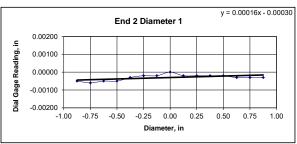
Notes:

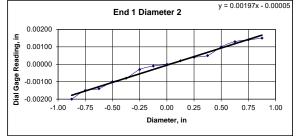
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

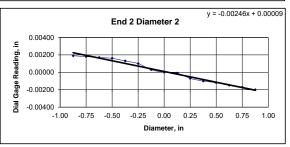
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-082 Sample ID: Depth (ft): 36.02-36.40 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.30	4.30	4.30	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.96	1.96	1.96	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	594.03			
Bulk Density, lb/ft3	174	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLE	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00110	-0.00080	-0.00070	-0.00040	-0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00020	-0.00020	-0.00020	-0.00030	-0.00040	-0.00060
Diameter 2, in (rotated 90°)	-0.00200	-0.00150	-0.00140	-0.00100	-0.00080	-0.00030	-0.00010	0.00000	0.00020	0.00040	0.00050	0.00100	0.00130	0.00140	0.00150
											Difference between	en max and m	in readings, in:		
											0° =	0.00110	90° =	0.00350	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00050	-0.00060	-0.00050	-0.00050	-0.00030	-0.00020	-0.00020	0.00000	-0.00020	-0.00020	-0.00020	-0.00020	-0.00030	-0.00030	-0.00030
Diameter 2, in (rotated 90°)	0.00190	0.00180	0.00170	0.00160	0.00130	0.00100	0.00030	0.00000	-0.00010	-0.00070	-0.00100	-0.00120	-0.00150	-0.00170	-0.00200
											Difference between	en max and m	in readings, in:		
											0° =	0.0006	90° =	0.0039	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00195

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00023 0.01293	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00016 0.00933	
Maximum Angu	ular Difference:	0.00360	
	Parallelism Tolerance Met? Spherically Seated	YES	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00197 0.11295	
	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.11295	

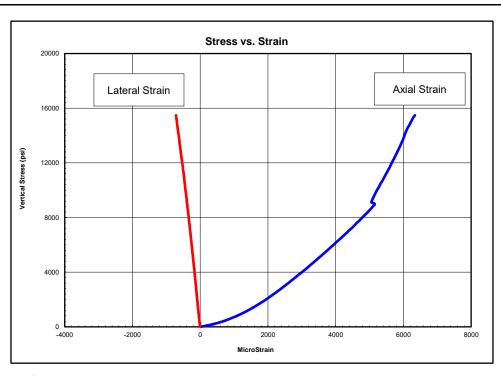
Flatness Tolerance Met?

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00110	1.960	0.00056	0.032	YES	
Diameter 2, in (rotated 90°)	0.00350	1.960	0.00179	0.102	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00060	1.960	0.00031	0.018	YES	
Diameter 2, in (rotated 90°)	0.00390	1.960	0.00199	0.114	YES	
1						

Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-082	Reliable dial gauge measurements could not be
Boring ID: Sample ID:	LB-R-082 	performed on this rock type. Tolerance
	LB-R-082 36.02-36.40	3 3

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/20/2025 Tested By: gp Checked By: smd Boring ID: LB-R-082 Sample ID: Depth, ft: 36.02-36.40


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-084
Sample ID:	C-2
Depth, ft:	25.7-26.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 15,480 psi

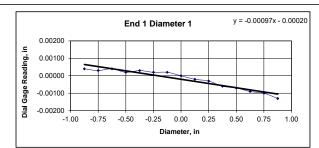
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1500-5700	1,930,000	0.08
5700-9800	2,660,000	0.12
9800-13900	4,780,000	0.24

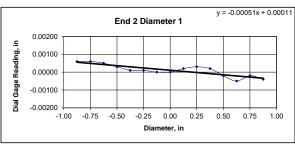
Notes:

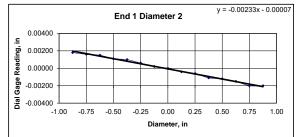
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

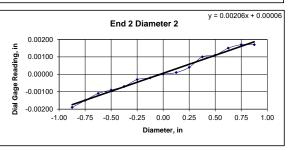
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-084 Sample ID: C-2 25.7-26.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.22	4.22	4.22	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	574.87			
Bulk Density, lb/ft ³	168	Minimum Diameter Tolerence	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00040	0.00030	0.00040	0.00020	0.00030	0.00020	0.00020	0.00000	-0.00020	-0.00030	-0.00060	-0.00070	-0.00090	-0.00100	-0.00130
Diameter 2, in (rotated 90°)	0.00180	0.00160	0.00150	0.00110	0.00100	0.00060	0.00020	0.00000	-0.00040	-0.00060	-0.00110	-0.00120	-0.00150	-0.00200	-0.00200
											Difference between	een max and m	in readings, in:		
											0° =	0.00170	90° =	0.00380	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00060	0.00060	0.00050	0.00030	0.00010	0.00010	0.00000	0.00000	0.00020	0.00030	0.00020	-0.00020	-0.00050	-0.00020	-0.00040
Diameter 2, in (rotated 90°)	-0.00190	-0.00150	-0.00110	-0.00090	-0.00070	-0.00030	-0.00020	0.00000	0.00010	0.00040	0.00100	0.00110	0.00150	0.00170	0.00170
											Difference between	een max and m	in readings, in:		
											0° =	0.0011	90° =	0.0036	
											Maximum differe	ance must be <	0.0020 in	Difference = +	0.00100

maximum ume		
	Flatness Tolerance Met?	NO
DIAMETER 1		
DIAMETER I		
End 1		
	Slope of Best Fit Line	0.00097
	Angle of Best Fit Line:	0.05550
End 2		
	Slope of Best Fit Line	0.00051
	Angle of Best Fit Line:	0.02930
Mavimum And	ular Difference:	0.02619
Maximum Ang	ulai Dillerence.	0.02019
	Parallelism Tolerance Met?	NO
	Parallelism Tolerance Met? Spherically Seated	NO
		NO
DIAMETER 2		NO
DIAMETER 2		NO
DIAMETER 2 End 1:	Spherically Seated	NO
	Spherically Seated Slope of Best Fit Line	0.00233
	Spherically Seated	
End 1	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00233
	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00233
End 1	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line:	0.00233 0.13374
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.00233 0.13374 0.00206 0.11819
End 1:	Spherically Seated Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.00233 0.13374 0.00206

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00170	1.980	0.00086	0.049	YES	
Diameter 2, in (rotated 90°)	0.00380	1.980	0.00192	0.110	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00110	1.980	0.00056	0.032	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	

Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-084	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	25.7-26.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS
END 1
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

END 2
Diameter 1 Is the maximum gap $\leq \pm 0.001$ in.? YES
Diameter 2 (rotated 90°) Is the maximum gap $\leq \pm 0.001$ in.? YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-084 Sample ID: C-2 Depth, ft: 25.7-26.5

After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/20/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-096
Sample ID:	
Depth, ft:	50.54-50.93
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 29,099 psi

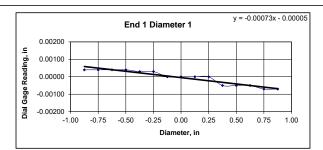
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2900-10700	8,190,000	0.28
10700-18400	8,350,000	0.31
18400-26200	8,290,000	0.34

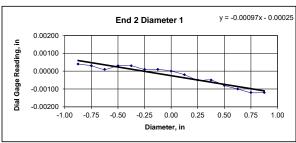
Notes:

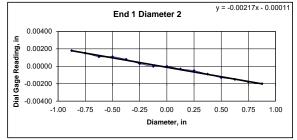
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

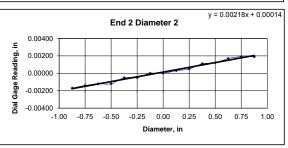
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/17/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-096 Sample ID: 50.54-50.93 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.31	4.31	4.31	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	608.39			
Bulk Density, lb/ft3	174	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

ELISM (Procedu	ire FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
0.00040	0.00040	0.00040	0.00040	0.00030	0.00030	0.00000	0.00000	0.00000	0.00000	-0.00050	-0.00050	-0.00050	-0.00070	-0.00070
0.00180	0.00150	0.00110	0.00110	0.00080	0.00030	0.00000	0.00000	-0.00030	-0.00050	-0.00090	-0.00130	-0.00150	-0.00180	-0.00200
										Difference between	een max and m	in readings, in:		
										0° =	0.00110	90° =	0.00380	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
0.00040	0.00030	0.00010	0.00030	0.00030	0.00010	0.00010	0.00000	-0.00020	-0.00050	-0.00050	-0.00080	-0.00100	-0.00120	-0.00120
-0.00170	-0.00140	-0.00120	-0.00120	-0.00050	-0.00050	0.00000	0.00000	0.00030	0.00050	0.00110	0.00120	0.00170	0.00190	0.00190
										Difference between	een max and m	in readings, in:		
										0° =	0.0016	90° =	0.0036	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00190
	-0.875 0.00040 0.00180 -0.875 0.00040	0.00040 0.00040 0.00180 0.00150 -0.875 -0.750 0.00040 0.00030	-0.875 -0.750 -0.625 0.00040 0.00040 0.00040 0.00180 0.00150 0.00110 -0.875 -0.750 -0.625 0.00040 0.00030 0.00010	-0.875 -0.750 -0.625 -0.500 0.00040 0.00040 0.00040 0.00040 0.00180 0.00150 0.00110 0.00110 -0.875 -0.750 -0.625 -0.500 0.00040 0.00030 0.00010 0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 0.00040 0.00040 0.00040 0.00040 0.00030 0.00180 0.00150 0.00110 0.00110 0.00080 -0.875 -0.750 -0.625 -0.500 -0.375 0.00040 0.00030 0.00010 0.00030 0.00030	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 0.00040 0.00040 0.00040 0.00040 0.00030 0.00030 0.00180 0.00150 0.00110 0.00110 0.00080 0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 0.00040 0.00030 0.00010 0.00030 0.00030 0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00040 0.00040 0.00040 0.00030 0.00030 0.00030 0.00000 0.00180 0.00150 0.00110 0.00110 0.00080 0.00030 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00040 0.00030 0.00010 0.00030 0.00030 0.00010 0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.00040 0.00040 0.00040 0.00030 0.00030 0.00030 0.00000 0.00000 0.00180 0.00150 0.00110 0.00110 0.00080 0.00030 0.00000 0.00000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.00040 0.00030 0.00010 0.00030 0.00030 0.00010 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.00040 0.00040 0.00040 0.00030 0.00030 0.00000 0.00000 0.00000 0.00180 0.00150 0.00110 0.00110 0.00080 0.00030 0.00000 0.00000 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.00040 0.00030 0.00010 0.00030 0.00030 0.00010 0.00010 0.00020	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 0.00040 0.00040 0.00040 0.00030 0.00030 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00050 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.0020 -0.00050 -0.00040 0.00030 0.00010 0.00030 0.00030 0.00010 0.00010 0.00000 -0.00050	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	-0.875	-0.875

DIAMETER 1		
DIAMETER 1		
End 1:		
	Slope of Best Fit Line	0.00073
	Angle of Best Fit Line:	0.04158
End 2:		
	Slope of Best Fit Line	0.00097
	Angle of Best Fit Line:	0.05566
Maximum Angu	llar Difference:	0.01408
	Parallelism Tolerance Met?	NO
	Spherically Seated	NO
DIAMETER 2		
F. 14		
End 1:	Slope of Best Fit Line	0.00217
	Angle of Best Fit Line:	0.12441
End 2:	Slope of Best Fit Line	0.00218
	Angle of Best Fit Line:	0.00218
	_	0.12.77
Maximum Angu	llar Difference:	0.00033
	Parallelism Tolerance Met? Spherically Seated	YES
I		

Flatness Tolerance Met?

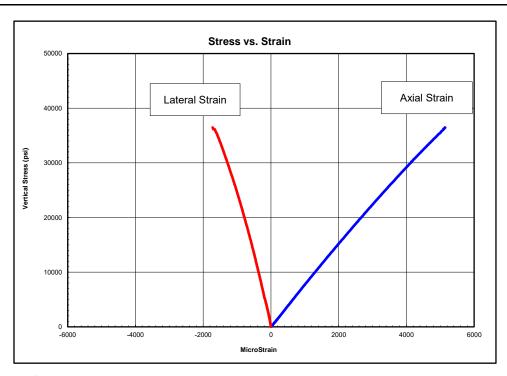
PERPENDICULARITY (Procedure F	(Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00110	1.980	0.00056	0.032	YES	
Diameter 2, in (rotated 90°)	0.00380	1.980	0.00192	0.110	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00160	1.980	0.00081	0.046	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	

Client:	Langan Engineering	Test Date: 6/17/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
		I
Boring ID:	LB-R-096	Reliable dial gauge measurements could not be
Boring ID: Sample ID:	LB-R-096 	performed on this rock type. Tolerance
	LB-R-096 50.54-50.93	3 3

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
End Flatness Tolerance Met? YES					

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/20/2025 Tested By: gp Checked By: smd Boring ID: LB-R-096 Sample ID: Depth, ft:

50.54-50.93


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-106
Sample ID:	C-1
Depth, ft:	51.04-51.41
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 36,479 psi

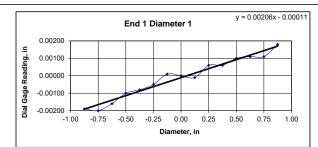
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
3600-13400	7,640,000	0.30
13400-23100	7,190,000	0.32
23100-32800	6,680,000	0.35

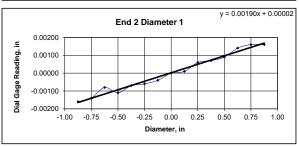
Notes:

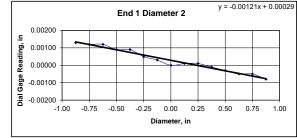
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

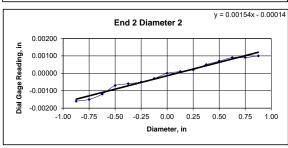
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-106 Sample ID: C-1 51.04-51.41 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.18	4.18	4.18	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	581.91			
Bulk Density, lb/ft3	172	Minimum Diameter Tolereno	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00190	-0.00200	-0.00160	-0.00100	-0.00080	-0.00050	0.00010	0.00000	-0.00010	0.00060	0.00060	0.00100	0.00110	0.00110	0.00180
Diameter 2, in (rotated 90°)	0.00130	0.00120	0.00120	0.00090	0.00090	0.00050	0.00030	0.00000	0.00010	0.00010	-0.00010	-0.00030	-0.00050	-0.00050	-0.00080
											Difference between	en max and m	in readings, in:		
											0° =	0.00380	90° =	0.00210	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00160	-0.00140	-0.00080	-0.00110	-0.00070	-0.00060	-0.00040	0.00000	0.00010	0.00060	0.00070	0.00090	0.00140	0.00160	0.00160
Diameter 2, in (rotated 90°)	-0.00160	-0.00150	-0.00120	-0.00070	-0.00060	-0.00050	-0.00030	0.00000	0.00010	0.00020	0.00050	0.00070	0.00090	0.00090	0.00100
											Difference between	en max and m	in readings, in:		
											0° =	0.0032	90° =	0.0026	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00190

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00206 0.11819
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00190 0.10886
Maximum Angu	lar Difference:	0.00933
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00121 0.06908
	Angle of Best Fit Line:	
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.06908

Flatness Tolerance Met?

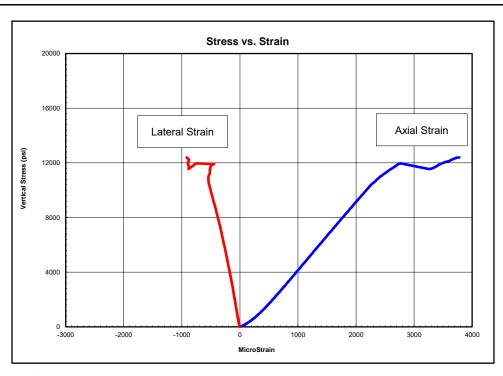
NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00380	1.980	0.00192	0.110	YES	
Diameter 2, in (rotated 90°)	0.00210	1.980	0.00106	0.061	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00320	1.980	0.00162	0.093	YES	
Diameter 2, in (rotated 90°)	0.00260	1.980	0.00131	0.075	YES	
1						

Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-106	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	51.04-51.41	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS					
END 1					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
END 2					
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES			
	End Flatness Toler	ance Met?	YES		

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd LB-R-106 Boring ID: Sample ID: C-1 Depth, ft: 51.04-51.41


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-107
Sample ID:	C-1
Depth, ft:	39-39.75
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 12,394 psi

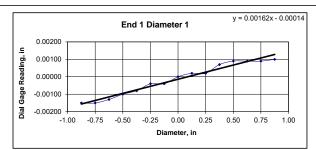
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1200-4500	4,860,000	0.21
4500-7900	5,020,000	0.26
7900-11200	4,710,000	0.28

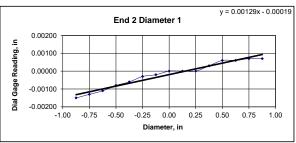
Notes:

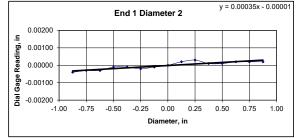
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

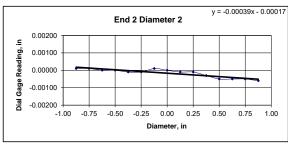
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-107 Sample ID: C-1 39-39.75 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.29	4.29	4.29	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	591.98			
Bulk Density, lb/ft3	172	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? NO

END FLATNESS AND PARALL	ELISM (Procedu	ıre FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00150	-0.00150	-0.00130	-0.00100	-0.00080	-0.00040	-0.00040	0.00000	0.00020	0.00020	0.00070	0.00090	0.00090	0.00090	0.00100
Diameter 2, in (rotated 90°)	-0.00040	-0.00030	-0.00030	-0.00010	-0.00010	-0.00020	-0.00010	0.00000	0.00020	0.00030	0.00010	0.00010	0.00020	0.00020	0.00020
											Difference between	en max and m	in readings, in:		
											0° =	0.00250	90° =	0.00070	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00150	-0.00130	-0.00110	-0.00080	-0.00060	-0.00030	-0.00020	0.00000	0.00000	0.00000	0.00030	0.00060	0.00060	0.00070	0.00070
Diameter 2, in (rotated 90°)	0.00010	0.00010	0.00000	0.00000	-0.00010	-0.00010	0.00010	0.00000	-0.00010	-0.00010	-0.00030	-0.00050	-0.00050	-0.00050	-0.00060
											Difference between	en max and m	in readings, in:		
											0° =	0.0022	90° =	0.0007	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00125

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00162 0.09298
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00129 0.07367
Maximum Angu	lar Difference:	0.01932
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00035 0.02030
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.02030

Flatness Tolerance Met?

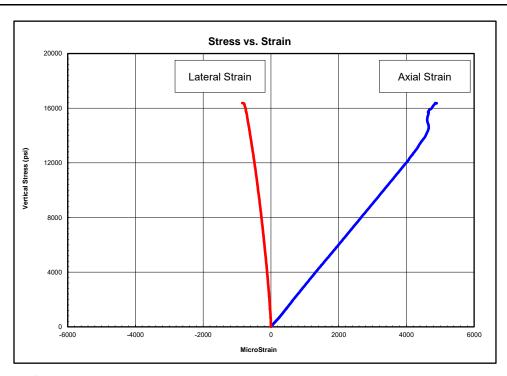
NO

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00250	1.970	0.00127	0.073	YES	
Diameter 2, in (rotated 90°)	0.00070	1.970	0.00036	0.020	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00220	1.970	0.00112	0.064	YES	
Diameter 2, in (rotated 90°)	0.00070	1.970	0.00036	0.020	YES	

Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-107	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	39-39.75	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
End Flatness Tolerance Met? YES							

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-107 Sample ID: C-1 Depth, ft: 39-39.75


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-110
Sample ID:	C-2
Depth, ft:	21.54-21.91
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 16,379 psi

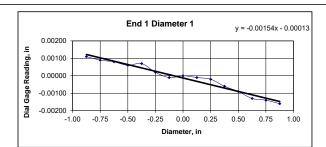
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1600-6000	3,020,000	0.11
6000-10400	3,000,000	0.14
10400-14700	3,360,000	0.20

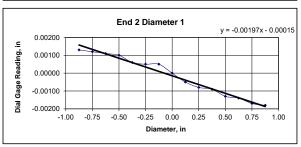
Notes:

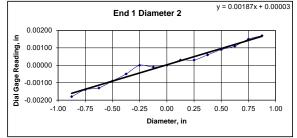
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

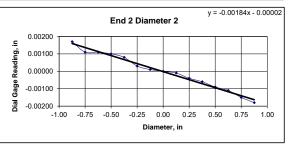
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-110 Sample ID: C-2 Depth (ft): 21.54-21.91 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.30	4.30	4.30	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	605.88			
Bulk Density, lb/ft3	174	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00110	0.00090	0.00080	0.00060	0.00070	0.00020	-0.00010	0.00000	-0.00010	-0.00020	-0.00060	-0.00090	-0.00130	-0.00140	-0.00160
Diameter 2, in (rotated 90°)	-0.00180	-0.00140	-0.00130	-0.00090	-0.00050	0.00000	-0.00010	0.00000	0.00030	0.00030	0.00060	0.00090	0.00110	0.00150	0.00170
											Difference between	een max and m	in readings, in:		
											0° =	0.00270	90° =	0.00350	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00130	0.00120	0.00110	0.00100	0.00060	0.00050	0.00050	0.00000	-0.00050	-0.00080	-0.00090	-0.00130	-0.00140	-0.00170	-0.00180
Diameter 2, in (rotated 90°)	0.00170	0.00110	0.00110	0.00100	0.00080	0.00030	0.00010	0.00000	-0.00010	-0.00040	-0.00060	-0.00090	-0.00110	-0.00150	-0.00180
											Difference between	een max and m	in readings, in:		
											0° =	0.0031	90° =	0.0035	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00175

DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00154 0.08824
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00197 0.11279
Maximum Angu	llar Difference:	0.02456
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00187 0.10706
End 1:	Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.10706 0.00184

Flatness Tolerance Met?

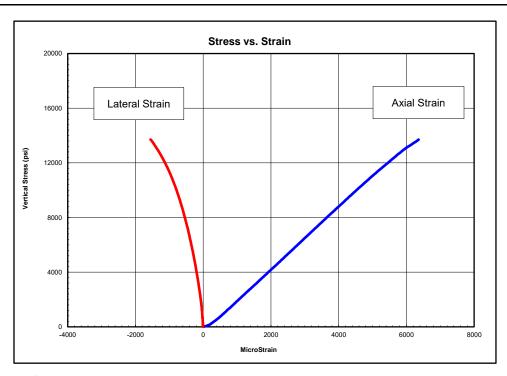
NO

PERPENDICULARITY (Procedure	e P1) (Calculated from End Flatness and F	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00270	1.980	0.00136	0.078	YES	
Diameter 2, in (rotated 90°)	0.00350	1.980	0.00177	0.101	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00310	1.980	0.00157	0.090	YES	
Diameter 2, in (rotated 90°)	0.00350	1.980	0.00177	0.101	YES	

Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	ED 11 110	Reliable dial gauge measurements could not be
Sample ID:	(-)	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
End Flatness Tolerance Met? YES							

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-110 Sample ID: C-2 Depth, ft: 21.54-21.91


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-111
Sample ID:	C-1
Depth, ft:	18.5-19.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 13,703 psi

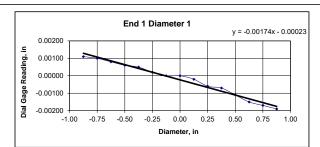
St	ress Range, psi	Young's Modulus, psi	Poisson's Ratio
	1400-5000	2,300,000	0.14
	5000-8700	2,320,000	0.22
	8700-12300	2,200,000	0.34

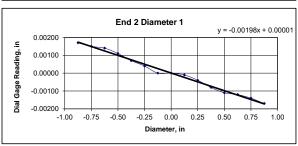
Notes:

Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

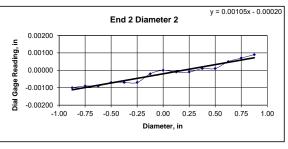
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-111 Sample ID: C-1 Depth (ft): 18.5-19.5 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.30	4.30	4.30	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.96	1.96	1.96	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	583.07			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLI	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00110	0.00100	0.00080	0.00060	0.00050	0.00020	0.00000	0.00000	-0.00020	-0.00060	-0.00070	-0.00110	-0.00150	-0.00170	-0.00190
Diameter 2, in (rotated 90°)	0.00060	0.00060	0.00050	0.00020	0.00020	0.00010	0.00000	0.00000	-0.00020	-0.00040	-0.00070	-0.00100	-0.00130	-0.00110	-0.00120
											Difference between	en max and m	in readings, in:		
											0° =	0.00300	90° =	0.00190	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00170	0.00150	0.00140	0.00110	0.00070	0.00040	0.00000	0.00000	-0.00010	-0.00040	-0.00080	-0.00110	-0.00120	-0.00140	-0.00170
Diameter 2, in (rotated 90°)	-0.00100	-0.00090	-0.00090	-0.00070	-0.00070	-0.00070	-0.00020	0.00000	-0.00010	-0.00010	0.00010	0.00010	0.00050	0.00070	0.00090
											Difference between	en max and m	in readings, in:		
											0° =	0.0034	90° =	0.0019	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00170

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00174 0.09969	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00198 0.11328	
Maximum Angu	ılar Difference:	0.01359	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00116 0.06630	
	Slope of Best Fit Line Angle of Best Fit Line:		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.06630	

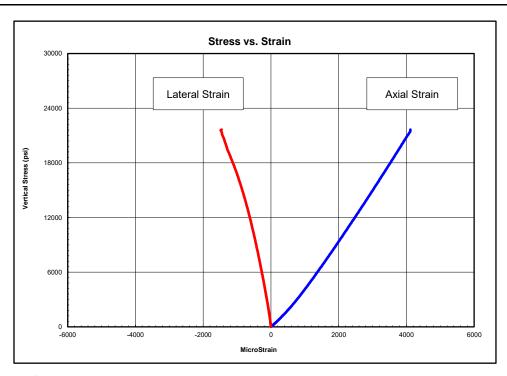
Flatness Tolerance Met?

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00300	1.960	0.00153	0.088	YES	
Diameter 2, in (rotated 90°)	0.00190	1.960	0.00097	0.056	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.960	0.00173	0.099	YES	
Diameter 2, in (rotated 90°)	0.00190	1.960	0.00097	0.056	YES	

Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 111	Reliable dial gauge measurements could not be
Sample ID:	C-1	performed on this rock type. Tolerance
Sample ID: Depth (ft):	C-1 18.5-19.5	measurements were performed using a machinist straightedge and feeler gauges to

END FLATNESS								
END 1								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
END 2								
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES						
	End Flatness Tolerance Met? YES							

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-111 Sample ID: C-1 Depth, ft: 18.5-19.5


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-113
Sample ID:	C-2
Depth, ft:	23.25-24
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 21,651 ps

The strain values recorded within the third stress range for this test produce values of Poisson's Ratio that exceed maximum values found in rocks.

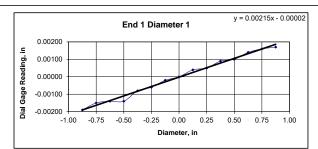
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2200-7900	5,000,000	0.25
7900-13700	5,530,000	0.35
13700-19500	5,790,000	

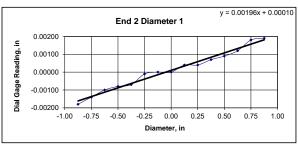
Notes:

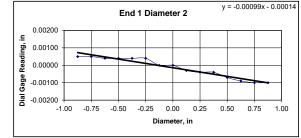
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

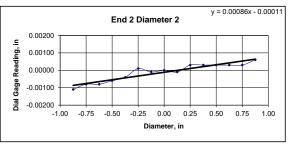
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/13/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-113 Sample ID: C-2 Depth (ft): 23.25-24 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.35	4.35	4.35	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	616.25			
Bulk Density, lb/ft3	177	Minimum Diameter Toleren	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? YES

ELISM (Procedu	ire FP1)													
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00190	-0.00150	-0.00140	-0.00140	-0.00080	-0.00060	-0.00020	0.00000	0.00040	0.00050	0.00090	0.00100	0.00140	0.00160	0.00170
0.00050	0.00050	0.00040	0.00040	0.00040	0.00040	0.00000	0.00000	-0.00030	-0.00040	-0.00040	-0.00070	-0.00090	-0.00100	-0.00100
										Difference between	een max and m	in readings, in:		
										0° =	0.00360	90° =	0.00150	
-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
-0.00180	-0.00140	-0.00100	-0.00080	-0.00070	-0.00010	0.00000	0.00000	0.00040	0.00040	0.00070	0.00090	0.00120	0.00180	0.00190
-0.00110	-0.00080	-0.00080	-0.00060	-0.00040	0.00010	-0.00010	0.00000	-0.00010	0.00030	0.00030	0.00030	0.00030	0.00030	0.00060
										Difference between	een max and m	in readings, in:		
										0° =	0.0037	90° =	0.0017	
										Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00185
	-0.875 -0.00190 0.00050 -0.875 -0.00180	-0.00190 -0.00150 0.00050 0.00050 -0.875 -0.750 -0.00180 -0.00140	-0.875 -0.750 -0.625 -0.00190 -0.00150 -0.00140 0.00050 0.00050 0.00040 -0.875 -0.750 -0.625 -0.00180 -0.00140 -0.00100	-0.875 -0.750 -0.625 -0.500 -0.00190 -0.00150 -0.00140 -0.00140 0.00050 0.00050 0.00040 0.00040 -0.875 -0.750 -0.625 -0.500 -0.00180 -0.00140 -0.00100 -0.00080	-0.875 -0.750 -0.625 -0.500 -0.375 -0.00190 -0.00150 -0.00140 -0.00140 -0.00140 -0.00080 0.00050 0.00050 0.00040 0.00040 0.00040 0.00040 -0.875 -0.750 -0.625 -0.500 -0.375 -0.00180 -0.00140 -0.00100 -0.00080 -0.00070	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00190 -0.00150 -0.00140 -0.00140 -0.00080 -0.00060 0.00050 0.00040 0.00040 0.00040 0.00040 0.00040 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.00180 -0.00140 -0.00100 -0.00080 -0.00070 -0.00010	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00190 -0.00150 -0.00140 -0.00140 -0.00080 -0.00060 -0.00020 0.00050 0.00050 0.00040 0.00040 0.00040 0.00040 0.00040 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 -0.00180 -0.00140 -0.00100 -0.00080 -0.00070 -0.00010 0.00000	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 -0.00190 -0.00150 -0.00140 -0.00140 -0.00080 -0.00060 -0.00020 0.00000 0.00050 0.00050 0.00040	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00190 -0.00150 -0.00140 -0.00140 -0.00080 -0.00060 -0.00020 0.00000 0.00040 0.00050 0.00050 0.00040 0.00040 0.00040 0.00040 0.00040 0.00040 0.00040 0.00040 0.00000 -0.00000 -0.00030 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 -0.00180 -0.00140 -0.00100 -0.00080 -0.00070 -0.00010 0.00000 0.00000 0.00000 0.00040	-0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00190 -0.00150 -0.00140 -0.00140 -0.00080 -0.00060 -0.0020 0.00000 0.00040 0.00050 0.00050 0.00050 0.00040 0.00040 0.00040 0.00040 0.00040 0.00000 0.00000 -0.00030 -0.00040 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 -0.00180 -0.00140 -0.00100 -0.00080 -0.00070 -0.0010 0.00000 0.00000 0.00000 0.00040	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.875	-0.875	-0.875

DIAMETER 1			
End 1:			
	Slope of Best Fit Line	0.00215	
	Angle of Best Fit Line:	0.12327	
End 2:			
	Slope of Best Fit Line	0.00196	
	Angle of Best Fit Line:	0.11214	
Maximum Angu	ılar Difference:	0.01113	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line	0.00099	
	Angle of Best Fit Line:	0.05680	
End 2:			
	Slope of Best Fit Line	0.00086	
	Angle of Best Fit Line:	0.04927	
Maximum Angu	ular Difference:	0.00753	
	Parallelism Tolerance Met?	NO	

Flatness Tolerance Met?

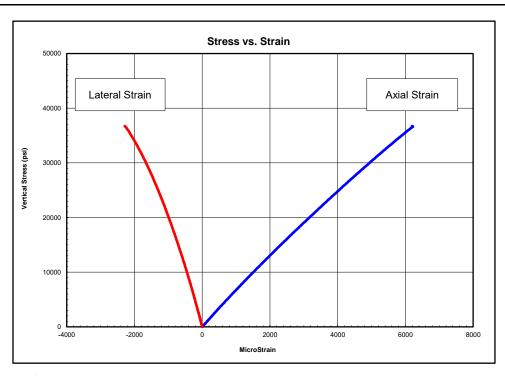
PERPENDICULARITY (Procedure F	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00360	1.970	0.00183	0.105	YES	
Diameter 2, in (rotated 90°)	0.00150	1.970	0.00076	0.044	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00370	1.970	0.00188	0.108	YES	
Diameter 2, in (rotated 90°)	0.00170	1.970	0.00086	0.049	YES	

Client:	Langan Engineering	Test Date: 6/13/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-113	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	23.25-24	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-113 Sample ID: C-2 Depth, ft: 23.25-24


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-121
Sample ID:	C-2
Depth, ft:	58.07-58.43
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 36,730 psi

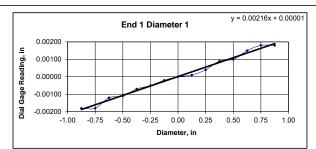
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
3700-13500	6,390,000	0.30
13500-23300	5,890,000	0.34
23300-33100	5,490,000	0.41

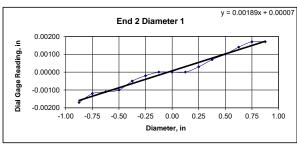
Notes:

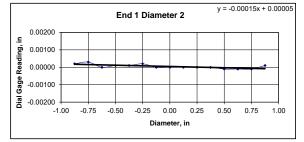
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

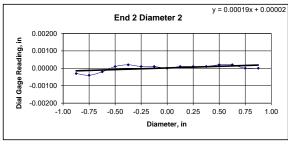
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/19/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-121 Sample ID: C-2 58.07-58.43 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.29	4.29	4.29	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	582.44			
Bulk Density, lb/ft3	168	Minimum Diameter Tolereno	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ıre FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00180	-0.00180	-0.00120	-0.00110	-0.00070	-0.00050	-0.00020	0.00000	0.00010	0.00040	0.00090	0.00100	0.00150	0.00180	0.00180
Diameter 2, in (rotated 90°)	0.00020	0.00030	0.00000	0.00010	0.00010	0.00020	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.00360	90° =	0.00040	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00170	-0.00120	-0.00110	-0.00100	-0.00050	-0.00020	0.00000	0.00000	0.00000	0.00030	0.00070	0.00100	0.00140	0.00170	0.00170
Diameter 2, in (rotated 90°)	-0.00030	-0.00040	-0.00020	0.00010	0.00020	0.00010	0.00010	0.00000	0.00010	0.00010	0.00010	0.00020	0.00020	0.00000	0.00000
											Difference between	en max and m	in readings, in:		
											0° =	0.0034	90° =	0.0006	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00180

maximum ume	Flatness Tolerance Met?	
1	riatness Tolerance Met?	NO
DIAMETER 1		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00216 0.12376
End 2:	3	0.00189
	Angle of Best Fit Line:	0.10853
Maximum Angu	ular Difference:	0.01522
	Parallelism Tolerance Met? Spherically Seated	NO
DIAMETER 2		
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00015 0.00835
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00019 0.01080
Maximum Angu	ular Difference:	0.00246
	Parallelism Tolerance Met? Spherically Seated	YES

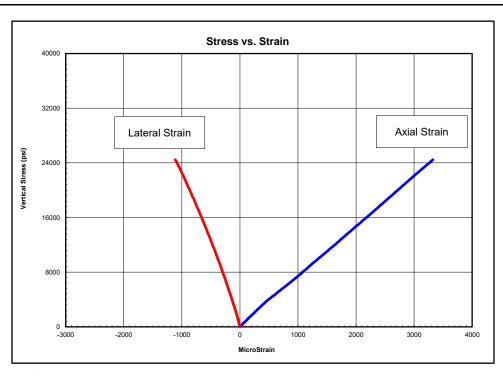
PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00360	1.975	0.00182	0.104	YES	
Diameter 2, in (rotated 90°)	0.00040	1.975	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.975	0.00172	0.099	YES	
Diameter 2, in (rotated 90°)	0.00060	1.975	0.00030	0.017	YES	

Client:	Langan Engineering	Test Date: 6/19/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-121	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	58.07-58.43	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS		
END 1 Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES
END 2		
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES

End Flatness Tolerance Met? YES

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-121 Sample ID: C-2 Depth, ft: 58.07-58.43


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-126
Sample ID:	C-2
Depth, ft:	21-22
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 24,456 psi

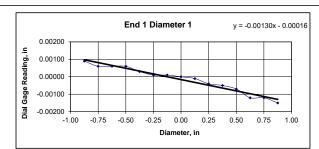
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2400-9000	6,940,000	0.27
9000-15500	7,270,000	0.33
15500-22000	7,440,000	0.38

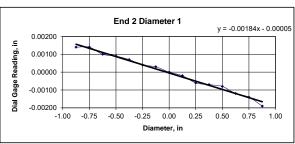
Notes:

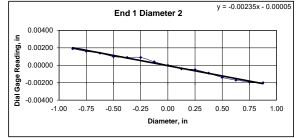
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

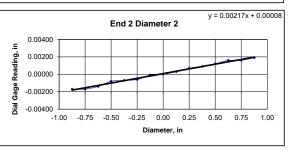
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/19/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-126 Sample ID: C-2 Depth (ft): 21-22 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.36	4.36	4.36	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	621.56			
Bulk Density, lb/ft3	176	Minimum Diameter Tolerend	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	olerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLE	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00090	0.00060	0.00060	0.00060	0.00030	0.00010	0.00010	0.00000	-0.00010	-0.00040	-0.00050	-0.00070	-0.00120	-0.00120	-0.00150
Diameter 2, in (rotated 90°)	0.00190	0.00160	0.00140	0.00100	0.00090	0.00090	0.00040	0.00000	-0.00040	-0.00050	-0.00090	-0.00140	-0.00170	-0.00190	-0.00200
											Difference between	een max and m	in readings, in:		
											0° =	0.00240	90° =	0.00390	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00140	0.00100	0.00090	0.00070	0.00040	0.00030	0.00000	-0.00020	-0.00060	-0.00070	-0.00080	-0.00120	-0.00140	-0.00190
Diameter 2, in (rotated 90°)	-0.00170	-0.00170	-0.00140	-0.00080	-0.00070	-0.00060	-0.00010	0.00000	0.00030	0.00070	0.00090	0.00120	0.00160	0.00160	0.00190
											Difference between	een max and m	in readings, in:		
											0° =	0.0033	90° =	0.0036	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00195

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00130 0.07432	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00184 0.10542	
Maximum Ang	ular Difference:	0.03110	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00235 0.13489	
End 1:	Slope of Best Fit Line Angle of Best Fit Line:		
End 2:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line	0.13489	

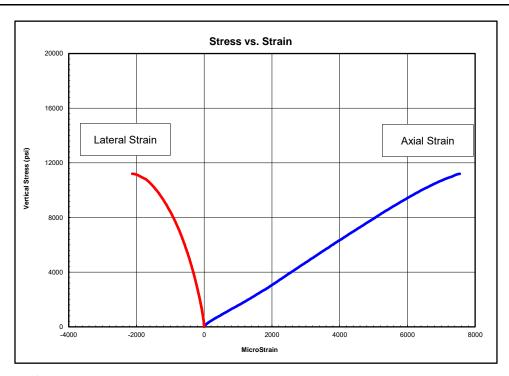
Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and F	Parallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00240	1.980	0.00121	0.069	YES	
Diameter 2, in (rotated 90°)	0.00390	1.980	0.00197	0.113	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00330	1.980	0.00167	0.095	YES	
Diameter 2, in (rotated 90°)	0.00360	1.980	0.00182	0.104	YES	
1						

Client:	Langan Engineering	Test Date: 6/19/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-126	Reliable dial gauge measurements could not be
Sample ID:	C-2	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	21-22	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS				
END 1				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
END 2				
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES		
	End Flatness Tole	rance Met?	YES	

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-126 Sample ID: C-2 Depth, ft: 21-22


After cutting and grinding

After break

Client:	Langan Engineering					
Project Name:	Upstate Confidential Project					
Project Location:	NY					
GTX #:	321096					
Test Date:	6/30/2025					
Tested By:	gp					
Checked By:	jsc					
Boring ID:	LB-R-127					
Sample ID:						
Depth, ft:	30.80-31.17					
Sample Type:	rock core					
Sample Description:	See photographs Intact material failure					
	Best Effort end preparation performed					

Peak Compressive Stress: 11,202 psi

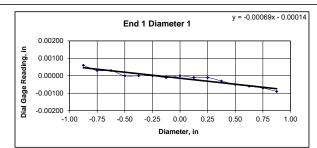
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
1100-4100	1,520,000	0.14
4100-7100	1,630,000	0.22
7100-10100	1,500,000	0.34

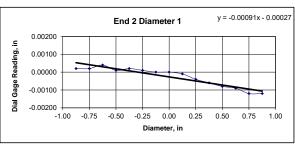
Notes:

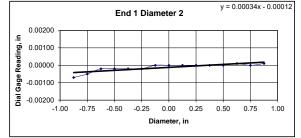
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

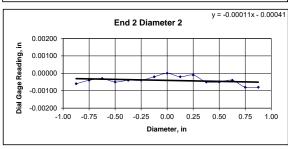
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-127 Sample ID: Depth (ft): 30.80-31.17 Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

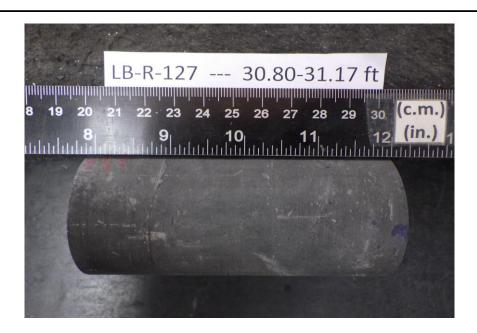

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.20	4.20	4.20	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	571.4			
Bulk Density, lb/ft3	168	Minimum Diameter Tolereno	ce Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.1	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00060	0.00030	0.00030	0.00000	0.00000	0.00000	-0.00010	0.00000	-0.00010	-0.00010	-0.00030	-0.00050	-0.00060	-0.00070	-0.00090
Diameter 2, in (rotated 90°)	-0.00070	-0.00050	-0.00020	-0.00020	-0.00020	-0.00020	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00000	0.00010
											Difference between	en max and m	in readings, in:		
											0° =	0.00150	90° =	0.00080	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00020	0.00040	0.00010	0.00020	0.00010	0.00000	0.00000	-0.00010	-0.00040	-0.00060	-0.00080	-0.00090	-0.00120	-0.00120
Diameter 2, in (rotated 90°)	-0.00060	-0.00040	-0.00030	-0.00050	-0.00040	-0.00040	-0.00020	0.00000	-0.00020	-0.00010	-0.00050	-0.00050	-0.00040	-0.00080	-0.00080
											Difference between	en max and m	in readings, in:		
											0° =	0.0016	90° =	0.0008	
											Maximum differe	nce must be <	0.0020 in.	Difference = +	0.00080

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00069 0.03945	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00091 0.05206	
Maximum Angu	llar Difference:	0.01261	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00034 0.01948	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00011 0.00655	
Maximum Angu	ılar Difference:	0.01293	
	Parallelism Tolerance Met? Spherically Seated	NO	

Flatness Tolerance Met? YES

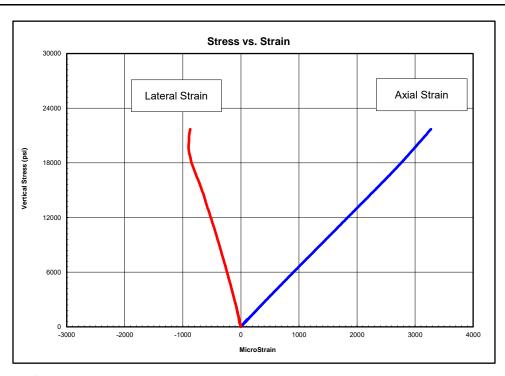
PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00150	1.980	0.00076	0.043	YES	
Diameter 2, in (rotated 90°)	0.00080	1.980	0.00040	0.023	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00160	1.980	0.00081	0.046	YES	
Diameter 2, in (rotated 90°)	0.00080	1.980	0.00040	0.023	YES	



Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-127	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	30.80-31.17	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
	End Flatness Tolerance Met? YES						

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-127 Sample ID: Depth, ft: 30.80-31.17


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	6/30/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-128
Sample ID:	
Depth, ft:	37.69-38.07
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 21,761 psi

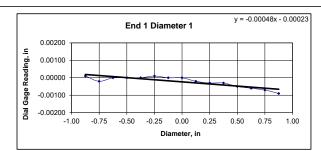
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2200-8000	6,500,000	0.28
8000-13800	6,430,000	0.31
13800-19600	6,650,000	0.37

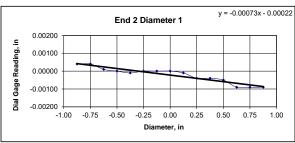
Notes:

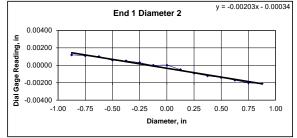
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

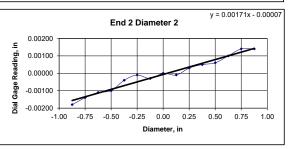
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/16/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-128 Sample ID: 37.69-38.07 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.47	4.47	4.47	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.97	1.97	1.97	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	612.18			
Bulk Density, lb/ft3	171	Minimum Diameter Tolerence Met?	YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.3	Length to Diameter Ratio Tolerance N	fet? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALL	ELISM (Procedu	ure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	-0.00020	0.00000	0.00000	0.00000	0.00010	0.00000	0.00000	-0.00020	-0.00030	-0.00030	-0.00050	-0.00060	-0.00070	-0.00090
Diameter 2, in (rotated 90°)	0.00120	0.00110	0.00100	0.00060	0.00050	0.00030	0.00000	0.00000	-0.00050	-0.00090	-0.00120	-0.00140	-0.00170	-0.00200	-0.00210
											Difference between	een max and m	in readings, in:		
											0° =	0.00100	90° =	0.00330	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00040	0.00040	0.00010	0.00000	-0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00040	-0.00040	-0.00050	-0.00090	-0.00090	-0.00090
Diameter 2, in (rotated 90°)	-0.00180	-0.00140	-0.00110	-0.00100	-0.00040	-0.00010	-0.00030	0.00000	-0.00010	0.00030	0.00050	0.00060	0.00100	0.00140	0.00140
											Difference between	een max and mi	in readings, in:		
											0° =	0.0013	90° =	0.0032	
											Maximum differe	ence must be <	0.0020 in.	Difference = \pm	0.00165

	Flatness Tolerance Met?	NO	
DIAMETER 1			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00048 0.02767	
	3	0.02707	
End 2:	Slope of Best Fit Line	0.00073	
	Angle of Best Fit Line:	0.04207	
Maximum Ang	ular Difference:	0.01441	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
End 1:			
	Slope of Best Fit Line Angle of Best Fit Line:	0.00203 0.11656	
	_	0.11030	
End 2:	Slope of Best Fit Line	0.00171	
	Angle of Best Fit Line:	0.00171	
Maximum Ang	ular Difference:	0.01866	

Parallelism Tolerance Met?

Spherically Seated

NO

PERPENDICULARITY (Procedure I	P1) (Calculated from End Flatness and P	arallelism measure	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00100	1.970	0.00051	0.029	YES	
Diameter 2, in (rotated 90°)	0.00330	1.970	0.00168	0.096	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00130	1.970	0.00066	0.038	YES	
Diameter 2, in (rotated 90°)	0.00320	1.970	0.00162	0.093	YES	

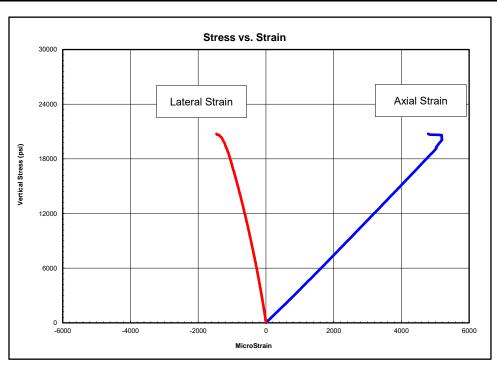
Client:	Langan Engineering	Test Date: 6/16/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	25 11 120	Reliable dial gauge measurements could not be
Sample ID:		performed on this rock type. Tolerance measurements were performed using a
Depth (ft):		machinist straightedge and feeler gauges to
Visual Description:		ASTM specifications.

END FLATNESS						
END 1						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
END 2						
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES				
End Flatness Tolerance Met? YES						

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 6/30/2025 Tested By: gp Checked By: smd Boring ID: LB-R-128 Sample ID:

37.69-38.07

Depth, ft:


After cutting and grinding

After break

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Test Date:	7/1/2025
Tested By:	gp
Checked By:	jsc
Boring ID:	LB-R-129
Sample ID:	C-3
Depth, ft:	41.5-42.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure Best Effort end preparation performed

Peak Compressive Stress: 20,748 psi

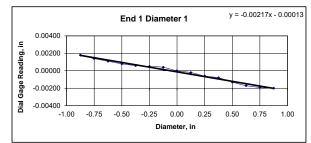
Stress Range, psi	Young's Modulus, psi	Poisson's Ratio
2100-7600	3,750,000	0.19
7600-13100	3,840,000	0.23
13100-18700	3,890,000	0.29

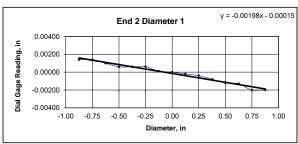
Notes:

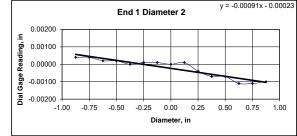
Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature.

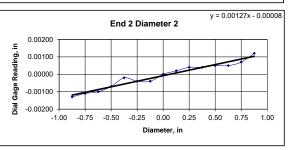
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.




Client: Test Date: 6/12/2025 Langan Engineering Project Name: Upstate Confidential Project Tested By: Project Location: Checked By: GTX #: 321096 Boring ID: LB-R-129 Sample ID: C-3 41.5-42.5 Depth (ft): Visual Description: See photographs


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543


BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.32	4.32	4.32	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	1.98	1.98	1.98	Is the maximum gap ≤ 0.02 in.? YES
Specimen Mass, g:	611.89			
Bulk Density, lb/ft ³	175	Minimum Diameter Tolerend	e Met? YES	Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2	Length to Diameter Ratio To	lerance Met? YES	Straightness Tolerance Met? YES

END FLATNESS AND PARALLI	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00180	0.00140	0.00110	0.00080	0.00060	0.00050	0.00040	0.00000	-0.00020	-0.00060	-0.00080	-0.00130	-0.00170	-0.00190	-0.00200
Diameter 2, in (rotated 90°)	0.00040	0.00040	0.00020	0.00020	0.00000	0.00010	0.00010	0.00000	0.00010	-0.00040	-0.00070	-0.00070	-0.00110	-0.00110	-0.00100
											Difference between	en max and m	in readings, in:		
											0° =	0.00380	90° =	0.00150	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00140	0.00140	0.00100	0.00060	0.00060	0.00060	0.00010	0.00000	-0.00020	-0.00040	-0.00080	-0.00120	-0.00130	-0.00200	-0.00200
Diameter 2, in (rotated 90°)	-0.00130	-0.00110	-0.00100	-0.00070	-0.00020	-0.00040	-0.00040	0.00000	0.00020	0.00040	0.00040	0.00050	0.00050	0.00070	0.00120
											Difference between	en max and m	in readings, in:		
											0° =	0.0034	90° =	0.0025	
											Maximum differe	nce must be <	0.0020 in.	Difference = \pm	0.00190

DIAMETER 1			
End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00217 0.12409	
End 2:	Slope of Best Fit Line Angle of Best Fit Line:	0.00198 0.11361	
Maximum Angu	llar Difference:	0.01048	
	Parallelism Tolerance Met? Spherically Seated	NO	
DIAMETER 2			
DIAMETER 2 End 1:	Slope of Best Fit Line Angle of Best Fit Line:	0.00091 0.05238	
DIAMETER 2 End 1: End 2:	Slope of Best Fit Line		
End 1:	Slope of Best Fit Line Angle of Best Fit Line: Slope of Best Fit Line Angle of Best Fit Line:	0.05238	

Flatness Tolerance Met?

PERPENDICULARITY (Procedure	P1) (Calculated from End Flatness and P	arallelism measurer	ments above)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$
Diameter 1, in	0.00380	1.980	0.00192	0.110	YES	
Diameter 2, in (rotated 90°)	0.00150	1.980	0.00076	0.043	YES	Perpendicularity Tolerance Met? YES
END 2						
Diameter 1, in	0.00340	1.980	0.00172	0.098	YES	
Diameter 2, in (rotated 90°)	0.00250	1.980	0.00126	0.072	YES	

Client:	Langan Engineering	Test Date: 6/12/2025
Project Name:	Upstate Confidential Project	Tested By: rik
Project Location:	NY	Checked By: smd
GTX #:	321096	
Boring ID:	LB-R-129	Reliable dial gauge measurements could not be
Sample ID:	C-3	performed on this rock type. Tolerance measurements were performed using a
Depth (ft):	41.5-42.5	machinist straightedge and feeler gauges to
Visual Description:	See photographs	ASTM specifications.

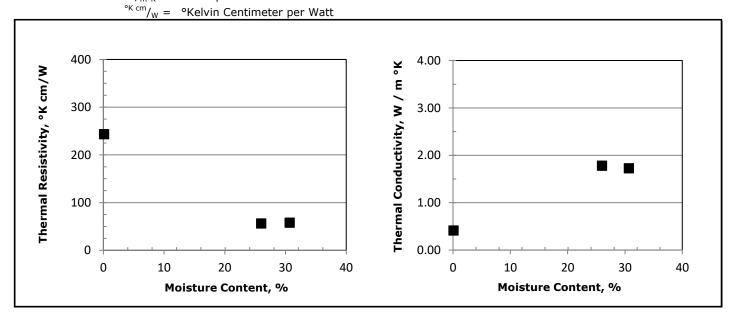
BEST EFFORT END FLATNESS TOLERANCES OF ROCK CORE SPECIMENS TO ASTM D4543

END FLATNESS							
END 1							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
END 2							
Diameter 1	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
Diameter 2 (rotated 90°)	Is the maximum gap $\leq \pm 0.001$ in.?	YES					
	End Flatness Tolerance Met? YES						

Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: NYGTX #: 321096 Test Date: 7/1/2025 Tested By: gp Checked By: smd Boring ID: LB-R-129 Sample ID: C-3 41.5-42.5 Depth, ft:

After cutting and grinding

After break

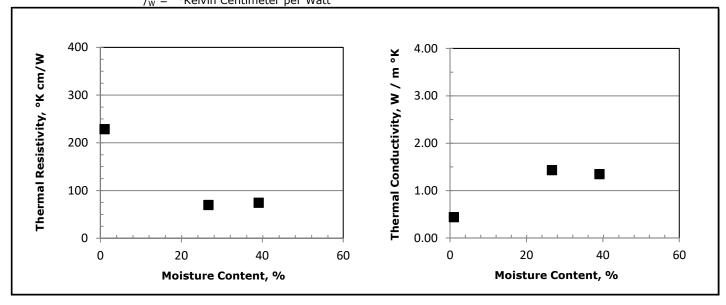


Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/26/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents.GTX was unable to meet requested compaction. Needle was pushed into specimen

Thermal Conductivity of Soil by ANSI IEEE 442

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/w
TP-02			Moist, brown clay	0.10	100.5	100.4	0.41	243
TP-02			Moist, brown clay	26.00	121.9	96.7	1.78	56
TP-02			Moist, brown clay	30.69	114.0	87.3	1.73	58

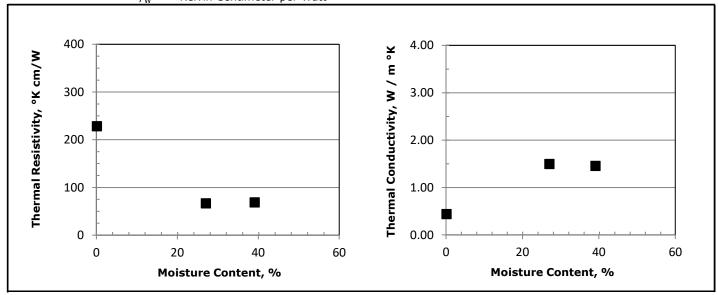
Notes: ${}^{\text{W}}/{}_{\text{m}^{\circ}\text{K}} = \text{Watts per Meter }^{\circ}\text{Kelvin}$



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/26/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

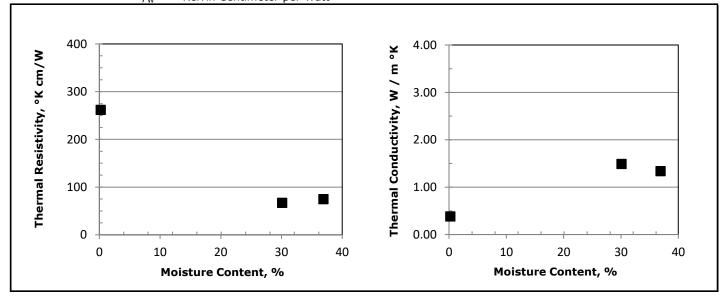
Thermal Conductivity of Soil by ANSI IEEE 442

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, ° ^{K cm} / _W
TP-03			Moist, dark brown clay	1.03	98.7	97.7	0.44	228
TP-03			Moist, dark brown clay	26.70	120.4	95.0	1.43	70
TP-03			Moist, dark brown clay	39.11	110.7	79.6	1.35	74

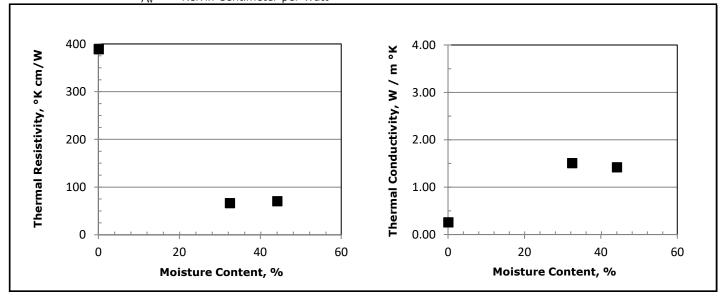


Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/26/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen

Thermal Conductivity of Soil by ANSI IEEE 442

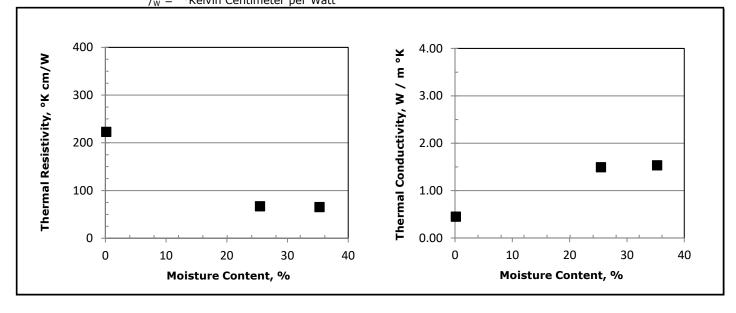

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-04			Moist, dark yellowish brown clay with organics	0.13	103.5	103.4	0.44	228
TP-04			Moist, dark yellowish brown clay with organics	27.04	117.6	92.5	1.50	67
TP-04			Moist, dark yellowish brown clay with organics	39.11	111.9	80.5	1.46	69

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	06/11/25
End Date:	06/17/25
Tested By:	ges/jb
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction at wet and dry moisture contents. Needle was pushed into specimen


Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-05			Moist, dark yellowish brown clay	0.23	94.4	94.2	0.38	262
TP-05			Moist, dark yellowish brown clay	30.10	116.3	89.4	1.49	67
TP-05			Moist, dark yellowish brown clay	36.90	113.1	82.6	1.34	75

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	06/05/25
End Date:	06/11/25
Tested By:	ges/jb
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction at wet and dry moisture contents. Needle was pushed into specimen

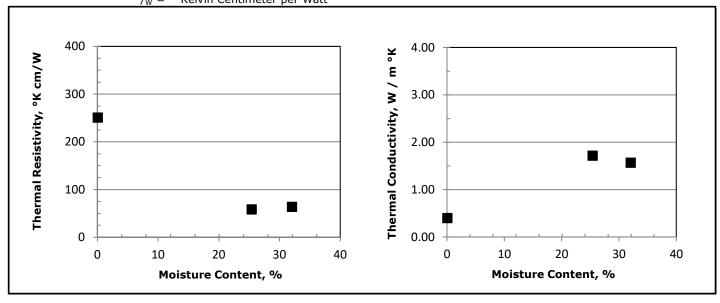
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-06			Moist, brown silt with organics	0.09	89.5	89.4	0.26	389
TP-06			Moist, brown silt with organics	32.50	111.7	84.3	1.51	66
TP-06			Moist, brown silt with organics	44.21	105.9	73.4	1.42	70



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/25/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen

Thermal Conductivity of Soil by ANSI IEEE 442

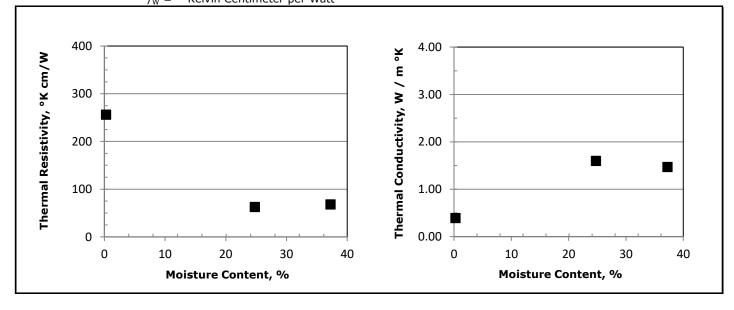
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-07			Moist, brown clay	0.13	101.7	101.5	0.45	223
TP-07			Moist, brown clay	25.46	121.4	96.7	1.49	67
TP-07			Moist, brown clay	35.27	112.3	83.0	1.53	65



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/25/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

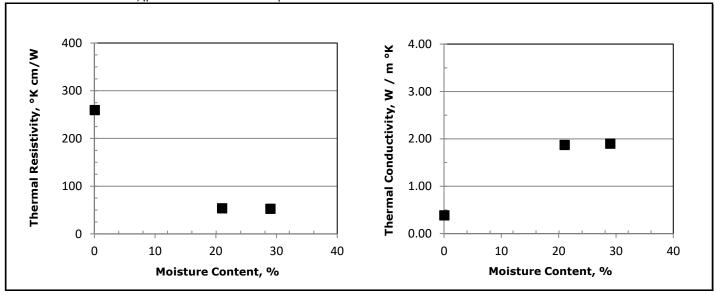
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/w
TP-08			Moist, brown silty sand	0.06	103.5	103.5	0.40	251
TP-08			Moist, brown silty sand	25.40	122.4	97.6	1.71	58
TP-08			Moist, brown silty sand	32.05	115.6	87.5	1.57	64



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/23/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

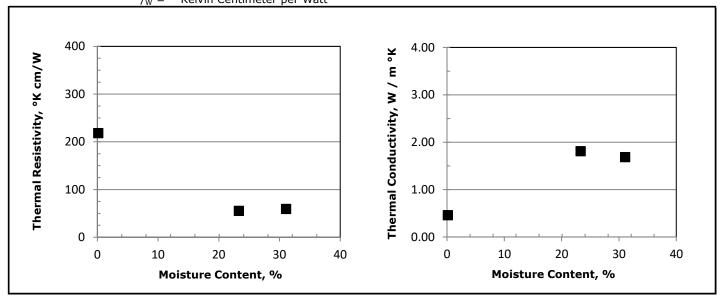
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/w
TP-09			Moist, yellowish brown silt	0.26	96.9	96.7	0.39	256
TP-09			Moist, yellowish brown silt	24.77	119.6	95.9	1.60	63
TP-09			Moist, yellowish brown silt	37.25	110.8	80.8	1.47	68



Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	06/11/25
End Date:	06/16/25
Tested By:	ges/jb
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction at wet and dry moisture content. Needle was pushed into specimen.

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-10			Moist, yellowish brown silt with organics	0.06	105.5	105.5	0.39	260
TP-10			Moist, yellowish brown silt with organics	21.04	127.6	105.4	1.87	53
TP-10			Moist, yellowish brown silt with organics	29.00	119.3	92.5	1.90	53

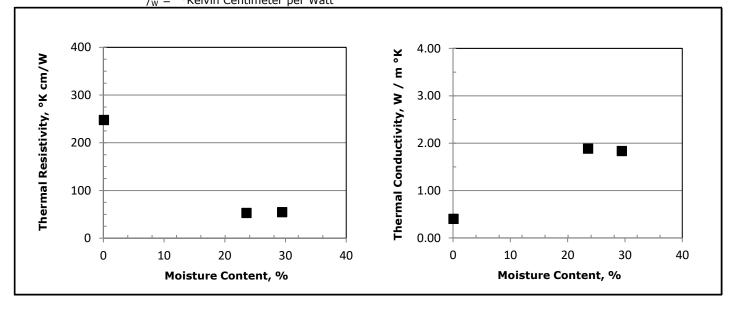
Notes: ${}^{W}/{}_{m^{\circ}K} = W$ Watts per Meter ${}^{\circ}K$ Elvin ${}^{\circ K}$ Centimeter per Watt



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/23/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-11			Moist, olive brown silt	0.14	103.6	103.4	0.46	218
TP-11			Moist, olive brown silt	23.31	122.7	99.5	1.81	55
TP-11			Moist, olive brown silt	31.08	117.0	89.3	1.68	59

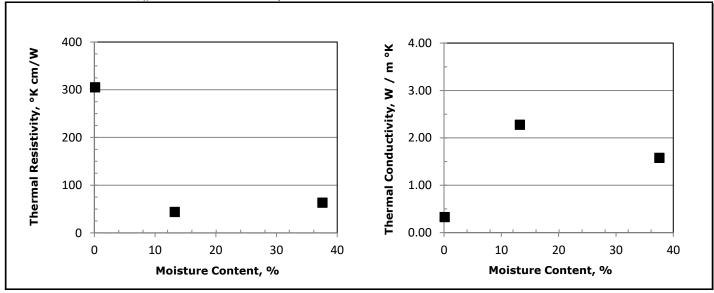


Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/05/25 End Date: 06/10/25 Tested By: ges Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet the requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

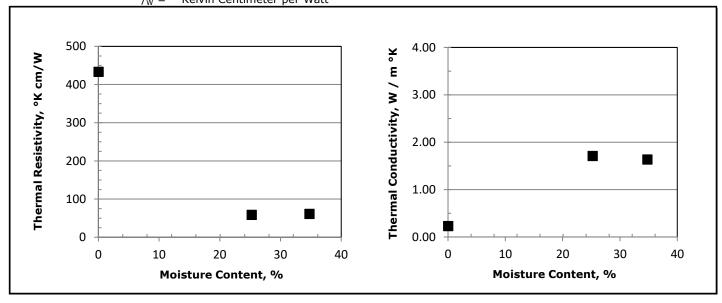
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-12			Moist, yellowish brown silt with organics	0.10	99.5	99.4	0.40	248
TP-12			Moist, yellowish brown silt with organics	23.58	122.9	99.5	1.88	53
TP-12			Moist, yellowish brown silt with organics	29.46	117.7	90.9	1.83	55

Notes: ${}^{\text{W}}/{}_{\text{m}^{\circ}\text{K}} = {}^{\text{W}}$ Watts per Meter ${}^{\circ}\text{Kelvin}$ ${}^{\circ}\text{Kelvin}$ Centimeter per Watt



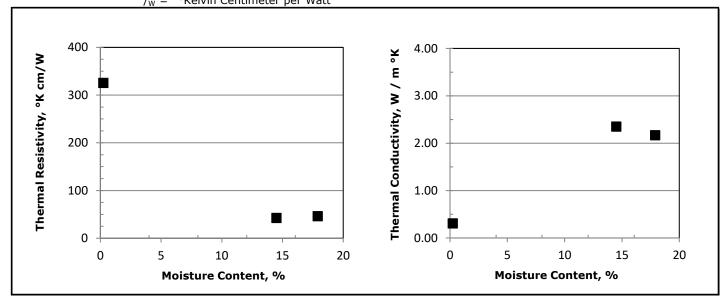
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/24/25 Tested By: ges/jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction at wet and dry moisture contents. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442


Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-14			Moist, yellowish brown silt with organics	0.11	100.5	100.4	0.33	305
TP-14			Moist, yellowish brown silt with organics	13.24	119.4	105.4	2.27	44
TP-14			Moist, yellowish brown silt with organics	37.57	108.8	79.1	1.58	63

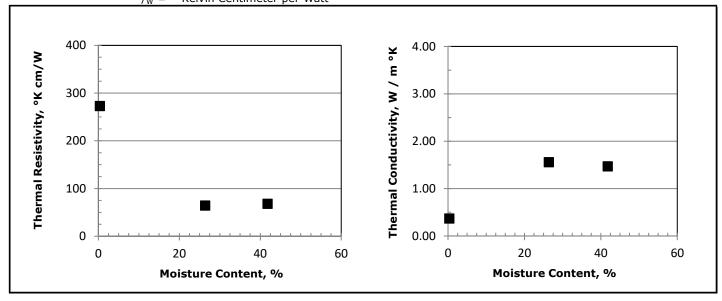
Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	05/30/25
End Date:	06/09/25
Tested By:	JL/ges
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet the requested compaction. Needle was pushed into specimen.

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-15			Moist, yellowish brown silt	0.03	84.4	84.4	0.23	433
TP-15			Moist, yellowish brown silt	25.24	110.4	88.1	1.71	59
TP-15			Moist, yellowish brown silt	34.78	111.5	82.7	1.64	61



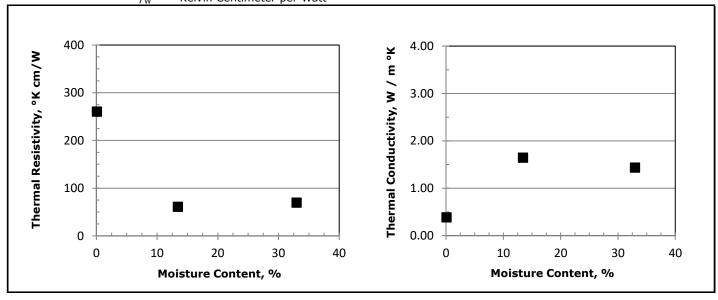
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/11/25 End Date: 06/18/25 Tested By: ges/jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442


Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-16			Moist, yellowish brown silt with sand	0.23	105.8	105.5	0.31	326
TP-16			Moist, yellowish brown silt with sand	14.50	120.7	105.4	2.35	43
TP-16			Moist, yellowish brown silt with sand	17.90	124.4	105.5	2.17	46

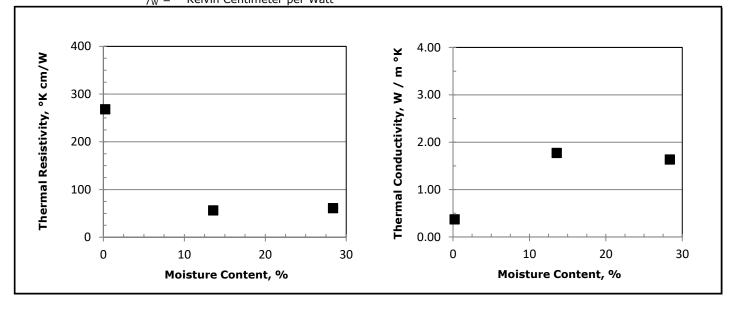
Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	06/19/25
End Date:	06/23/25
Tested By:	jb
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-17			Moist, yellowish brown silty clay with organics	0.36	94.5	94.2	0.37	273
TP-17			Moist, yellowish brown silty clay with organics	26.39	118.3	93.6	1.56	64
TP-17			Moist, yellowish brown silty clay with organics	41.78	110.0	77.6	1.47	68



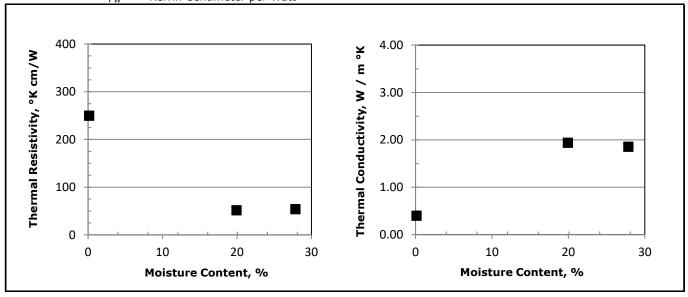
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 05/29/25 End Date: 06/06/25 Tested By: JL/ges Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction at wet and dry moisture contents. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442


Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/w
TP-18			Moist, yellowish brown clay	0.07	95.1	95.0	0.38	260
TP-18			Moist, yellowish brown clay	13.42	119.5	105.3	1.64	61
TP-18			Moist, yellowish brown clay	32.98	114.9	86.4	1.44	70

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	05/29/25
End Date:	06/06/25
Tested By:	JL/ges
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, 13.5%, and as-received moisture contents.GTX was unable to meet requested compaction.Needle was pushed into specimen.

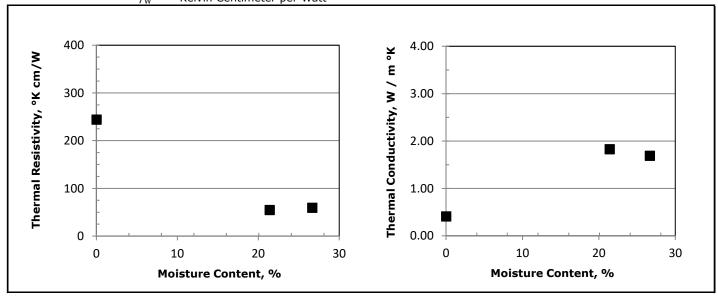
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, ° ^{K cm} / _W
TP-19			Moist, dark yellowish brown clay	0.22	95.6	95.4	0.37	268
TP-19			Moist, dark yellowish brown clay	13.56	118.5	104.4	1.77	56
TP-19			Moist, dark yellowish brown clay	28.38	116.9	91.1	1.64	61



Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	06/11/25
End Date:	06/17/25
Tested By:	ges/jb
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents.GTX was unable to meet requested compaction.Needle was pushed into specimen.

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, ° ^{K cm} / _W
TP-20			Moist, yellowish brown silt	0.14	101.6	101.5	0.40	250
TP-20			Moist, yellowish brown silt	19.94	119.3	99.5	1.94	52
TP-20			Moist, yellowish brown silt	27.85	117.3	91.8	1.85	54

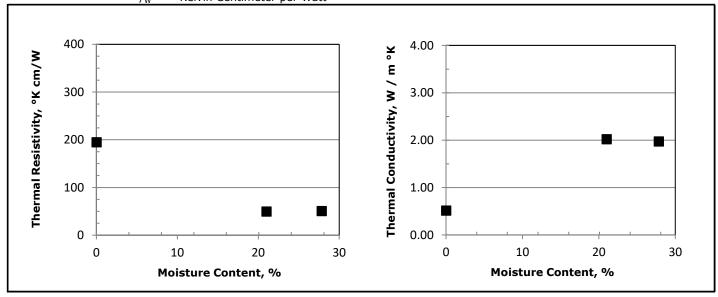
Notes: $^{\text{W}}/_{\text{m}^{\text{o}_{\text{K}}}} = \text{Watts per Meter }^{\text{o}_{\text{K}}}$ evin Centimeter per Watt



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/25/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

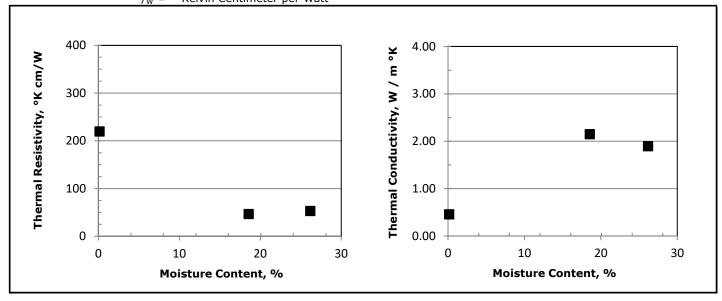
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-21			Moist, brown clay	0.03	105.6	105.6	0.41	244
TP-21			Moist, brown clay	21.41	125.6	103.5	1.83	55
TP-21			Moist, brown clay	26.67	117.4	92.7	1.69	59



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/25/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents.GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

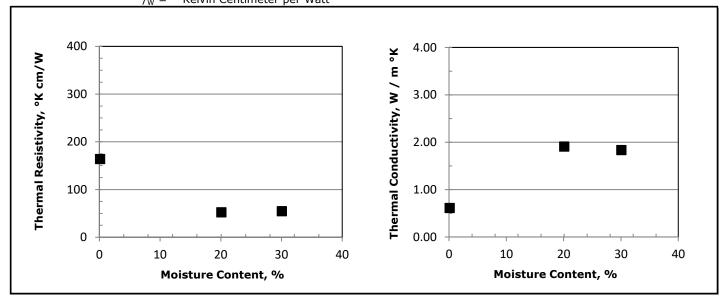
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-22			Moist, brown clay with sand	0.02	105.6	105.6	0.51	195
TP-22			Moist, brown clay with sand	21.02	126.3	104.4	2.02	49
TP-22			Moist, brown clay with sand	27.84	117.5	91.9	1.97	51



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/23/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents.GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

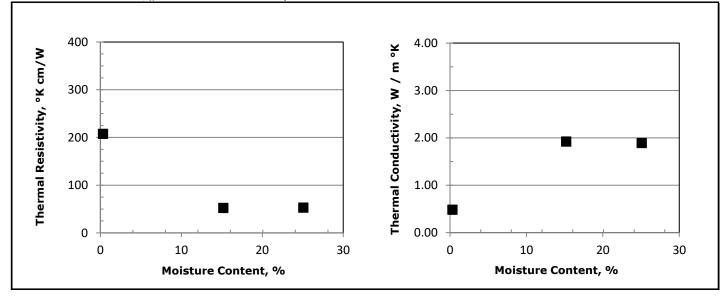
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-23			Moist, dark yellowish brown silt	0.15	105.6	105.5	0.46	219
TP-23			Moist, dark yellowish brown silt	18.56	125.0	105.5	2.15	47
TP-23			Moist, dark yellowish brown silt	26.18	119.8	94.9	1.89	53



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/05/25 End Date: 06/05/25 Tested By: ges/jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

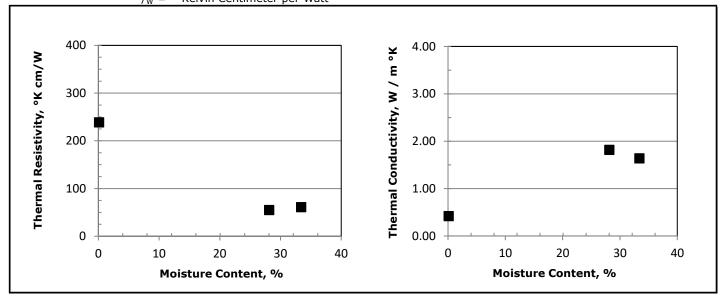
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-24			Moist, dark yellowish brown clay with sand	0.11	105.5	105.3	0.61	164
TP-24			Moist, dark yellowish brown clay with sand	20.10	124.2	103.4	1.91	52
TP-24			Moist, dark yellowish brown clay with sand	30.06	117.4	90.3	1.83	55



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/11/25 End Date: 06/17/25 Tested By: ges/jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. Needle was pushed into specimen. GTX was unable to meet requested compaction at wet moisture content

Thermal Conductivity of Soil by ANSI IEEE 442

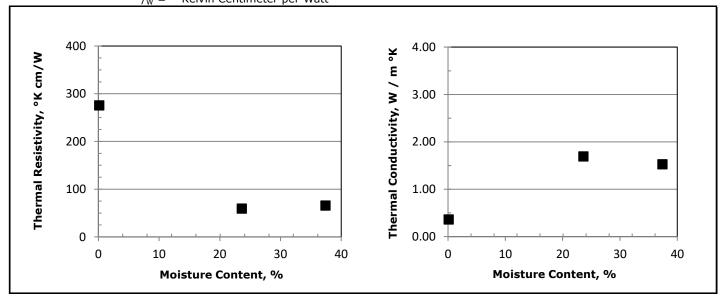
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-25			Moist, dark yellowish brown clay with sand	0.32	105.8	105.5	0.48	207
TP-25			Moist, dark yellowish brown clay with sand	15.20	121.5	105.5	1.92	52
TP-25			Moist, dark yellowish brown clay with sand	25.08	124.4	99.5	1.89	53



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/26/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents.GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

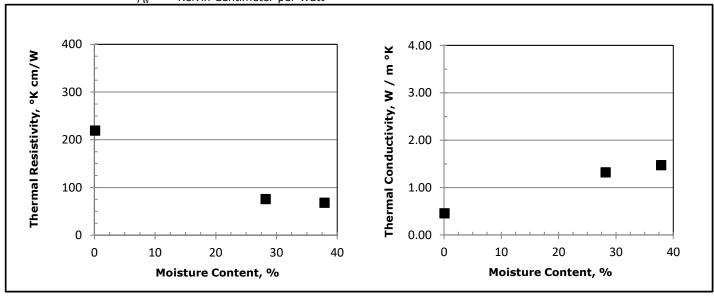
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/w
TP-26			Moist, brown silty clay	0.12	99.7	99.6	0.42	239
TP-26			Moist, brown silty clay	28.14	120.6	94.2	1.82	55
TP-26			Moist, brown silty clay	33.39	114.1	85.5	1.64	61



Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/19/25 End Date: 06/23/25 Tested By: jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

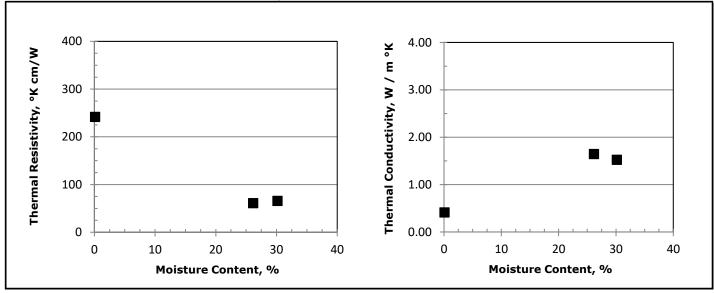
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/W
TP-27			Moist, yellowish brown silty clay with organics	0.13	99.6	99.5	0.36	275
TP-27			Moist, yellowish brown silty clay with organics	23.61	120.7	97.6	1.69	59
TP-27			Moist, yellowish brown silty clay with organics	37.41	111.7	81.3	1.53	66



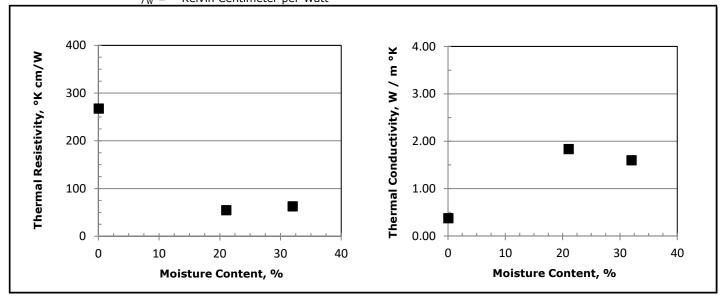
Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 05/27/25 End Date: 06/09/25 Tested By: JL/ges Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet the requested compaction. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

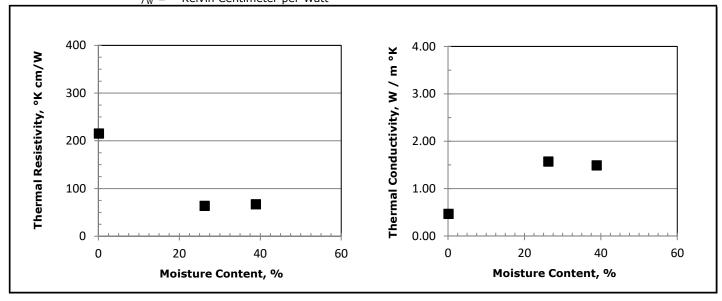
Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/W
TP-28			Moist, yellowish brown clay	0.10	99.2	99.1	0.46	219
TP-28			Moist, yellowish brown clay	28.21	119.8	93.4	1.32	76
TP-28			Moist, yellowish brown clay	37.89	117.0	84.9	1.47	68


Notes: $\frac{\text{w}}{\text{m}^{\circ}\text{K}} = \text{Watts per Meter }^{\circ}\text{Kelvin}$ $\frac{\text{w}}{\text{M}} = \frac{\text{work per Meter per Watt}}{\text{Motes}}$

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	05/29/25
End Date:	06/05/25
Tested By:	JL/ges
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction. Needle was pushed into specimen.

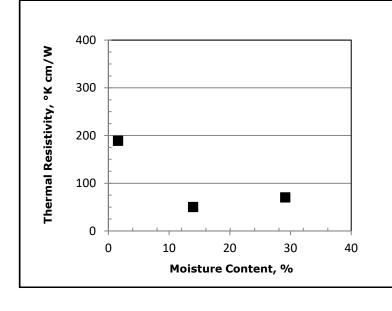

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/W
TP-29			Moist, dark yellowish brown clay with sand	0.10	97.7	97.6	0.41	242
TP-29			Moist, dark yellowish brown clay with sand	26.16	118.5	93.9	1.64	61
TP-29			Moist, dark yellowish brown clay with sand	30.16	117.2	90.0	1.52	66

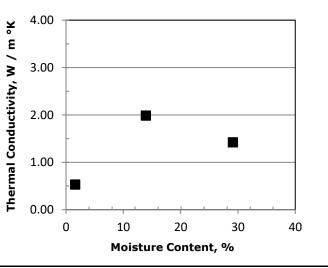
Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	05/29/25
End Date:	06/06/25
Tested By:	JL/ges
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet the requested compaction. Needle was pushed into specimen.


Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/ _W
TP-30			Moist, dark yellowish brown clay with sand	0.07	99.2	99.1	0.37	267
TP-30			Moist, dark yellowish brown clay with sand	21.06	121.6	100.5	1.83	55
TP-30			Moist, dark yellowish brown clay with sand	32.01	115.4	87.4	1.60	63

Client:	Langan Engineering
Project Name:	Upstate Confidential Project
Project Location:	NY
GTX #:	321096
Start Date:	05/27/25
End Date:	06/25/25
Tested By:	JL/ges
Checked By:	ank
Preparation:	Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet the requested compaction. Needle was pushed into specimen.

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, ° ^{K cm} / _W
TP-31			Moist, brown clay with organics	0.13	99.6	99.5	0.46	215
TP-31			Moist, brown clay with organics	26.26	118.4	93.7	1.57	64
TP-31			Moist, brown clay with organics	38.91	125.3	90.2	1.49	67





Client: Langan Engineering Project Name: Upstate Confidential Project Project Location: GTX #: 321096 Start Date: 06/11/25 End Date: 06/18/25 Tested By: ges/jb Checked By: ank Preparation: Tested on a 3 point curve. Specimens compacted to 95% of the requested dry density (111 pcf), at dry, as-received, and wet moisture contents. GTX was unable to meet requested compaction at wet and dry moisture contents. Needle was pushed into specimen.

Thermal Conductivity of Soil by ANSI IEEE 442

Boring	Sample	Depth, ft	Sample Description	Moisture Content, %	Wet Density, pcf	Dry Density, pcf	Thermal Conductivity, ^W / _{m°K}	Thermal Resistivity, °K cm/w
TP-32			Moist, brown silt with organics	1.59	103.0	101.4	0.53	189
TP-32			Moist, yellowish brown silt with organics	13.94	120.2	105.5	1.99	50
TP-32			Moist, brown silt with organics	29.13	113.9	88.2	1.42	70

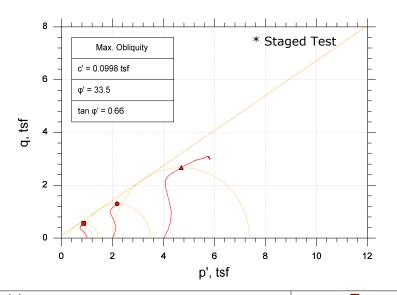
UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 2 tsf ô 2 p, tsf Symbol 0 \triangle U-1 U-1 Sample No. U-1 3.5 Test No. UU-11-1 UU-11-2 UU-11-3 Depth 6-8' 6-8' 6-8' Tested by sjt sjt sjt 3.0 5/22/25 5/22/25 5/22/25 Test Date Checked by trm trm trm 2.5 6/3/25 Check Date 6/3/25 6/3/25 tsf 2 1.95 Diameter, in 2.03 DEVIATOR STRESS, 4.38 4.5 2.0 Height, in 4.4 Water Content, % 29.6 26.3 22.8 97.97 103.7 Dry Density, pcf 90.07 1.5 Saturation, % 92.5 99.6 99.5 Void Ratio 0.858 0.708 0.614 Confining Stress, tsf 0.03 0.125 0.5 1.0 Undrained Strength, tsf 0.04762 0.1793 1.001 Max. Dev. Stress, tsf 0.09525 0.3585 2.003 0.5 Strain at Failure, % 15 15 11 Strain Rate, %/min 1 1 1 2.68 2.68 2.68 Estimated Specific Gravity 0.0 10 20 Liquid Limit 24 24 24 VERTICAL STRAIN, % Plastic Limit 19 19 19 5 Plasticity Index Project: Upstate Confidential Proj Location: NY GeoTesting EXPRESS Project No.: GTX-321096 Boring No.: LB-006 Sample Type: intact Description: Moist, yellowish brown silt Remarks: TX-017

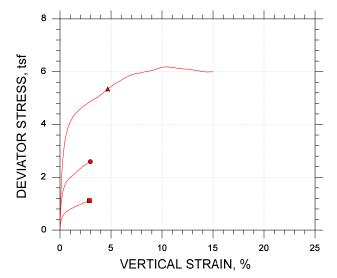
UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 0.4 tsf 0.2 0.0 0.2 0.0 0.4 0.6 0.8 1.0 1.2 p, tsf Symbol 0 \triangle U-1 U-1 Sample No. U-1 1.4 Test No. UU-6-1 UU-6-2 UU-6-3 Depth 8-10' 8-10' 8-10' Tested by $\, {\rm dm} \, t$ dmt sjt 1.2 5/21/25 5/21/25 5/22/25 Test Date Checked by trm trm trm 1.0 6/3/25 6/3/25 Check Date 6/3/25 tsf 2.03 2 2.02 Diameter, in DEVIATOR STRESS, 4.45 Height, in 4.3 4.2 0.8 Water Content, % 22.4 23.7 23.6 102.6 Dry Density, pcf 104.7 101.9 0.6 Saturation, % 99.4 99.5 97.4 Void Ratio 0.609 0.642 0.655 Confining Stress, tsf 0.05 0.2 8.0 0.4 Undrained Strength, tsf 0.405 0.3774 0.3008 Max. Dev. Stress, tsf 0.81 0.7549 0.6017 0.2 Strain at Failure, % 13.4 12.9 15 Strain Rate, %/min 1 1 1 2.7 2.7 2.7 Estimated Specific Gravity 0.0 20 10 15 Liquid Limit 21 21 21 VERTICAL STRAIN, % Plastic Limit 16 16 16 5 Plasticity Index Project: Upstate Confidential Proj Location: NY Project No.: GTX-321096 GeoTesting Boring No.: LB-R-026 Sample Type: intact Description: Moist, brown silty clay Remarks: TX-017

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 1.0 tsf 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 p, tsf Symbol Φ \triangle U-1 U-1 Sample No. U-1 3.5 Test No. UU-3-1 UU-3-2 UU - 3 - 34-6' Depth 4-6' 4-6' Tested by sjt sjt sjt 3.0 5/22/25 5/22/25 Test Date 5/22/25 trm Checked by trm trm 2.5 6/3/25 6/3/25 Check Date 6/3/25 tsf 1.99 1.99 Diameter, in 2 DEVIATOR STRESS, 4.28 4.38 Height, in 4.3 2.0 Water Content, % 23.1 23.6 22.2 102.2 Dry Density, pcf 93.88 96.93 1.5 Saturation, % 79.3 87.3 93.4 Void Ratio 0.782 0.726 0.637 Confining Stress, tsf 0.025 0.1 0.4 1.0 Undrained Strength, tsf 0.7857 0.9208 1.363 Max. Dev. Stress, tsf 1.571 1.842 2.727 0.5 Strain at Failure, % 5 5.05 10.7 Strain Rate, %/min 1 1 1 2.68 2.68 2.68 Estimated Specific Gravity 20 10 15 Liquid Limit 24 24 24 VERTICAL STRAIN, % Plastic Limit 19 19 19 5 Plasticity Index Project: Upstate Confidential Proj Location: NY GeoTesting Project No.: GTX-321096 Boring No.: LB-029 Sample Type: intact Description: Moist, brown silt Remarks: TX-017

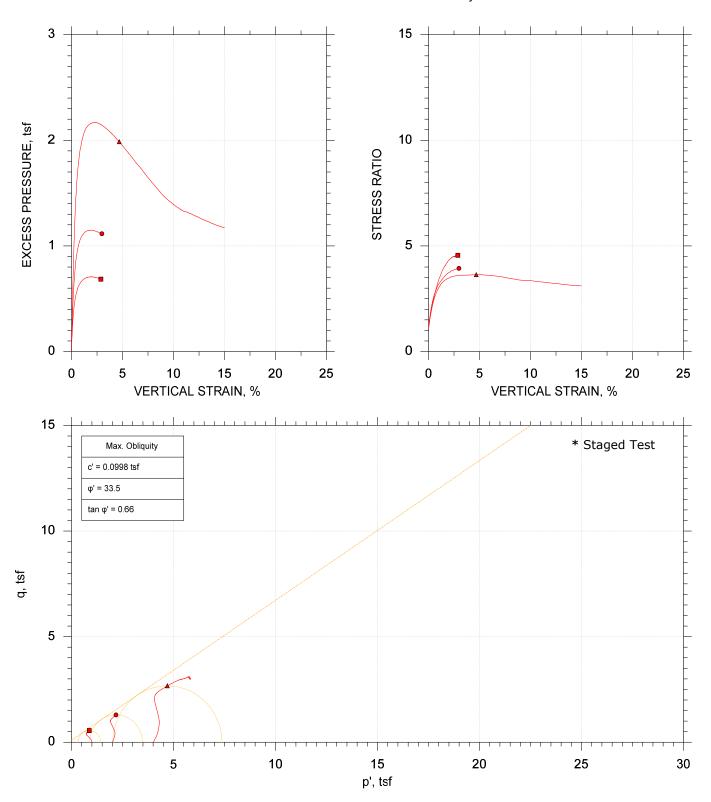
UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 2 tsf ô 2 p, tsf Symbol Φ \triangle U-1 Sample No. U-1U-1 3.5 Test No. UU-1-1 UU-1-2 UU - 1 - 3Depth 6-8' 6-8' 6-8' Tested by dmt dmt dmt 3.0 5/22/25 5/22/25 5/22/25 Test Date Checked by trm trm trm 2.5 6/12/25 6/12/25 Check Date 6/12/25 tsf 2.05 2.05 Diameter, in 2.01 DEVIATOR STRESS, 4.4 Height, in 4.5 4.45 2.0 Water Content, % 22.6 21.7 22.7 Dry Density, pcf 101.4 105.7 102.9 1.5 Saturation, % 92.2 98.4 96.0 Void Ratio 0.662 0.594 0.639 Confining Stress, tsf 0.025 0.1 0.4 1.0 Undrained Strength, tsf 1.16 1.046 1.51 Max. Dev. Stress, tsf 2.32 2.093 3.02 0.5 Strain at Failure, % 6.38 7.15 8.88 Strain Rate, %/min 1 1 1 2.7 2.7 2.7 Estimated Specific Gravity 20 10 15 Liquid Limit 22 22 22 VERTICAL STRAIN, % Plastic Limit 18 18 18 4 Plasticity Index Project: Upstate Confidential Proj Location: NY GeoTesting Project No.: GTX-321096 Boring No.: LB-R-033 Sample Type: intact Description: Moist, brown silty clay Remarks: TX-016

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 1.0 tsf ò 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 p, tsf Symbol Φ \triangle U-1 U-1 Sample No. U-1 1.4 Test No. UU-9-1 UU-9-2 UU-9-3 4-6' Depth 4-6' 4-6' Tested by sjt dmt sjt 1.2 05/22/25|05/22/25|05/22/25 Test Date Checked by anm anm anm 1.0 6/12/25 6/12/25 Check Date 6/12/25 tsf 1.99 1.99 2 Diameter, in DEVIATOR STRESS, 4.52 4.52 Height, in 4.5 0.8 Water Content, % 28.6 26.5 25.9 85.79 Dry Density, pcf 89.56 91. 0.6 Saturation, % 80.1 81.1 81.9 Void Ratio 0.965 0.882 0.852 Confining Stress, tsf 0.025 0.1 0.4 0.4 Undrained Strength, tsf 0.5307 0.5633 0.5794 Max. Dev. Stress, tsf 1.061 1.127 1.159 0.2 Strain at Failure, % 3.75 13.4 4.25 Strain Rate, %/min 1 1 1 2.7 2.7 2.7 Estimated Specific Gravity 0.0 20 10 15 Liquid Limit 26 26 26 VERTICAL STRAIN, % Plastic Limit 20 20 20 Plasticity Index 6 Project: Upstate Confidential Proj Location: NY **SeoTesting** EXPRESS Project No.: GTX-321096 Boring No.: LB-037 Sample Type: intact Description: Moist, brown silty clay Remarks: TX-015


UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 1.0 tsf 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 p, tsf Symbol Φ \triangle U-1 U-1 U-1 Sample No. 1.4 Test No. UU-8-1 UU-8-2 UU-8-3 10-12' Depth 10-12' 10-12' Tested by sjt sjt sjt 1.2 5/23/25 5/27/25 5/27/25 Test Date Checked by trm trm trm 1.0 6/3/25 6/3/25 6/3/25 Check Date tsf 2.86 2.86 Diameter, in 2.86 DEVIATOR STRESS, 6 Height, in 6.3 6.3 0.8 Water Content, % 12.6 12.5 11.2 115.8 116.3 Dry Density, pcf 116.5 0.6 Saturation, % 77.5 75.3 68.6 Void Ratio 0.436 0.445 0.439 Confining Stress, tsf 0.0625 0.25 1 0.4 Undrained Strength, tsf 0.2028 0.2297 0.1076 Max. Dev. Stress, tsf 0.4056 0.4595 0.2153 0.2 Strain at Failure, % 12.9 14.7 14.8 Strain Rate, %/min 1 1 1 2.68 2.68 2.68 Estimated Specific Gravity 20 10 15 Liquid Limit 12 12 12 VERTICAL STRAIN, % Plastic Limit 10 10 10 2 2 Plasticity Index Project: Upstate Confidential Proj Location: NY Project No.: GTX-321096 Boring No.: LB-R-052 Sample Type: intact Description: Moist, brown silt Remarks: TX-016

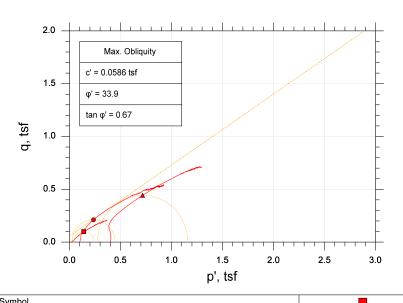

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 2 tsf ô 0 p, tsf Symbol 0 \triangle U-1 U-1 Sample No. U-1 3.5 -Test No. UU-2-1 UU-2-2 UU-2-3 Depth 12-14' 12-14' 12-14' Tested by $\, {\rm dm} \, t$ dmt dmt 3.0 5/27/25 5/27/25 5/27/25 Test Date Checked by trm trm trm 2.5 6/16/25 6/16/25 Check Date 6/16/25 tsf 2.04 2.03 1.98 Diameter, in DEVIATOR STRESS, 4.1 Height, in 4.2 4.2 2.0 Water Content, % 19.6 24.2 24.4 98.54 Dry Density, pcf 109.3 96,62 1.5 Saturation, % 97.6 92.0 88.5 Void Ratio 0.542 0.711 0.744 Confining Stress, tsf 0.3 0.6 1.2 1.0 Undrained Strength, tsf 0.9011 0.2318 0.072 Max. Dev. Stress, tsf 1.802 0.4637 0.144 0.5 Strain at Failure, % 15 12.2 14.9 Strain Rate, %/min 1 1 1 2.7 2.7 2.7 Estimated Specific Gravity 10 15 20 Liquid Limit 25 25 25 VERTICAL STRAIN, % Plastic Limit 14 14 14 Plasticity Index 11 11 11 Project: Upstate Confidential Proj Location: NY **SeoTesting** EXPRESS Project No.: GTX-321096 Boring No.: LB-R-053 Sample Type: intact Description: Moist, brown clay Remarks: TX-017

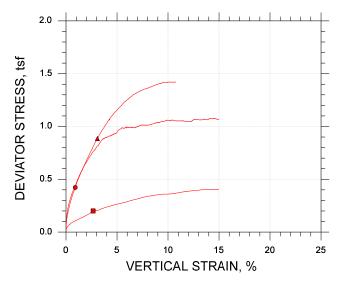
UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 2 tsf ô 0 2 5 p, tsf Symbol Φ \triangle U-1 U-1 U-1 Sample No. 7 -Test No. UU-7-1 UU-7-2 UU-7-3 12-14' Depth 12-14' 12-14' Tested by sjt sjt sjt 6 6/5/25 6/5/25 6/6/25 Test Date Checked by trm trm trm 5 6/12/25 6/12/25 6/12/25 Check Date tsf 2.8 2.8 Diameter, in 2.8 DEVIATOR STRESS, 6.25 Height, in 5.8 6 Water Content, % 20.4 15.5 8.5 117.4 135.7 Dry Density, pcf 106.6 3 Saturation, % 95.9 98.0 98.0 Void Ratio 0.569 0.425 0.233 0.7 Confining Stress, tsf 0.35 1.5 2 Undrained Strength, tsf 1.048 0.1782 2.192 Max. Dev. Stress, tsf 2.095 0.3563 4.383 1 Strain at Failure, % 15 15 14.8 Strain Rate, %/min 1 1 1 2.68 2.68 2.68 Estimated Specific Gravity 10 20 Liquid Limit NP NP NΡ VERTICAL STRAIN, % Plastic Limit NΡ NP NP NP NP Plasticity Index NΡ Project: Upstate Confidential Proj Location: NY **SeoTesting** EXPRESS Project No.: GTX-321096 Boring No.: LB-R-114 Sample Type: intact Description: Moist, brown silt Remarks: TX-015



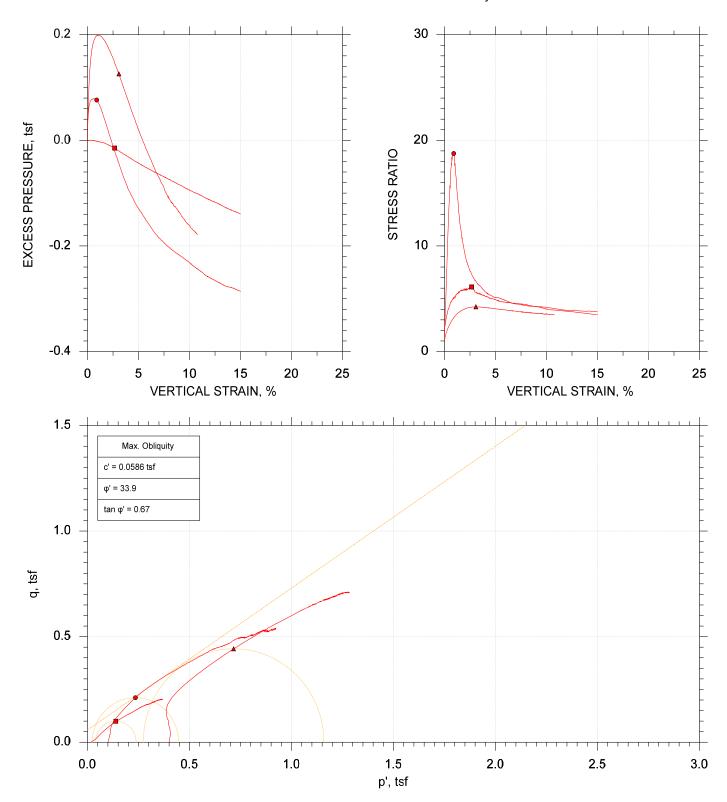
Client: Langan Engineering					
Project Name: Upstate Confidential Project	Project Name: Upstate Confidential Project				
Project Location: NY					
Project Number: GTX-321096					
Tested By: dmt	Checked By: anm				
Boring ID: LB-004					
Preparation: intact					
Description: Moist, brown clay					
Classification:					
Group Symbol:					
Liquid Limit: 25	Plastic Limit: 14				
Plasticity Index: 11	Estimated Specific Gravity: 2.82				

	2 0 2 4 6 8 p', tsf	10 12	OEVI	5 10 15 VERTICAL STRAIN,	20 25
Syn	nbol		•	A	
Sar	nple ID	U-1	U-1	U-1	
Dep	th, ft	10-12'	10-12'	10-12'	
Tes	t Number	CU-3-1	CU-3-2	CU-3-2	
	Height, in	4.100	3.925	3.813	
	Diameter, in	2.050	2.050	2.050	
Initial	Moisture Content (from Cuttings), %	24.0			_
Ē	Dry Density, pcf	105.			
	Saturation (Wet Method), %	99.8			
	Void Ratio	0.679			
	Moisture Content, %			23.0	
3ar	Dry Density, pcf			107.	
Shear	Cross-sectional Area (Method A), in²			3.295	
Before	Saturation, %			100.0	
Be	Void Ratio			0.649	
	Back Pressure, tsf	14.47	15.66	18.38	
Ver	ical Effective Consolidation Stress, tsf	0.9952	2.002	4.012	
Hor	izontal Effective Consolidation Stress, tsf	0.9986	2.002	4.011	
Ver	ical Strain after Consolidation, %	0.6672	-0.005047	-0.01944	
Vol	umetric Strain after Consolidation, %	1.345	0.6834	0.8363	
Tim	e to 50% Consolidation, min				
She	ar Strength, tsf	0.5566	1.296	2.673	
	in at Failure, %	2.88	2.98	4.68	
Stra	in Rate, %/min	0.01600	0.01600	0.01600	
	iator Stress at Failure, tsf	1.113	2.593	5.345	
	ctive Minor Principal Stress at Failure, tsf	0.3130	0.8825	2.024	
Effective Major Principal Stress at Failure, tsf		1.426	3.476	7.369	
	alue	0.92			
Notes: - Before Shear Saturation set to 100% for phase calculation Moisture Content determined by ASTM D2216 Atterberg Limits determined by ASTM D4318 Deviator Stress includes membrane correction Values for c and ϕ determined from best-fit straight line for the specific test conditions. Actual strength parameters may vary and should be determined by an engineer for site conditions. Remarks:					


	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
-	U-1	CU-3-1	10-12'	dmt	6/4/25	anm	6/18/25	321096-CU-3-1v.dat
•	U-1	CU-3-2	10-12'	dmt	6/4/25	anm	6/18/25	321096-CU-3-2v.dat
A	U-1	CU-3-2	10-12'	dmt	6/4/25	anm	6/18/25	321096-CU-3-3v.dat

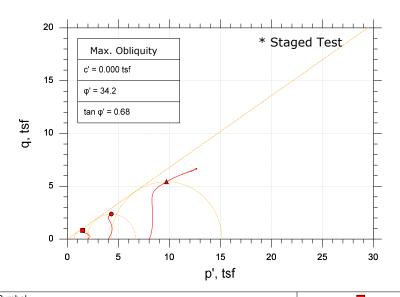

CooTooling	
GeoTesting EXPRESS	
A Sercel Business	

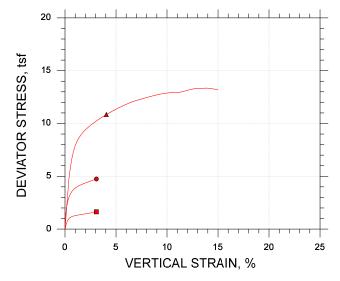
	Project: Upstate Confidential Project	Location: NY	Project No.: GTX-321096		
Boring No.: LB-004 Sample Type: intact					
	Description: Moist, brown clay				
	Remarks: TX-029				



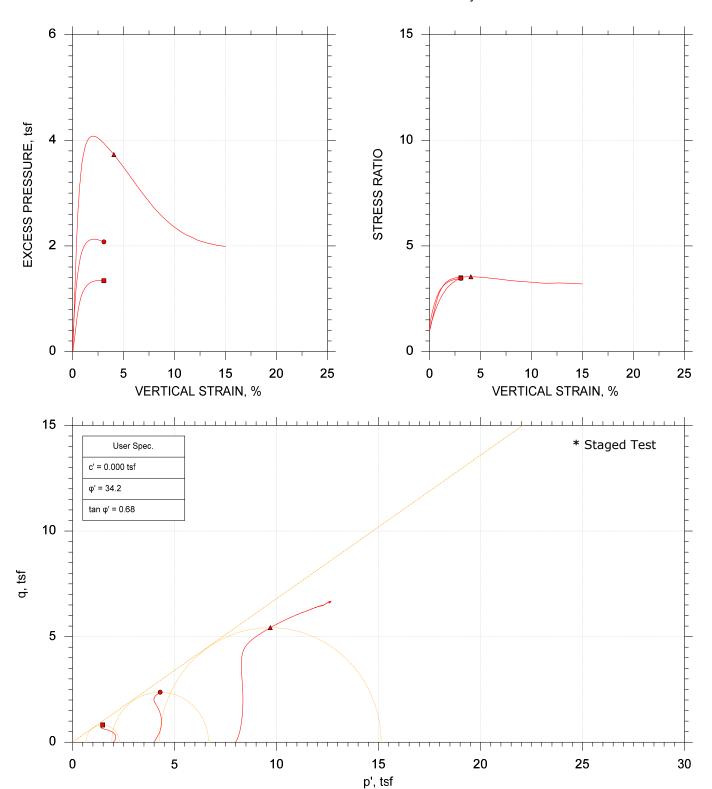
Client: Langan Engineering				
Project Name: Upstate Confidential Project				
Project Location: NY				
Project Number: GTX-321096				
Tested By: dmt	Checked By: anm			
Boring ID: LB-R-005				
Preparation: intact				
Description: Moist, brown clay				
Classification:				
Group Symbol:				
Liquid Limit: 29	Plastic Limit: 19			
Plasticity Index: 10	Estimated Specific Gravity: 2.7			

	0.5 0.0 0.0 0.5 1.0 1.5 2.0 p', tsf	2.5 3.0	0.0 OEVIVATION OF STATE OF STA	5 10 15 VERTICAL STRAIN,	20 25
Syml	ool				
Sam	ple ID	U-1	U-1	U-1	
Dept	h, ft	4-6'	4-6'	4-6'	
Test	Number	CU-2-1R	CU-2-2	CU-2-3	
	Height, in	4.400	4.500	4.510	
	Diameter, in	2.000	2.030	2.020	
<u>ia</u>	Moisture Content (from Cuttings), %	33.8	31.6	28.4	
Initial	Dry Density, pcf	88.1	88.9	93.4	
	Saturation (Wet Method), %	99.9	95.1	95.2	
	Void Ratio	0.913	0.896	0.804	
	Moisture Content, %	34.5	33.3	28.5	
ar	Dry Density, pcf	87.3	88.8	95.3	
	Cross-sectional Area (Method A), in ²	3.169	3.239	3.166	
Before	Saturation, %	100.0	100.0	100.0	
Bel	Void Ratio	0.932	0.898	0.769	
Back Pressure, tsf		2.448	7.380	11.59	
Verti	cal Effective Consolidation Stress, tsf	0.01687	0.09995	0.3978	
Horiz	contal Effective Consolidation Stress, tsf	0.01681	0.1001	0.3993	
Verti	cal Strain after Consolidation, %	-0.003445	0.08296	0.2789	
Volur	metric Strain after Consolidation, %	-0.6977	0.1936	0.5237	
Time	to 50% Consolidation, min	0.0000	0.0000	32.49	
	r Strength, tsf	0.09964	0.2112	0.4425	
	n at Failure, %	2.65	0.900	3.08	
	n Rate, %/min	0.01600	0.01600	0.01600	
	ator Stress at Failure, tsf	0.1993	0.4223	0.8851	
	tive Minor Principal Stress at Failure, tsf	0.03898	0.02378	0.2734	
Effective Major Principal Stress at Failure, tsf		0.2383	0.4461	1.158	
B-Value		0.96	0.95	0.95	
- Moist - Attert - Devia - Value stren	e Shear Saturation set to 100% for phase calculation. ure Content determined by ASTM D2216. perg Limits determined by ASTM D4318. stor Stress includes membrane correction. stor c and \$\phi\$ determined from best-fit straight line for the specific test conditions. Actual gth parameters may vary and should be determined by an engineer for site conditions.				
Rem	aiks.				


	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
•	U-1	CU-2-1R	4-6'	dmt	6/4/25	anm	6/10/25	321096-CU-2-1Rv.dat
•	U-1	CU-2-2	4-6'	dmt	5/30/25	anm	6/10/25	321096-CU-2-2v.dat
A	U-1	CU-2-3	4-6'	jlw	5/21/25	anm	6/10/25	321096-CU-2-3v.dat


• • T !!	F
GeoTesting EXPRESS	E
A Sercel Business	[

	Project: Upstate Confidential Project	Location: NY	Project No.: GTX-321096	
	Boring No.: LB-R-005			
	Description: Moist, brown clay			
	Remarks: TX-002			



Client: Langan Engineering					
Project Name: Upstate Confidential Project	Project Name: Upstate Confidential Project				
Project Location: NY					
Project Number: GTX-321096					
Tested By: dmt	Checked By: anm				
Boring ID: LB-R-035					
Preparation: intact					
Description: Moist, dark gray silt					
Classification:					
Group Symbol:					
Liquid Limit: 14	Plastic Limit: 11				
Plasticity Index: 3	Estimated Specific Gravity: 2.7				

	5 0 5 10 15 20 p', tsf	25 30	DEVIAT	5 10 15 VERTICAL STRAIN,	20 25		
Syr	nbol		•				
	nple ID	U-1	U-1	U-1			
	pth, ft	10-12'	10-12'	10-12'			
	t Number	CU-4-1	CU-4-2	CU-4-3			
	Height, in	4.200	3.886	3.776			
	Diameter, in	2.030	2.030	2.030			
<u>=</u>	Moisture Content (from Cuttings), %	15.9					
Initial	Dry Density, pcf	118.					
	Saturation (Wet Method), %	99.4					
	Void Ratio	0.433					
	Moisture Content, %			11.3			
ä	Dry Density, pcf			129.			
Shear	Cross-sectional Area (Method A), in²			3.255			
Before	Saturation, %			100.0			
Bel	Void Ratio			0.304			
	Back Pressure, tsf	2.520	4.239	9.241			
Ver	tical Effective Consolidation Stress, tsf	1.992	4.000	8.000			
Hor	izontal Effective Consolidation Stress, tsf	1.999	4.000	7.999			
Ver	tical Strain after Consolidation, %	1.441	0.1443	0.0000			
Vol	umetric Strain after Consolidation, %	3.557	0.7606	0.6686			
Tim	e to 50% Consolidation, min						
She	ar Strength, tsf	0.8170	2.371	5.427			
	in at Failure, %	3.08	3.07	4.05			
	in Rate, %/min	0.01600	0.01600	0.01600			
	riator Stress at Failure, tsf	1.634	4.742	10.85			
	ctive Minor Principal Stress at Failure, tsf	0.6577	1.923	4.269			
Effective Major Principal Stress at Failure, tsf		2.292	6.665	15.12			
	alue	0.96					
- Mo - Atte - De - Val stre	es: ore Shear Saturation set to 100% for phase calculation. sture Content determined by ASTM D2216. riberg Limits determined by ASTM D4318. riator Stress includes membrane correction. ues for c and φ determined from best-fit straight line for the specific test conditions. Actual night parameters may vary and should be determined by an engineer for site conditions. narks:						
		I	1				

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File	
•	U-1	CU-4-1	10-12'	dmt	5/29/25 anm 6/10/25		6/10/25	321096-CU-4-1v.dat	
•	U-1	CU-4-2	10-12'	dmt	5/29/25	anm	6/10/25	321096-CU-4-2v.dat	
A	U-1	CU-4-3	10-12'	dmt 5/29/25 anm		anm	6/10/25	321096-CU-4-3v.dat	

E	esting XPRESS Sercel Business	

	Project: Upstate Confidential Project	Location: NY	Project No.: GTX-321096				
,	Boring No.: LB-R-035	Sample Type: intact					
	Description: Moist, dark gray silt						
	Remarks: TX-006						

APPENDIX G GEOTECHNICAL STUDIES BY OTHERS

CME Report No.: 28062B-02-0623-R1

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

Transmittal

July 11, 2023

Ramboll (Client) 94 New Karner Road Albany, New York Phone: 518.339.8829

Attn: Mr. Steve Maxwell, Construction Manager

Stephen.Maxwell@Ramboll.com

Re: Micron Campus

Clay, New York

CME Project No.: 28062-05

Gentlepeople:

Enclosed you will find....

Number of Copies
1 Report Number Description
28062B-02-0623-R1 Memorandum - Revision 1

The above report was emailed to Mr. Steve Maxwell, at <u>Stephen.Maxwell@Ramboll.com</u>, and Mr. Andy Philips, at Andy.Philips@Ramboll.com, on 07/11/2023.

Respectfully submitted,

CME Associates, Inc.

Anas N. Anasthas, PE

Senior Geotechnical Engineer

AA.bs

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

MEMORANDUM

	CME REPORT NUMBER: 28062B-02-0623-R1				
	Page 1 of 4				
To:	Ramboll				
	94 New Karner Road Suite 106				
	Albany, New York 12203				
	Attn: Mr. Steve Maxwell, Construction Manager				
	Mr. Andy Philips, P.E.				
	Email: Stephen.Maxwell@Ramboll.com				
	Andy.Philips@Ramboll.com, Senior Project Manager				
From:	Mr. Anas Anasthas, P.E., Senior Geotechnical Engineer				
Date: 06/30/2023					
Project:	ct: Micron Campus, Clay, New York				

This memorandum has been prepared in response to Ramboll's request during the 06/08/2023 meeting referenced in the *Cover Letter*¹, to present key items that CME has identified via the Phase 1 Exploration, which will affect the design and construction of the new campus. For the purposes of this memorandum, the Phase 1 Exploration areas are labeled Area 1 to Area 4, as shown on the attached Phase 1 Exploration Location Map. Generalized subsurface profiles along the 11 lines shown on said map are also attached.

1. Variable Subsurface Stratigraphy: All four areas of exploration exhibit distinct subsurface profiles.

Area 1 explorations identified surfacings (Topsoil and Organic Matter) underlain by a subsurface profile consisting of a Silt stratum, underlain by a Silt and Sand stratum, underlain by bedrock at about 18 to 24 feet below grade.

Area 2 explorations identified surfacings at grade, underlain by a Silt and Sand stratum, underlain by bedrock at about 4 to 18 feet below grade.

Area 3 explorations identified surfacings at grade, underlain by a Silt and Sand stratum to boring termination depth, where auger or sampler refusal was noted. Bedrock was not encountered within the exploration depths. Auger refusal in Boring B-129 was investigated via coring to 5 feet below auger refusal depth. The coring revealed dense Glacial Till-like material at this depth.

1 _

¹ Geotechnical Data Report and Memorandum Cover Letter, labeled CME Report Number: 28062A-02-0623

CME Report No.: 28062B-02-0623-R1

Page 2 of 4

Area 4 explorations identified a somewhat similar subsurface profile as that noted in Area 1, except the Silt stratum contained a Clay layer near the bottom of this stratum in two of the Borings advanced within Area 4. The Borings advanced within Area 4 were terminated upon sampler or auger refused on probable bedrock at about 16 to 29 feet below grade.

- 2. Magnitude of New Fill Needed: Mr. Thomas Behm of Micron stated during the meeting that a significant amount of Fill material would need to be delivered to the site to raise grades (mass fill) to achieve proposed finish grade elevation. Mr. Behm also stated that Micron desires to start construction for the first building (Fab No. 1) in 2024. Consideration should be given to lowering the finish floor of the buildings (and the surrounding finish grades) as much as possible to reduce the amount of mass fill needed for this project.
- **3. Topsoil and Organic Material Removals:** Grades to be exposed after removal of Topsoil and Organic Matter can generally be untrafficable by construction equipment, except during the driest months of the year. An early site preparation package, which includes clearing, grubbing, striping topsoil and organic material and then hauling it away, followed by installation of granular fill, should be considered to start as soon as possible during the dry months. Typical conditions in spring and winter with high groundwater levels can render the site non-trafficable to the bulldozers and scrapers needed to remove the topsoil off-site. Additionally, careful consideration shall be given to controlling groundwater during the stripping and filling operations. Temporary dewatering and constructing diversion trenches and swales would be critical to allow for a workable mass filling operation.

Prior to cutting and filling at the site, CME recommends that a pre-construction earthwork meeting be convened to discuss the overall operation and to convey the concerns presented herein.

4. Compressible Soils: The Silt stratum noted in Areas 1 and 4, and the Clay stratum noted in Area 4 are compressible.

Silt: The Silt stratum identified in Area 1 and Area 4 is generally soft to stiff in consistency. The soft to medium stiff portions of this stratum will compress/consolidate under the weight of the new fill to be placed, as well as building loads. This soil is non-plastic to slightly plastic, and the compression/consolidation is expected to occur relatively quickly (in weeks/months rather than years) after applying the loads.

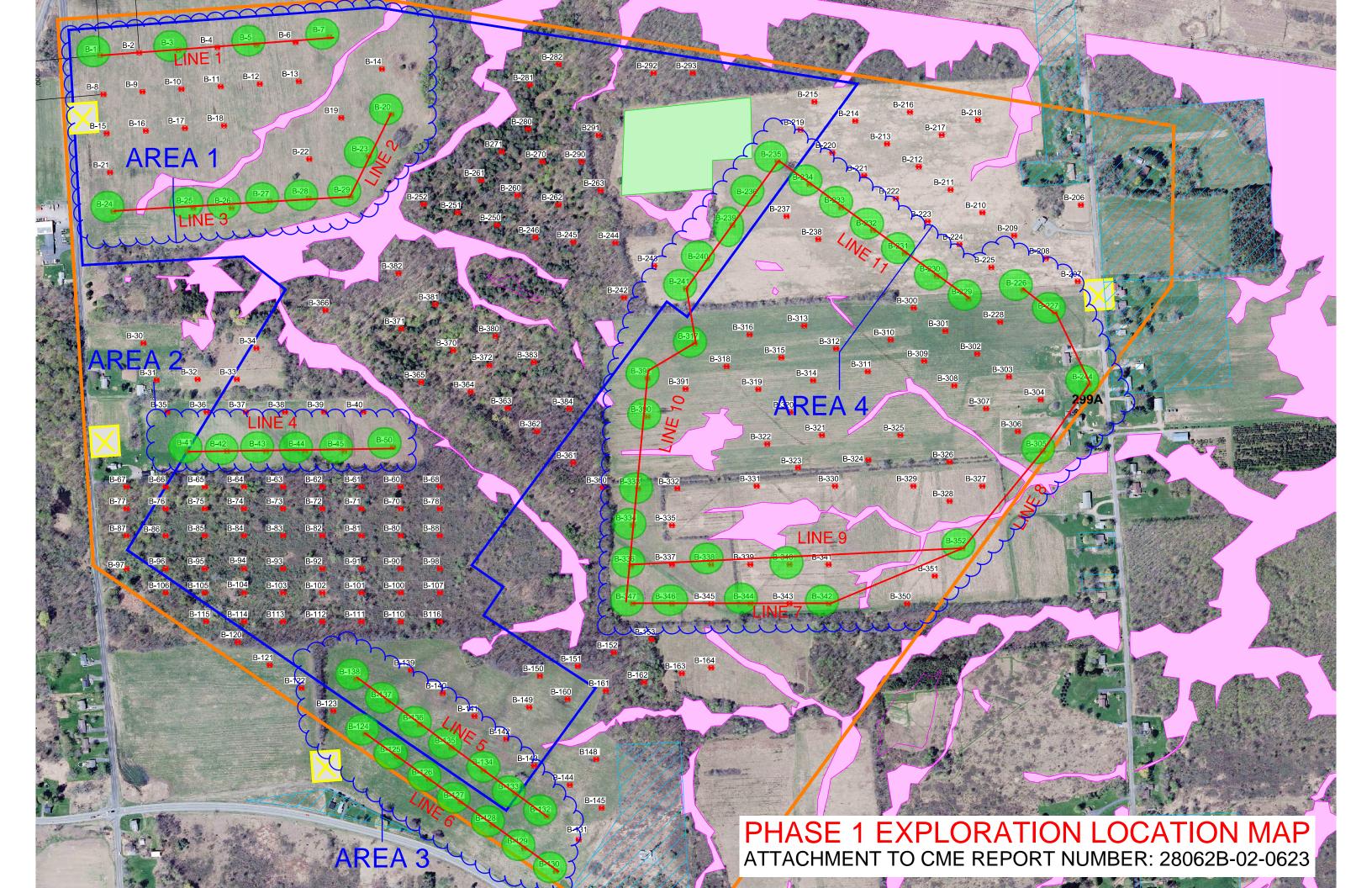
Clay: The Clay noted in Area 4 is generally soft in consistency and is susceptible to consolidation under the weight of the new Fill and building loads. The Clay soil is plastic, and consolidation is expected to occur relatively slowly (in months or years) after applying loading above.

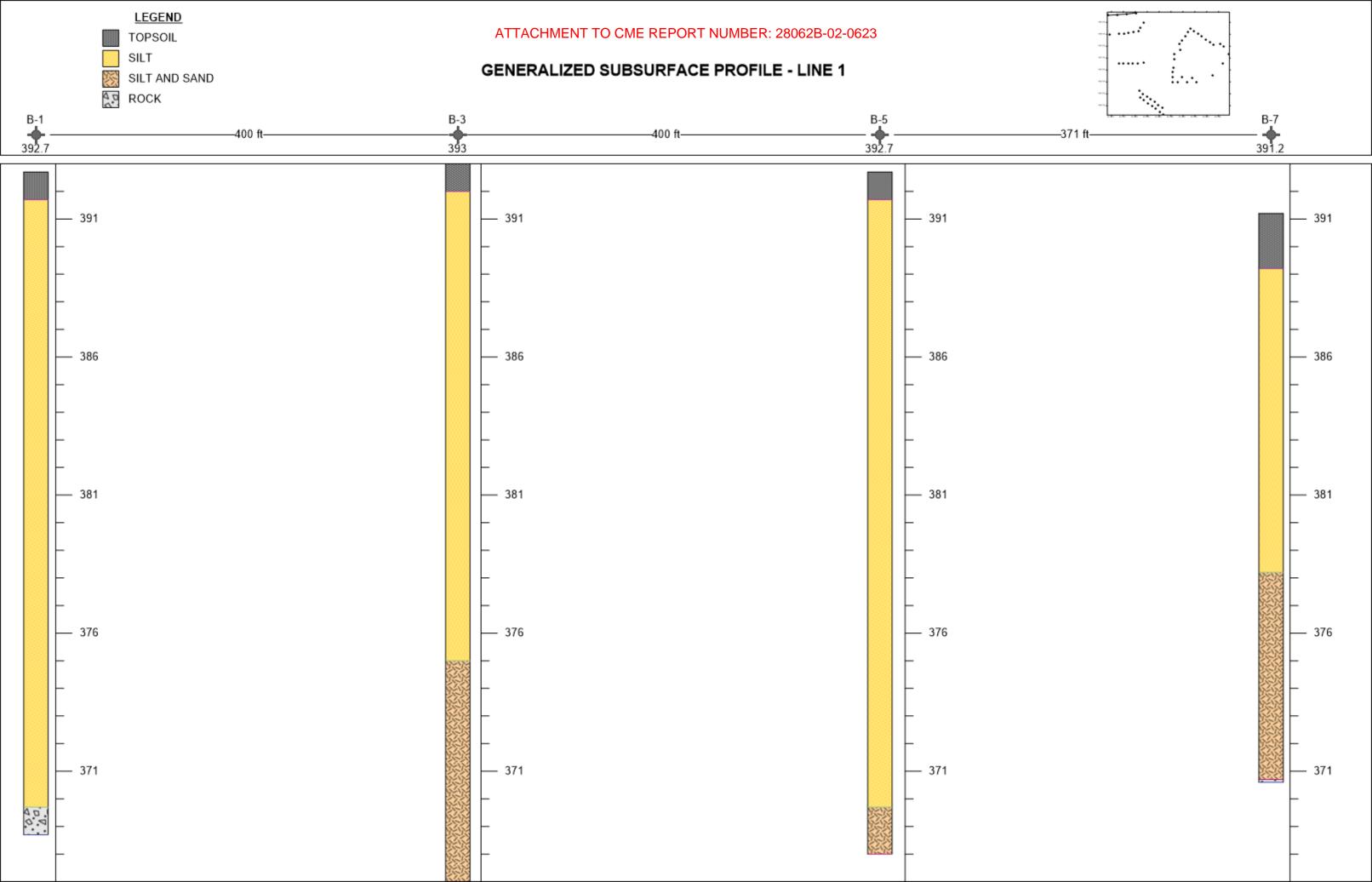
5. Shallow Groundwater: Shallow groundwater conditions (within a couple of feet of existing grade) were noted in several borings during the exploration. Further, groundwater was noted in the Groundwater Observation Wells installed at the site, within a couple inches of existing grade to several feet below existing grade, during readings taken from April to June of 2023. Please refer to the Groundwater Level Monitoring Table in the Geotechnical Data Report (CME Report Number: 28062B-01-0523R1, dated 6/20/2023), for further information. Mottled soils were also noted in several borings within 2 to 4 feet of grade, indicative of repeated wetting and drying of soils within these

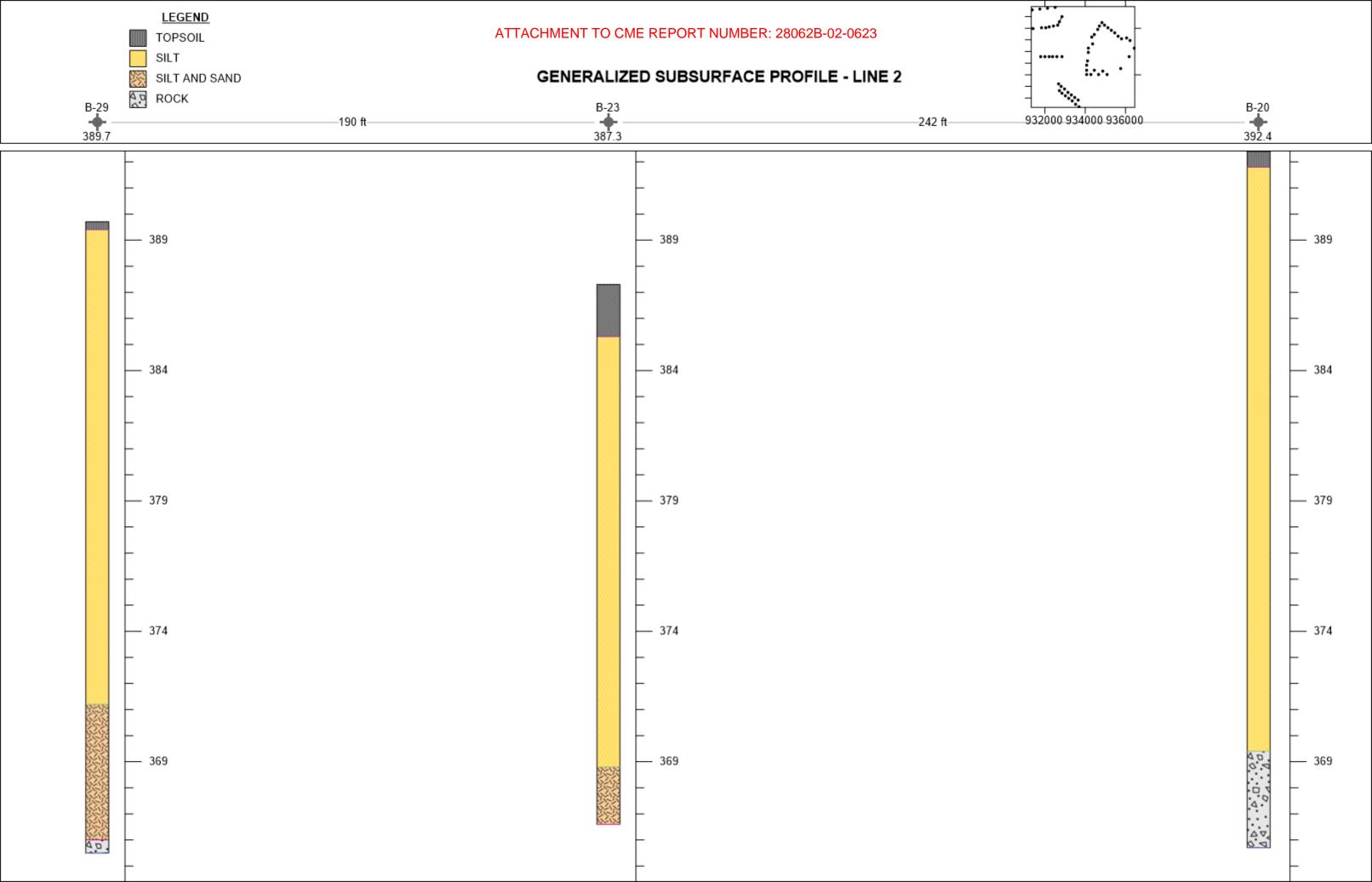
CME Report No.: 28062B-02-0623-R1

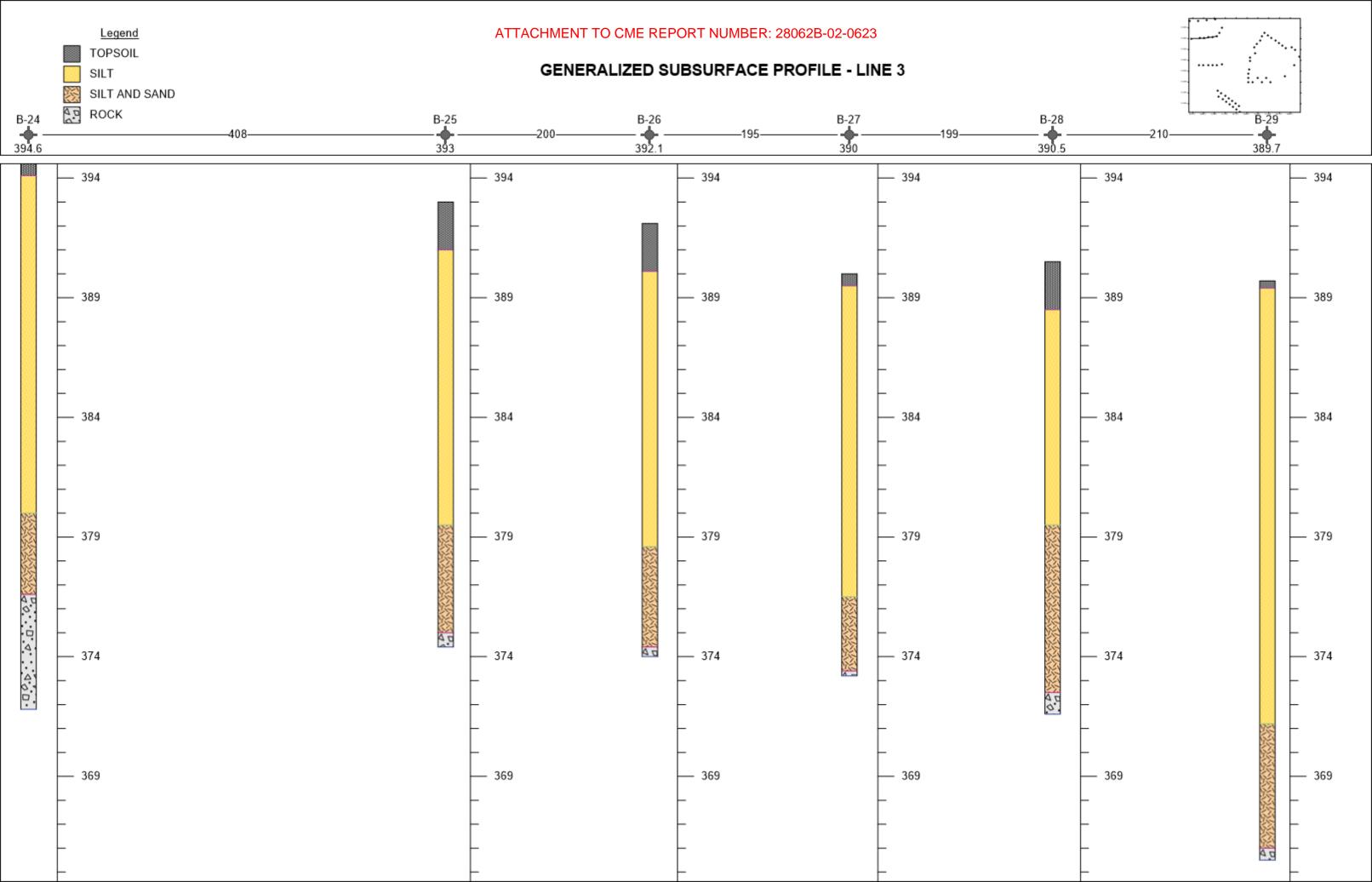
Page 3 of 4

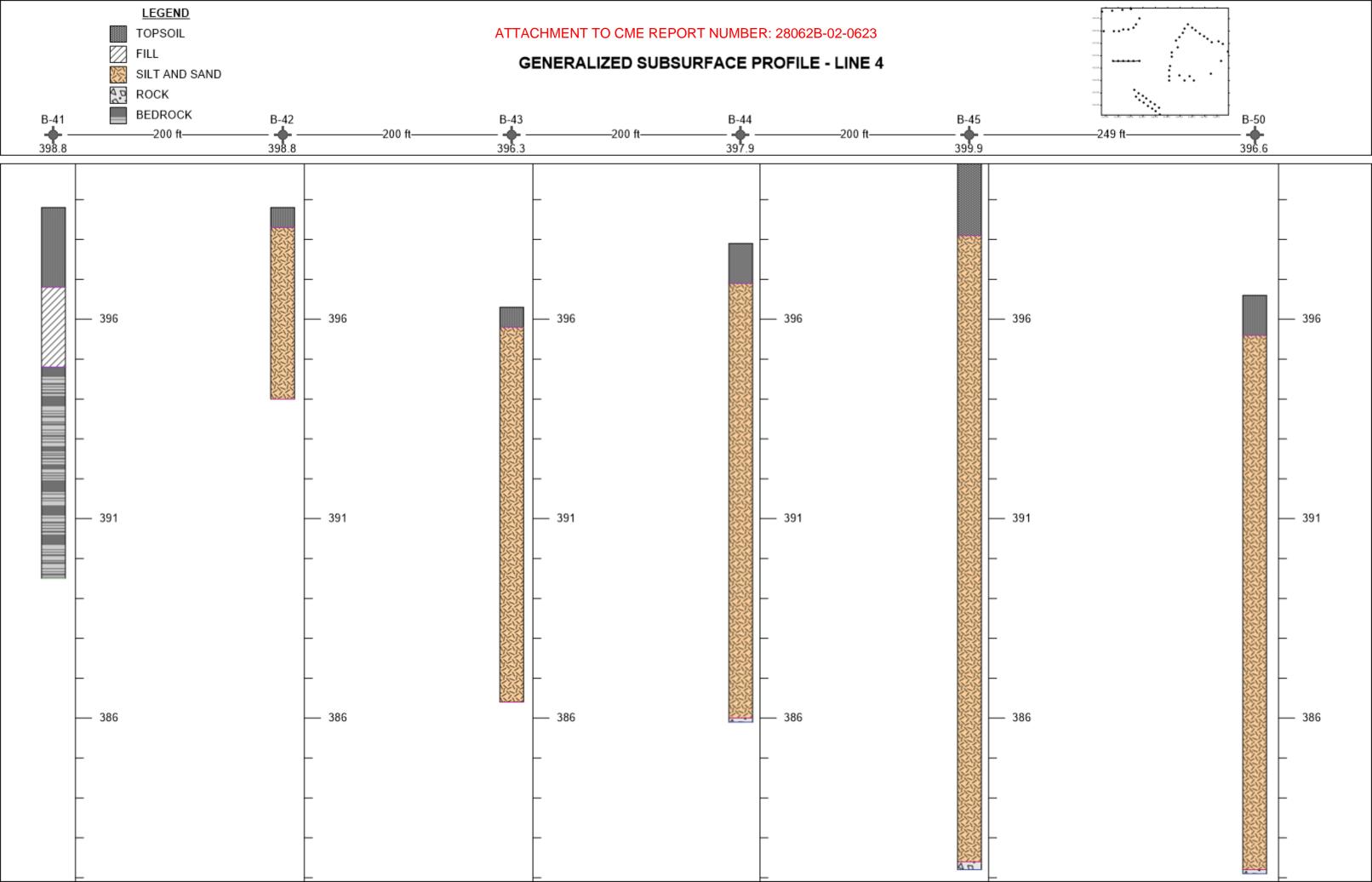
depths due to seasonal groundwater fluctuations. Therefore, constructing basements and/or below-grade parking structures will require temporary and permanent dewatering.

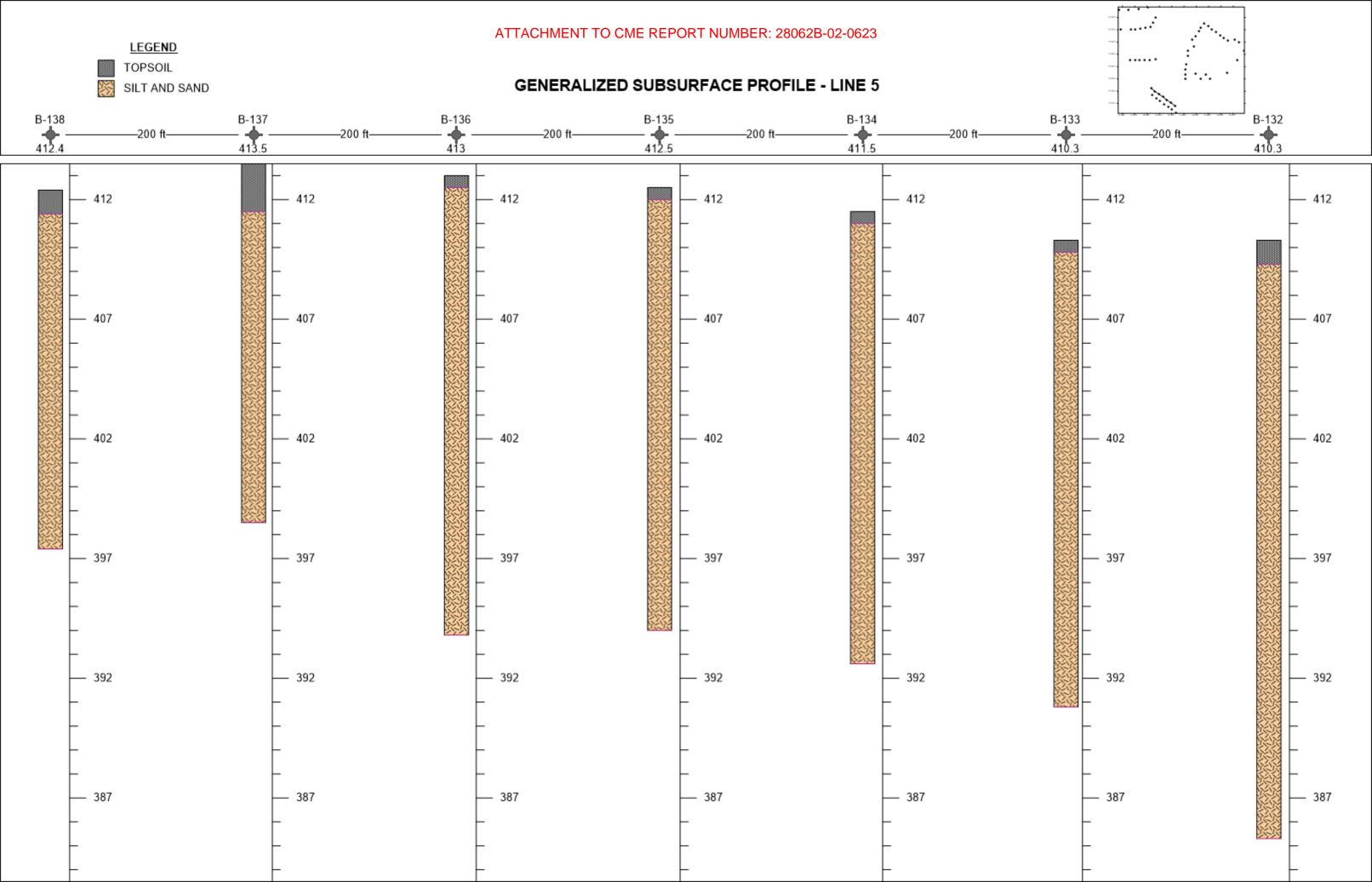

- **6. Unstable Grade:** The silty soils present at grade are sensitive to moisture and disturbance. These soils become unstable and lose integrity in the presence of water and construction traffic. During CME's fieldwork, the drill rigs got stuck in the soft, muddy soils at grade, several times. The ruts caused by the drill rig were over 18 inches deep, in areas. Undercuts and replacement with Granular Fill should be anticipated to stabilize failed or unstable grades, along with the use of geotextile and/or geogrid reinforcement. Construction haul-ways and low-ground pressure construction equipment will be required during site preparation to reduce the volume of unnecessary undercuts. Further, final pavement sections will likely consist of thicker than normal subbase course and asphalt, along with geotextile and geogrids to provide the required design life for pavement sections.
- **7. Weight of New Fill:** Significant and variable thicknesses of new Structural Fill will be required to raise grades to achieve the proposed finish grade of 400 feet. The existing grade near the northeast end of the site is at about elevation 385 feet. Up to about 15 feet of Structural Fill will be required to raise grades near this end of the site. The variable thicknesses of the Silt stratum and the Clay stratum, and the variability in the rate of compression/consolidation in these strata, combined with the variable thicknesses of new Structural Fill to be placed, complicate the geotechnical evaluation of this site from a foundation settlement, infrastructure settlement, and grade settlement standpoint. As discussed herein, filling the site to finish grade as soon as possible will give the underlying soils a longer period of time to compress and settle under this new weight, which will help minimize long term building, pavement and infrastructure settlement.
- **8. Foundation Options:** Based on the limited subsurface information available at this time and our understanding of the proposed construction, conventional shallow foundation and slab-on-grade construction may not be feasible for most, if not all, of the proposed buildings. Ground Improvement (such as Aggregate Piers or Rigid Inclusions) and/or Deep Foundations (Driven Piles or Drilled Piers) will likely be required to support the proposed buildings. Regardless of which foundation system is selected, the fab sites will need to be "pad ready" to accommodate the foundation construction. A successful early earthwork package will be paramount in the overall success of this project.
- **9. Second Phase Subsurface Exploration:** We understand that the site will not be released until sometime after August 15, 2023, for CME to mobilize for the second phase of the exploration (Phase 2). CME will need Site Plans, Grading Plans, Building Finish Floor Elevation, Underground Parking Elevation (if elected), Building Loading Information (column, wall, and slab loads), and settlement tolerances before said mobilization, so we can adjust and optimize the exploration program. CME anticipates that additional rock coring at select locations, additional undisturbed Shelby tube sampling in the Clay stratum, groundwater monitoring wells in the underground parking areas, downhole shear wave velocity testing (if requested by the vibration consultant), etc., will be required during said exploration. Once we receive the requested information, CME can provide a work scope for the required additional services.

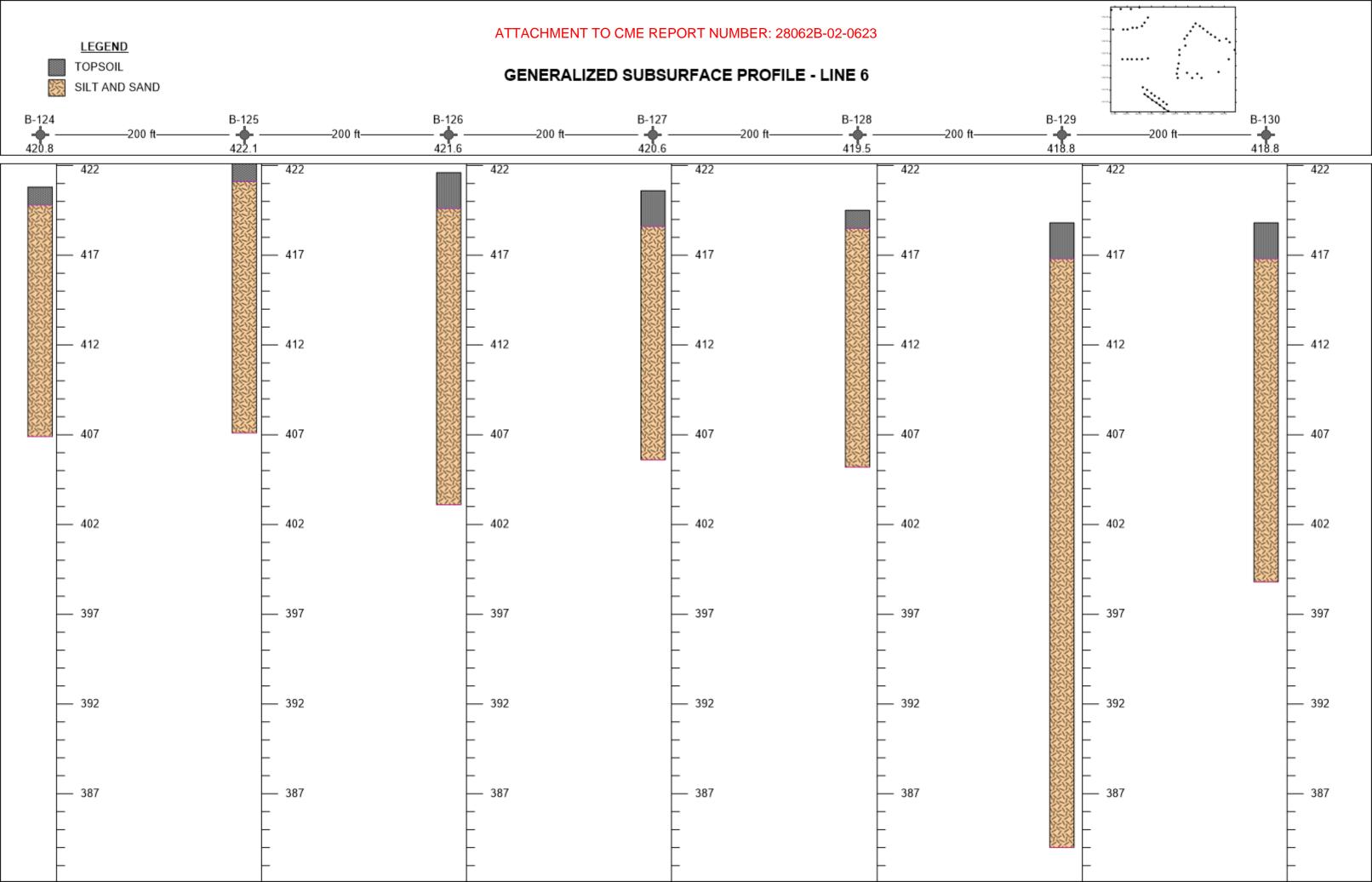

CME Report No.: 28062B-02-0623-R1 Page 4 of 4

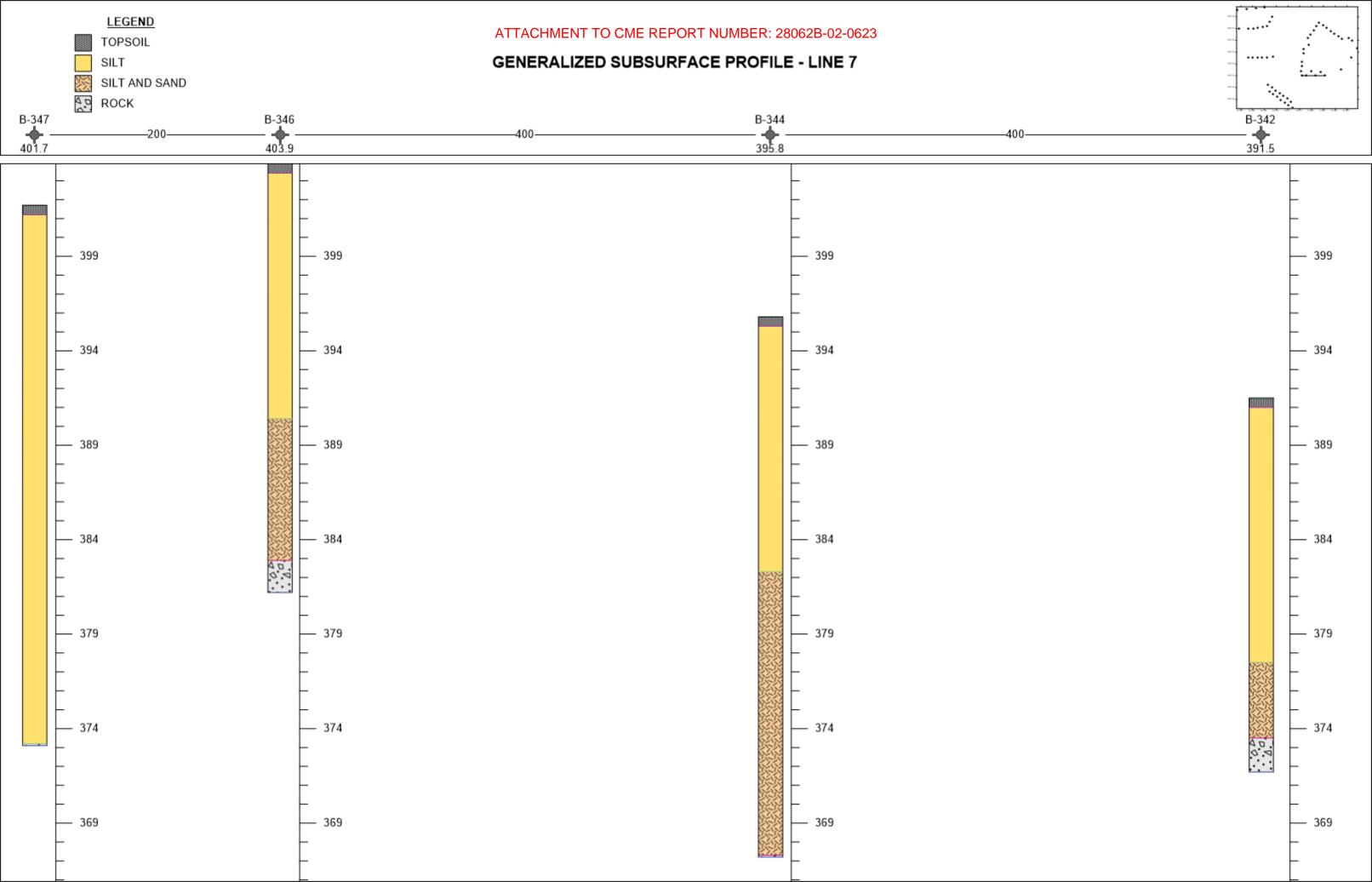


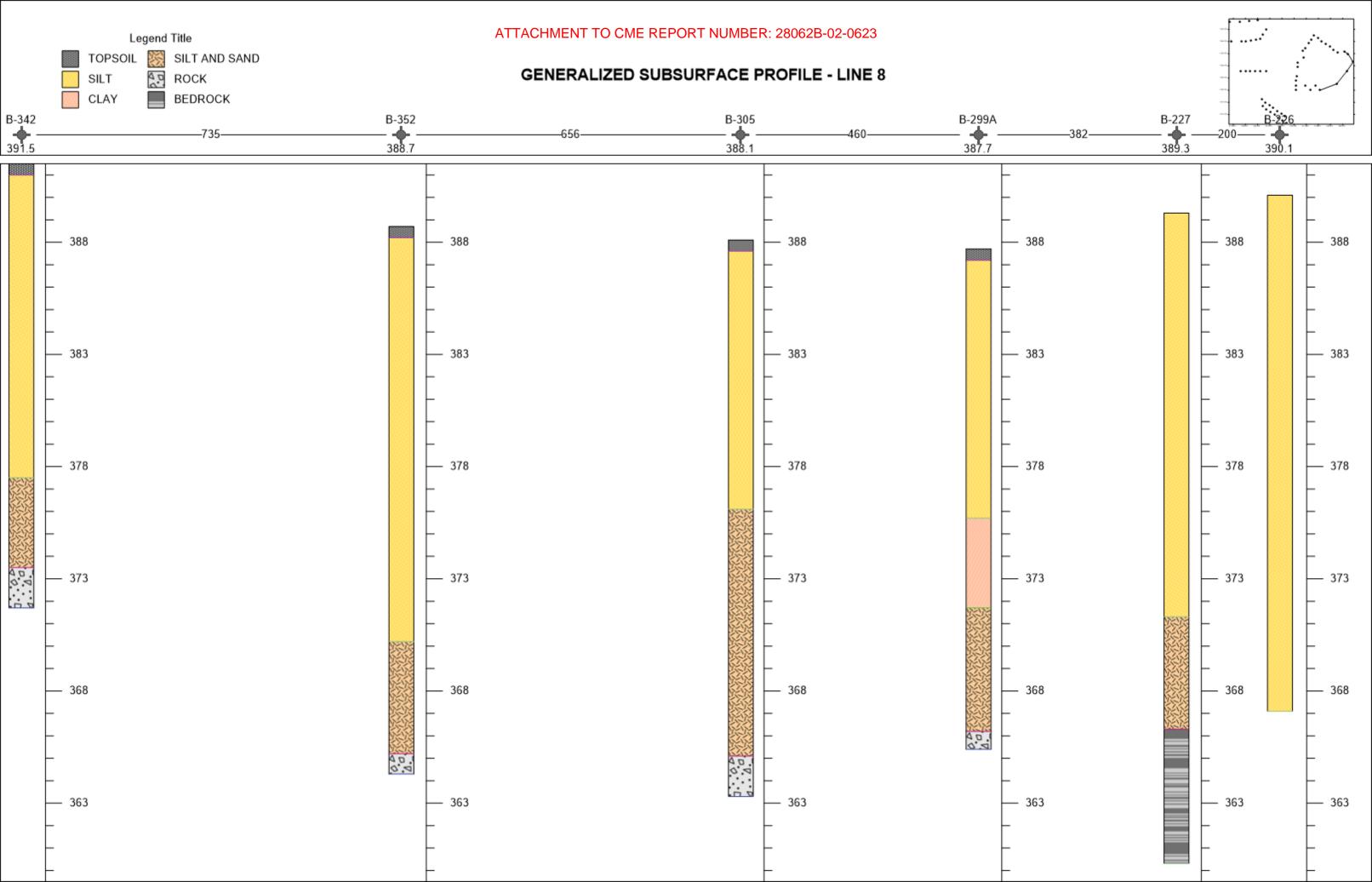

ATTACHMENTS:

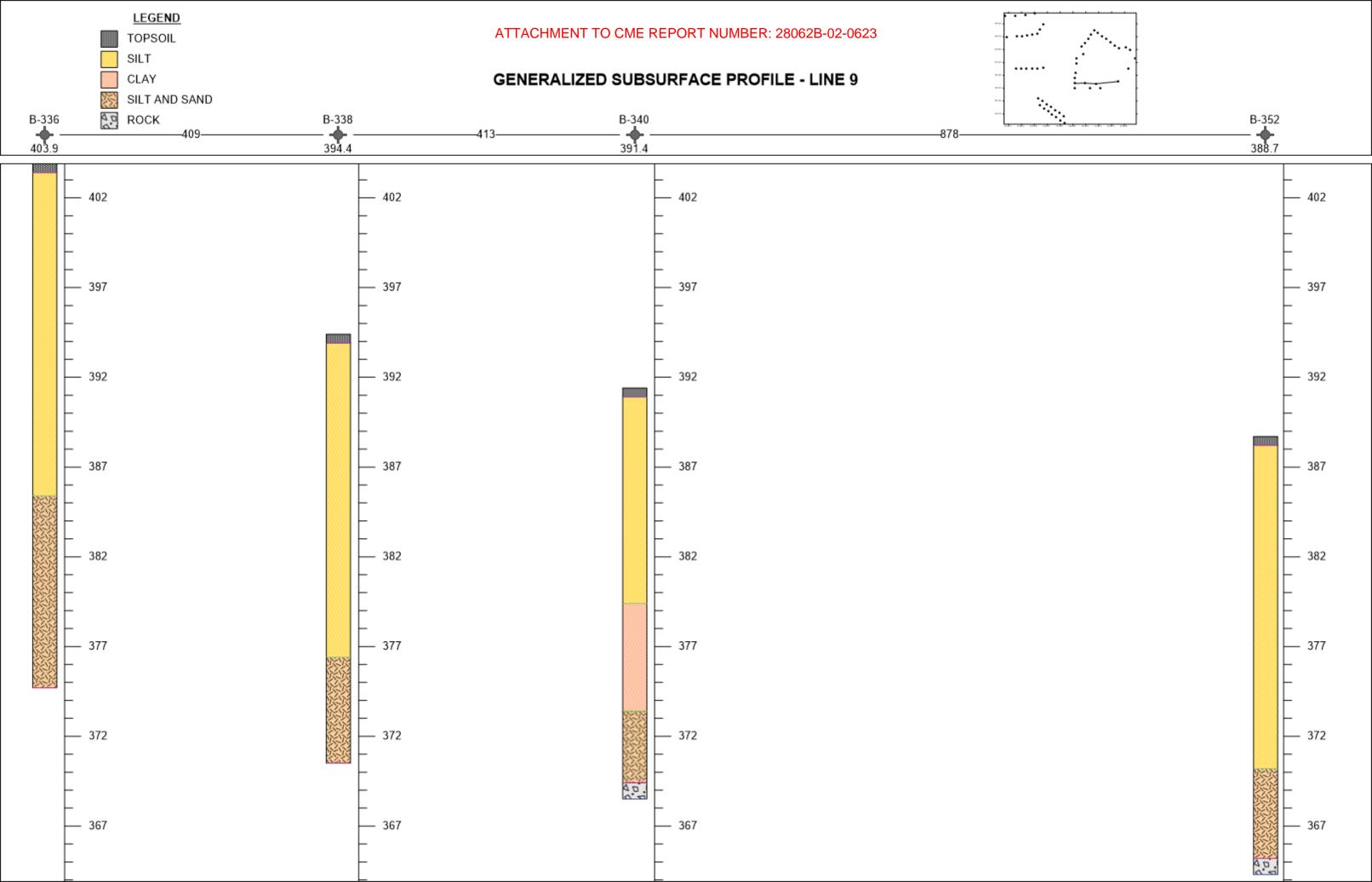

Phase 1 Exploration Location Map (1 page) Generalized Subsurface Profiles (11 pages)

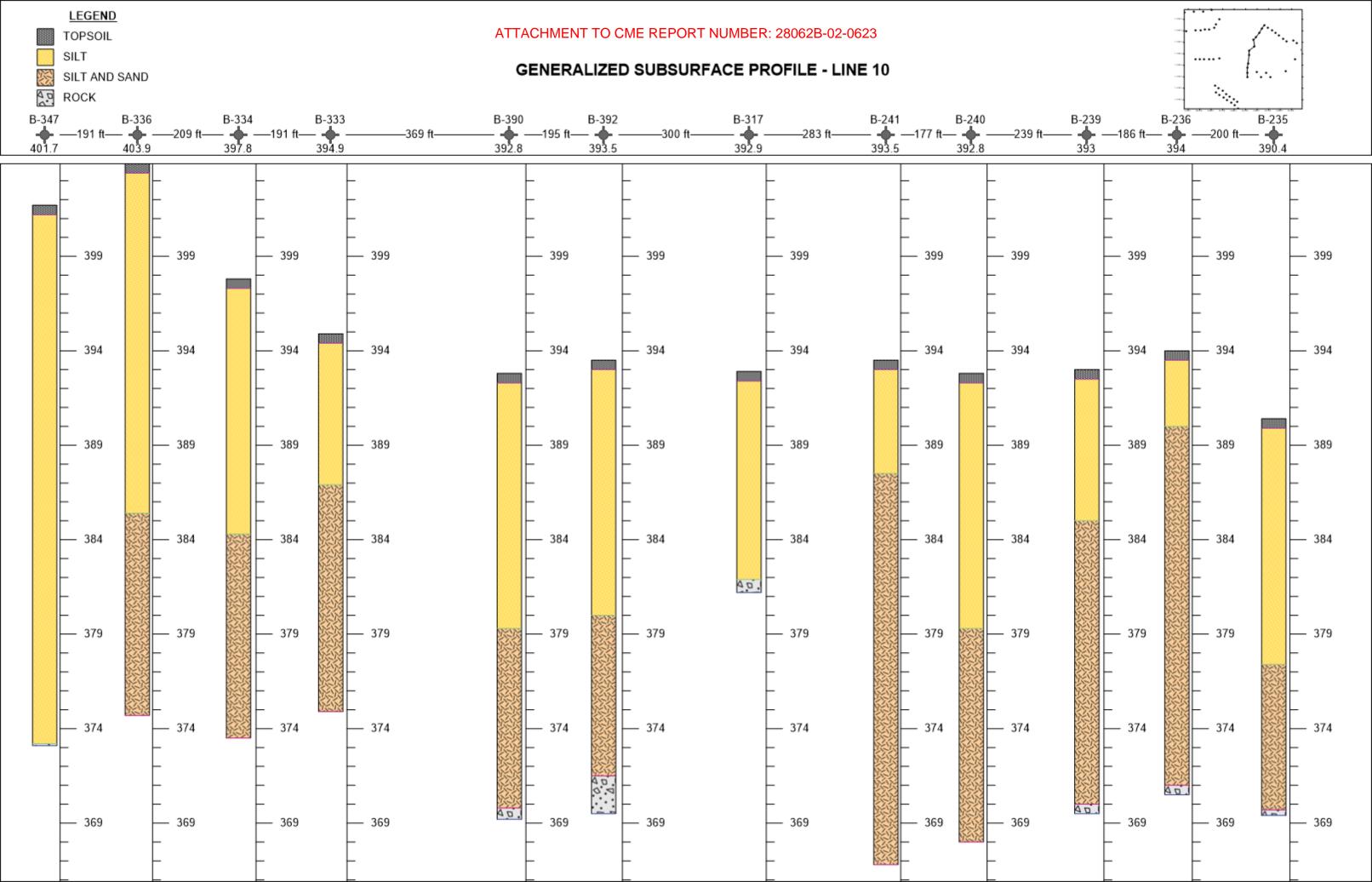


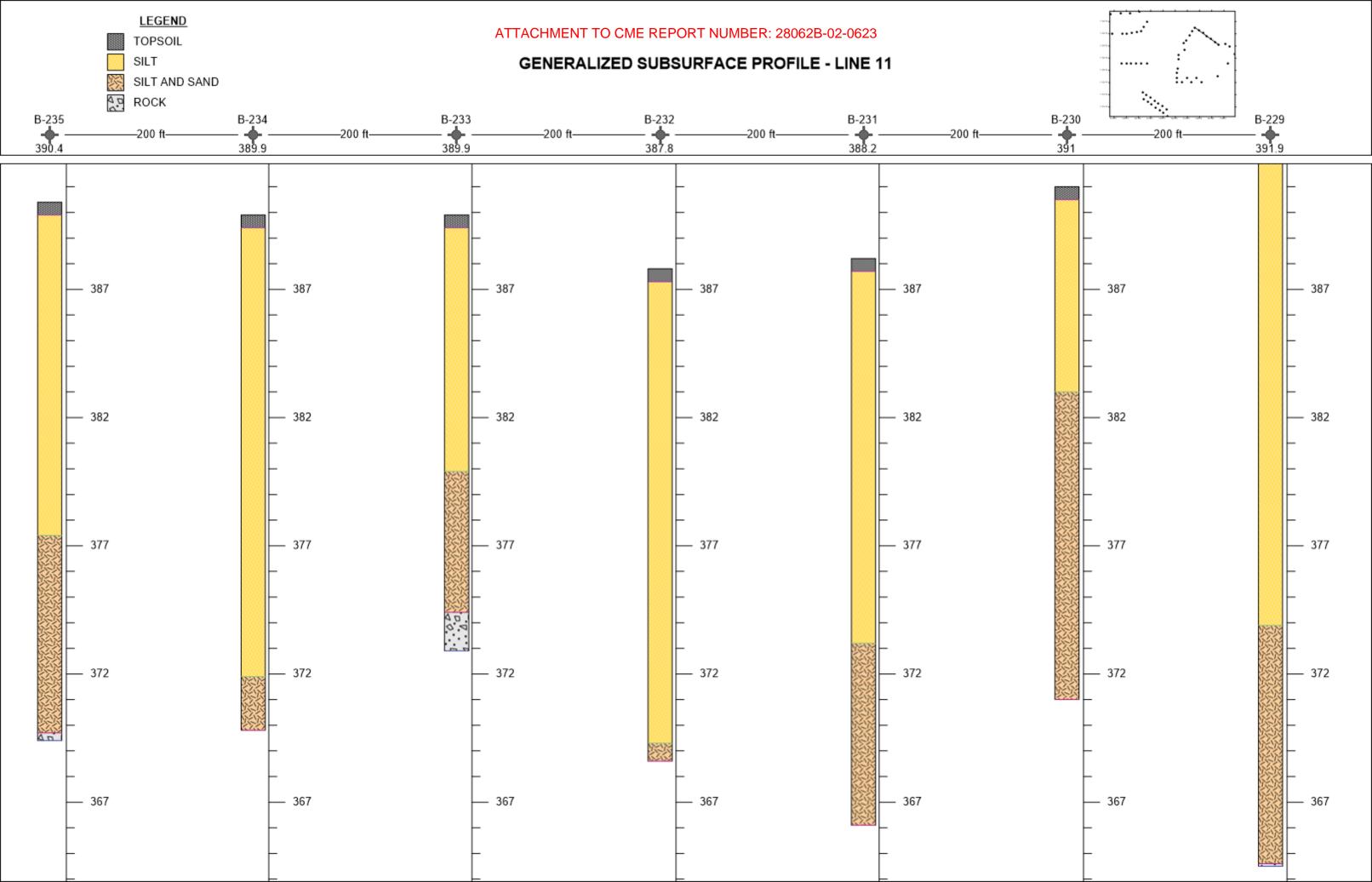












CME Report No. 28124B-01-1023

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

Transmittal

October 27, 2023

Ramboll (Client) 333 West Washington Street Syracuse, New York, 13202 Phone: 315.420.8439

Attn: Mr. Andy Philips, Senior Project Manager

Email: andy.philips@ramboll.com

Re: Test Pit Exploration East of Burnet Road

Clay, New York

CME Job No. 28124-05

Gentlepeople:

Attached you will find....

Number of Copies
1 Report Number Description
28124B-01-1023 Geotechnical Data Report

This report was emailed to Mr. Andy Philips, at andy.philips@ramboll.com on 10/27/2023.

Respectfully submitted, CME Associates, Inc.

Astitwa Sharma, EIT Staff Engineer

Holling.

AA.sa

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

October 27, 2023

Ramboll (Client) 333 West Washington Street Syracuse, New York, 13202 Phone: 315.420.8439

Attn: Mr. Andy Philips, Senior Project Manager

andy.philips@ramboll.com

Re: Geotechnical Data Report

Test Pit Exploration East of Burnet Road

Clay, New York

CME Report No. 28124B-01-1023

Page 1 of 2

1.0 INTRODUCTION

CME Associates, Inc. (CME) was retained by Ramboll (Client) to provide subsurface exploration and geotechnical services for the subject project. CME conducted a limited subsurface exploration at the subject project site in October 2023.

The Scope of Basic Services and this report have been provided pursuant to CME Proposal/Agreement No.: 05.7126, Addendum 3, dated 04/07/2023, and a Subsequent Change Order authorized by Client via a Purchase Order (Ramboll PO # 1950006347, dated 10/19/2023, Line Item 4).

This report provides a summary of exploration activities conducted at the subject project site.

2.0 EXPLORATION METHODOLOGY

2.1 Exploration Layout and Utility Clearance

The exploration locations were selected by the Client and staked by Thew Associates (Thew). Following the field stakeout, CME contacted UDig NY to clear public utilities at the exploration locations. Private utilities at the exploration locations were cleared by Thew. No utility conflicts were noted at the exploration locations.

The attached *CME Exploration Location Plan* depicts the approximate locations of the explorations. Elevation at grade at the exploration locations, along with Northing and Easting coordinates, was provided by Thew (See Table 1, attached).

2.3 Test Pits

A total of 10 Test Pits were excavated using a Link Belt Model LNK 27 excavator, equipped with a 24-inch-wide general-purpose bucket. The Test Pits were excavated and backfilled by a subcontractor to CME. The backfill consisted of excavated materials placed in 2 to 3 feet thick lifts, with each lift compacted using the excavator bucket making several hits. CME Engineer Astitwa Sharma, E.I.T. was on-site to observe the Test Pit excavation, take photographs and prepare Test Pit Logs. *Test Pit Logs*, labeled TP-1 through TP-10 and *Test Pit Photographs*, are attached to this Report.

A New York State Certified Woman-Owned Business Enterprise (WBE)

CME Report No.: 28124B-01-1023

Page 2 of 2

Soil samples were logged and visually classified in the field by Mr. Sharma. The visual soil and classifications were made using a modified Burmister Classification System, as practiced by CME and as generally described in the attached document entitled, *General Information & Key to the Test Boring Logs*.

3.0 STANDARD OF CARE

CME endeavored to conduct services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the industry currently practicing in the same locality and under similar conditions as this project. No warranty, either expressed or implied, is made or intended by CME's proposal, contract, and written and oral reports, all of which warranties are hereby expressly disclaimed. CME shall not be responsible for the acts or omissions of the Client, its contractors, agents, and consultants. CME may rely upon information supplied by Client, its contractors, agents, and consultants or information available from generally accepted reputable sources, without independent verification, and CME assumes no responsibility for the accuracy thereof.

4.0 CLOSING

CME's services have been provided according to the requirements of the referenced CME Proposal/Agreement. No other representations, expressed or implied, are intended or made with respect to the information provided herein, including but not limited to, its suitability for use by others.

Respectfully Submitted,

CME Associates, Inc.

HSt.

Reviewed by:

CME Associates, Inc.

ASL

Astitwa Sharma, E.I.T.

Staff Engineer

Astitwa Sharma, E.I.T. for

Anas N. Anasthas, P.E.

Senior Geotechnical Engineer

Attachment Listing:

Exploration Location Plan (1 of 1)
Table 1 (1 of 1)
Test Pit Logs (10 of 10)
Test Pit Photographs (10 of 10)
General Information & Key to Test Boring Logs (4 of 4)

ATTACHMENT TO CME REPORT NO. 28124B-01-1023

TABLE 1 - GPS COORDINATES AND ELEVATIONS

Point IT	Latitude	Longitude	Northing	Easting	Elevation	Boring ID
100001	100001 43.19257		1163564	937021.2	385.9	TP-1
100002	43.19097	-76.1444	1162985	937251.4	385.7	TP-2
100003	43.18958	-76.1458	1162475	936885.9	388.4	TP-3
100004	43.18621	-76.1464	1161246	936743.6	385.3	TP-4
100005	43.18523	-76.1451	1160889	937082.5	391.7	TP-5
100006	43.18244	-76.1417	1159876	937986.2	396.6	TP-6
100007	43.18144	-76.1396	1159518	938551.1	398.9	TP-7
100008	43.17986	-76.1422	1158938	937865.2	406.6	TP-8
100009	43.17836	-76.1452	1158387	937083.6	418.8	TP-9
100010	43.18076	-76.1459	1159260	936878	406.8	TP-10

					OTT	DCTIDEAC	r		MP 4
				orporate Drive		BSURFAC!		Test Pit ID	TP-1
				racuse, NY 13057		PLORATIO		Page No.	1 of 1
	Asso	ociates, Ind	Phone:	315-701-0522	TES	ST PIT LO	G	Report No.	28124B-01-1023
Project	Name:	Test Pit Expl	oration E	ast of Burnet Road, Clay	, New York			Date Started	10/17/23
Client:		Ramboll						Date Finished	10/17/23
Locatio	n:	See Explorat	ion Locat	ion Plan				Surface Elev.	385.9'
METH	O doi	F INVEST	IGATI	ON		GROUND	WATER O	BSERVATION	NS
Operato	r:	Daryl Sherm	an		Date	Time	Depth (Ft.)	Co	mment
nspecto		Astitwa Shar			10/17/2023	8:35	None Noted	See I	Remark 3
- Equipm	ent:	Link Belt Mo	odel LNK	27					
Гуре:		Toothed Buc	ket						
	Width:	24"							
				VISUAL CLA	ASSIFICATIO	N OF MAT	ERIAL		
Donth		Sample Depth	I						
Depth Scale	Sample	(Ft.)	Depth of Change	m - medium	and - 35 to 50% / s				
(Feet)	No.	From To	(Ft.)	f - fine	little - 10 to 20% /	trace - 0 to 10%			
0				Topsoil; Brown SIL	T. little CLAY, t	race fine SAN	D (moist, eas)	v digging)	
			1.0	- · F · · · · · · · · · · · · · · · · · · ·	-,		_ (,)888)	
1				Brown SILT, some C	CLAY, trace fine	SAND (moist	. moderate di	gging)	
_				Boulder noted during		(,	566/	
2					,				
_			3.0						
3				Brown mottled SILT	some CLAY (n	noist, moderate	e digging)		
				210 1111 1110 11110 2121	, 501110 02111 (11		· 41881118)		
4									
5									
			6.0						
6				Grey/Brown SILT ar	nd CLAY, trace r	nf SAND (wet	t, moderate di	gging)	
					,	`	,		
7									
8									
9									
-									
10				Bottom of Test Pit @	2 10'				
_ 0					-				
11									
12									
13									
13									
14									
17									
15									
13									
16									

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

			6035 C	orporate Drive	SU	BSURFAC	E	Test Pit ID	TP-2
		IVIC	East Sy	racuse, NY 13057	EXP	LORATIO	N	Page No.	1 of 1
	A sso	ciates, In	C. Phone:	315-701-0522	TES	ST PIT LO	G	Report No.	28124B-01-1023
Project 1	Name:	Test Pit Exp	oloration Ea	ast of Burnet Road, Clay				Date Started	10/17/23
Client:		Ramboll		, ,	•			Date Finished	10/17/23
Location	n:	See Explora	tion Locati	ion Plan				Surface Elev.	385.7'
METF	IOD O	F INVES				GROUND	WATER O	BSERVATIO	
Operato		Daryl Shern			Date	Time	Depth (Ft.)		omment
Inspecto		Astitwa Sha			10/17/2023	8:57	None Noted		Remark 3
Equipm		Link Belt M		27					
Гуре:		Toothed Bu	cket						
Bucket \	Width:	24"							
				VISUAL CLA	SSIFICATIO	N OF MAT	ERIAL	<u>!</u>	
Depth		Sample Dept	h	c - coarse					
Scale	Sample	(Ft.)	Depth of Change	m - medium	and - 35 to 50% / se				
(Feet)	No.	From To		f - fine	little - 10 to 20% /	trace - 0 to 10%			
0			0.5	Topsoil; Grey/Black	SILT, trace fine	SAND, trace	CLAY, trace	ROOTS (moist,	easy digging)
				Brown SILT, little C					
1									
2									
			3.0						
3				Brown mottled SILT	and CLAY, trac	e fine SAND	(moist, mode	rate digging)	
4									
5									
6									
			7.0						
7				Brown mottled SILT	, some CLAY, tr	ace mf SAND	(wet, modera	ate digging)	
8									
9									
			10.0	ļ-—					
10				Grey CLAY and SIL		ging)			
				Bottom of Test Pit @	10.5'				
11									
12									
1.2									
13				I					
14									
14 15									

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

		N A		6035 Co	orporate Drive	SU	BSURFACI	E	Test Pit ID	TP-3
		IVI			racuse, NY 13057	EXP	LORATIO	N	Page No.	1 of 1
	Asso	ciates,	Inc.		315-701-0522		ST PIT LO		Report No.	28124B-01-1023
Project	Name:	Test Pit F			ast of Burnet Road, Clay		<u> </u>	<u> </u>	Date Started	10/17/23
Client:	ivaine.	Ramboll	ZAPIOI	ation La	ast of Burnet Road, Clay	, New Tolk			Date Finished	10/17/23
Locatio	n•	See Explo	oratio	n I ocati	on Dlan				Surface Elev.	388.4'
		F INVE					CDOLIND	WATED	BSERVATION	
					UN	D (
)perate		Daryl She				Date	Time	Depth (Ft.)		mment
nspect		Astitwa S				10/17/2023	9:21	11	See I	Remark 3
Equipm -	ent:	Link Belt			27					
Гуре:		Toothed 1	Bucke	et						
Bucket	Width:	24"								
					VISUAL CLA	SSIFICATIO	N OF MAT	ERIAL		
Depth Scale	Sample	Sample D (Ft.)		Depth of	c - coarse m - medium	and - 35 to 50% / s				
(Feet)	No.		То	Change (Ft.)	f - fine	little - 10 to 20% /	trace - 0 to 10%			
0	110.	Tiom	10	(11.)	Brown SILT, little m	f SAND trace C	I AV traca Di	OOTS (moist	oney diagina)	
U				1.0	DIOWII SILI, IIIIIC III	i sand, hace C	LAI, HACE KI	oo is (iiioist	, casy diggilig)	
1			-		Brown SILT, little C	LAY, trace fine !	SAND (moist	easy digging)	
•					2.5 5.2.1 , 11.110 0.		(1110131,	tabj aigging	,	
2										
_										
3										
J				4.0						
4			ŀ		Grey/Brown mottled	SILT some CL	AV trace fine	SAND (mois	t easy to moderat	re diagina)
7					Grey/Brown mothed	SIL1, some CL1	11, trace fine	Di II (IIIOI3	i, easy to moderat	ic digging)
5										
3										
6										
U										
7										
1				8.0						
8			[.	0.0	Reddish Brown SILT	and CLAV (ma	ist moderate	diaging)		
o					Keduisii diowii SIL I	and CLAT (III0	nsi, moderate (uiggiiig)		
Ω										
9				10.0						
10].	10.0	Cross CI AV and CIT	T (
10					Grey CLAY and SIL	i (wet, easy digg	ging)			
1.1										
11					D // CT : D: 0	11.5				
1.2					Bottom of Test Pit @	11.5				
12										
13										
14										
		1			1					
15										
15										

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

		N/II	6035 Co	orporate Drive	SUI	BSURFAC	E	Test Pit ID	TP-4	
		IVI		racuse, NY 13057	EXP	LORATIO	N	Page No.	1 of 1	
	Asso	ociates, I	nc. Phone: 3	315-701-0522	TES	ST PIT LO	${f G}$	Report No.	28124B-01-1023	
Project	Name:	Test Pit Ex	xploration Ea	ast of Burnet Road, Clay				Date Started	10/17/23	
Client:		Ramboll						Date Finished	10/17/23	
Location	n:	See Explo	ration Locati	on Plan				Surface Elev.	385.3'	
METH	O dol	F INVE	STIGATI	ON		GROUNDWATER OBSERVATIONS				
Operato	r:	Daryl She	rman		Date	Time	Depth (Ft.)	Co	mment	
Inspecto	or:	Astitwa Sh	harma, EIT		10/17/2023	9:43	9	See 1	Remark 3	
Equipm	ent:	Link Belt	Model LNK	27						
Type:		Toothed B	Bucket							
Bucket '	Width:	24"								
				VISUAL CLA	SSIFICATIO	N OF MAT	ERIAL			
Depth		Sample De	epth Depth of	c - coarse	and - 35 to 50% / se	omo 20 to 25%				
Scale	Sample	(Ft.)	Change	m - medium	little - 10 to 20% / so					
(Feet)	No.	From 7	Γο (Ft.)	f - fine	nttle - 10 to 2070 /	trace - 0 to 10%				
0				Topsoil; Grey/Black	SILT, little mf S	SAND, trace C	LAY, trace R	OOTS (moist, ea	sy digging)	
1										
ļ			2.0							
2				Grey/Brown mottled	SILT, some CLA	AY, trace fine	SAND (mois	t, moderate diggi	ng)	
ļ										
3										
4										
_			5.0							
5				Grey CLAY and SIL	T (wet, easy digg	ging)				
_										
6										
_										
7										
0										
8										
0										
9										
10										
10										
11		1								
11				Rottom of Toot Dit 6	11'					
				Bottom of Test Pit @	11'					
12				Bottom of Test Pit @	11'					
12				Bottom of Test Pit @	11'					
				Bottom of Test Pit @) 11'					
12 13				Bottom of Test Pit @	11'					
13				Bottom of Test Pit @	2 11'					
				Bottom of Test Pit @	11'					
13 14				Bottom of Test Pit @	11'					
13				Bottom of Test Pit @	211'					

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

			6035 C	Corporate Drive	SU	BSURFAC	E	Test Pit ID	TP-5
		IVI	East Sy	racuse, NY 13057	EXP	LORATIO	N	Page No.	1 of 1
	A sso	ociates, I	Inc. Phone:	315-701-0522	TES	ST PIT LO	G	Report No.	28124B-01-1023
Project	Name:	Test Pit E	Exploration E	ast of Burnet Road, Clay			_	Date Started	10/17/23
Client:		Ramboll	•	•				Date Finished	10/17/23
Locatio	n:	See Explo	oration Locat	ion Plan				Surface Elev.	391.7'
METI	O doi	F INVE	STIGATI	ON		GROUND	WATER O	BSERVATION	NS
Operato	r:	Daryl She	erman		Date	Time	Depth (Ft.)	Co	mment
Inspecto	r:	Astitwa S	harma, EIT		10/17/2023	10:10	11	See 1	Remark 3
Equipm	ent:	Link Belt	Model LNK	. 27					
Type:		Toothed I	Bucket						
Bucket	Width:	24"							
				VISUAL CLA	SSIFICATIO	N OF MAT	ERIAL		
Depth		Sample De	epth Depth of	c - coarse	1 25 / 500/ /	20 / 250/			
Scale	Sample	(Ft.)	Change	m - medium	and - 35 to 50% / s little - 10 to 20% /				
(Feet)	No.	From	To (Ft.)	f - fine	Ittle - 10 to 20% /	11ace - 0 to 10%			
0				Topsoil; Dark Brown	n SILT, little CL	AY, trace fine	SAND, trace	ROOTS (moist,	easy digging)
1									
			2.0						
2				Brown SILT, little C	LAY, trace fine	SAND (moist,	, easy digging)	
3									
			4.0	<u> </u>					
4				Brown mottled SILT	, some CLAY, tr	race fine SAN	D (moist, mod	derate digging)	
5									
6									
7									
8									
9			40 -						
			10.0	 	,				
10				Grey CLAY and SIL	T (wet, easy digg	ging)			
1.1				D (T . D) ?	. 1.11				
11				Bottom of Test Pit @	2 11'				
10									
12									
12									
13									
1.4									
14									
1.5									
15									
1.									
16				1					

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

			6035 Co	orporate Drive	SU	BSURFAC	E	Test Pit ID	TP-6
		IVI	East Sy	racuse, NY 13057	EXP	LORATIO	N	Page No.	1 of 1
	Asso	ociates, I	nc. Phone:	315-701-0522	TES	ST PIT LO	\mathbf{G}	Report No.	28124B-01-1023
Project	Name:	Test Pit E	Exploration Ea	ast of Burnet Road, Clay				Date Started	10/17/23
Client:		Ramboll	•	•				Date Finished	10/17/23
Locatio	n:	See Explo	oration Locati	ion Plan				Surface Elev.	396.6'
METH	HOD O	F INVE	STIGATI	ON		GROUND	WATER O	BSERVATION	NS
Operato	or:	Daryl She	erman		Date	Time	Depth (Ft.)	Co	mment
Inspecto	or:	Astitwa Sl	harma, EIT		10/17/2023	11:07	None Noted	See 1	Remark 3
Equipm	ent:	Link Belt	Model LNK	27					
Type:		Toothed E	Bucket						
Bucket	Width:	24"							
				VISUAL CLA	SSIFICATIO	N OF MAT	ERIAL		
Depth		Sample De	epth Depth of	c - coarse	and - 35 to 50% / s	ome - 20 to 35%			
Scale	Sample	(Ft.)	Change	m - medium	little - 10 to 20% /				
(Feet)	No.	From 7	To (Ft.)	f - fine					
0			0.5	Topsoil; Dark Brown					easy digging)
				Brown SILT, little m	f SAND, trace C	LAY (moist, i	moderate digg	ging)	
1			2.0						
_			2.0	D	CI AV	CD AV		1 - 1 - 1 - 1	
2				Brown mottled SILT	, some CLAY, tr	ace mr GRA v	'EL (moist, m	oderate digging)	
2									
3									
4									
-			5.0						
5			- 3.0 -	Brown/Reddish SILT	and CLAY trac	ce fine SAND	(wet_modera	te digging)	
				Brown Reddish Sizi	una CEIII, tra	se ime si i (B	(wet, modera	te dissins)	
6									
7									
8									
9			9.5	 					
				Grey CLAY and SIL	T (wet, easy digg	ging)			_
10									
				Bottom of Test Pit @	10.5'				
11									
12									
,_									
13									
,,									
14									
1.5									
15									
16									
16				ĺ					

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

		RAF	6035 Cd	orporate Drive	SUI	BSURFAC	E	Test Pit ID	TP-7
		IVIL	East Syr	racuse, NY 13057	EXP	LORATIO)N	Page No.	1 of 1
	Asso	ociates, li	nc. Phone: 3	315-701-0522	TES	ST PIT LO	G	Report No.	28124B-01-1023
Project 1	Name:	Test Pit Ex	xploration Ea	ast of Burnet Road, Clay			_	Date Started	10/17/23
Client:		Ramboll	1	, ,	•			Date Finished	10/17/23
Location	1:		ration Locati	on Plan				Surface Elev.	398.9'
			STIGATIO			GROUND	WATER O	BSERVATIO	
Operato		Daryl Sher			Date	Time	Depth (Ft.)		mment
inspecto		Astitwa Sh			10/17/2023	11:32	None Noted		Remark 3
- Equipm			Model LNK	27					
Гуре:		Toothed B	Bucket						
Bucket \	Width:	24"							
				VISUAL CLA	SSIFICATIO	N OF MAT	ERIAL		
Depth		Sample De	epth	c - coarse					
Scale	Sample	(Ft.)	Depth of Change	m - medium	and - 35 to 50% / so				
(Feet)	No.		Γο (Ft.)	f - fine	little - 10 to 20% /	trace - 0 to 10%			
0				Topsoil; Dark Brown	n SILT, little CL	AY, trace fine	SAND, trace	ROOTS (moist,	easy digging)
			1.0	• /	,	,	,	, ,	. 22 27
1				Brown mottled SILT	and CLAY, little	e mf SAND (r	noist, modera	te digging)	
					,	`	ŕ	<i>CC C</i> ⁷	
2									
3									
			4.0						
4				Brown mottled SILT	and CLAY, little	e mf SAND (r	noist, modera	te digging)	
					,		,	66 67	
5									
6									
7									
8									
7									
9									
-			10.0						
10				Grey CLAY and SIL	T (wet, moderate	e digging)			
-				.,	, ,	66 -6/			
11									
-									
12				Bottom of Test Pit @	12'				
					- -				
13									
10									
14									
1.4									
15									
13									
ŀ									

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

			6035 C	orporate Drive	SU	BSURFAC	E	Test Pit ID	TP-8
		IVIC	East Sy	racuse, NY 13057	EXP	PLORATIO	N	Page No.	1 of 1
	Ass	ociates, Ind	Phone:	315-701-0522	TES	ST PIT LO	G	Report No.	28124B-01-1023
Project	Name:	Test Pit Exp	loration E	ast of Burnet Road, Clay				Date Started	10/17/23
Client:		Ramboll		, <u>,</u>				Date Finished	10/17/23
Locatio	n:	See Explorat	tion Locat	ion Plan				Surface Elev.	406.6'
		F INVEST				GROUND	WATER O	BSERVATIO	
Operato		Daryl Sherm			Date	Time	Depth (Ft.)		omment
nspecto		Astitwa Shar			10/17/2023	12:00	None Noted		Remark 3
Equipm		Link Belt M		27					
ype:		Toothed Bud	cket						
	Width:	24"							
				VISUAL CLA	SSIFICATIO	N OF MAT	ERIAL		
Depth		Sample Deptl	h Depth of	c - coarse	1 25 . 500/ /	20 . 250/			
Scale	Sample	(Ft.)	Change	m - medium	and - 35 to 50% / s little - 10 to 20% /				
(Feet)	No.	From To	(Ft.)	f - fine	ntile - 10 to 20% /	trace - 0 to 10%			
0				Topsoil; Grey/Brown	n SILT, little fine	e SAND, trace	ROOTS (mo	ist, easy digging))
			1.0						
1				Brown SILT, trace fi	ne SAND, trace	CLAY (moist	, easy digging)	
2									
			3.0						
3				Brown mottled SILT	, some CLAY, tr	ace fine SAN	D (moist, mod	lerate digging)	
4									
5									
6									
7									
8				1					
			9.0	<u> </u>				. 	
9				Grey CLAY and SIL	T, trace fine SA	ND (wet, mod	erate digging)	 	
10									
				Bottom of Test Pit @	10.5'				
11									
				1					
12									
13									
14									
15				1					
16									

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

			6035 C	orporate Drive	SUI	BSURFACI	E	Test Pit ID	TP-9
		IVIC	East Sy	racuse, NY 13057	EXP	LORATIO	N	Page No.	1 of 1
	Asso	ociates, Inc.	Phone:	315-701-0522	TES	T PIT LO	G	Report No.	28124B-01-1023
Project	Name:	Test Pit Explo	oration E	ast of Burnet Road, Clay				Date Started	10/17/23
Client:		Ramboll						Date Finished	10/17/23
Locatio	n:	See Exploration	on Locati	ion Plan				Surface Elev.	418.8'
		F INVEST				GROUND	WATER O	BSERVATIO	
Operat		Daryl Sherma			Date	Time	Depth (Ft.)		omment
nspect		Astitwa Sharr			10/17/2023	12:24	None Noted		Remark 3
Equipn		Link Belt Mo		27	10,17,2020	12.2.	Trone Troted	500	
Type:		Toothed Buck		_,					
	Width:	24"							
	***************************************			VISUAL CLA	ASSIFICATIO	N OF MAT	ERIAL		
Depth	1	Sample Depth	Ι						
Scale	Sample	(Ft.)	Depth of Change	m - medium	and - 35 to 50% / so				
(Feet)	No.	From To	(Ft.)	f - fine	little - 10 to 20% /	trace - 0 to 10%			
0	1			Topsoil; Dark Brown	n SILT, trace fine	e SAND. trace	ROOTS (mo	ist, easy digging)
			1.0		,	,,	(, J = 666,	
1				Brown SILT, trace ci	mf SAND (moist	. easy digging	<u> </u>		
			2.0		(,,8	,		
2				Brown SILT and cmf	f SAND, some G	RAVEL, some	e COBBLES	(moist, medium t	o hard digging)
					, , , , , , , , , , , , , , , , , , , ,	, , , , ,		, , , , , , , , , , , , , , , , , , , ,	
3									
4									
5									
			6.0						
6				Brown cmf SAND ar	nd cmf GRAVEL	, little SILT (1	· - · - · - · - · - · - · · · · · · · ·		
							moist, hard di	gging)	
7						,	moist, hard di	gging)	
						,	moist, hard di	gging)	
8	1					,	moist, hard di	gging)	
~							moist, hard di	gging)	
			9.0			,	moist, hard di	gging)	
9			9.0	Grey cmf SAND and	I SILT, some cmf				
9			9.0	Grey cmf SAND and Bottom of Test Pit @					ill
			9.0	Grey cmf SAND and Bottom of Test Pit @					iii
9 10			9.0						ill
10			9.0						ill
			9.0						ill
10 11			9.0						ill
10			9.0						ill
10 11 12			9.0						iii
10 11			9.0						iiī
10 11 12 13			9.0						ill
10 11 12			9.0						ill
10 11 12 13 14			9.0						ill
10 11 12 13			9.0						ill

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

		R/F	6035 C	orporate Drive	SU	BSURFAC	E	Test Pit ID	TP-10
		IVIC		racuse, NY 13057	EXP	LORATIO	N	Page No.	1 of 1
	Asso	ciates, Inc.	-	315-701-0522	TES	ST PIT LO	G	Report No.	28124B-01-1023
Project	Name	Test Pit Explo		ast of Burnet Road, Clay	,	of the Eo	<u> </u>	Date Started	10/17/23
Client:	vanic.	Ramboll	nation La	ist of Burnet Road, Clay	y, New Tork			Date Finished	10/17/23
Location	n.	See Exploration	on Locati	on Dlan				Surface Elev.	406.8'
						CDOLIND	WATED		
		OF INVESTIGATION GROUNDWATER							
Operato		Daryl Sherma			Date	Time	Depth (Ft.)		mment
nspecto		Astitwa Sharn			10/17/2023	10:43	None Noted	See I	Remark 3
Equipm	ent:	Link Belt Mo		27					
Гуре:		Toothed Bucket							
Bucket '	Width:	24"							
				VISUAL CLA	ASSIFICATIO	N OF MAT	ERIAL		
Depth		Sample Depth	Depth of	c - coarse	and - 35 to 50% / s	ome - 20 to 35%			
Scale	Sample	(Ft.)	Change	m - medium	little - 10 to 20% /				
(Feet)	No.	From To	(Ft.)	f - fine	10 10 20 70 7	0 10 10 70			
0			0.5	Topsoil; Dark Brow	n SILT, little CL	AY, trace RO	OTS (moist, e	asy digging)	
				Brown mottled SILT	, little CLAY, tra	ace fine SAND	(moist, easy	digging)	
1									
2									
2									
2									
3									
			5.0						
3			_ 5.0 _	Brown/Reddish SII 1	Γ some cmf GR /	AVEL little cr	of SAND litt	e CORRI ES (m	oist hard digging)
3			5.0	Brown/Reddish SILT	Γ, some cmf GRA	AVEL, little cr	nf SAND, litt	le COBBLES (me	oist, hard digging)
3 4 5			5.0	Brown/Reddish SILT	Γ , some cmf GRA	AVEL, little cr	nf SAND, litt	le COBBLES (me	oist, hard digging)
3			_ 5.0 _	Brown/Reddish SILT	Γ, some cmf GRA	AVEL, little cr	nf SAND, litt	le COBBLES (m	oist, hard digging)
3 4 5 6			5.0	Brown/Reddish SIL7	Γ, some cmf GRA	AVEL, little cr	nf SAND, litt	le COBBLES (m	oist, hard digging)
3 4 5			5.0	Brown/Reddish SILT	Γ, some cmf GRA	AVEL, little cr	nf SAND, litt	le COBBLES (m	oist, hard digging)
34567			5.0	Brown/Reddish SILT	Γ, some cmf GRA	AVEL, little cr	nf SAND, litt	le COBBLES (m	oist, hard digging)
3 4 5 6				Brown/Reddish SILT	Γ, some cmf GRA	AVEL, little cr	nf SAND, litt	le COBBLES (m	oist, hard digging)
3 4 5 6 7 8			<u>5.0</u>						
34567				Grey SILT, some cm					
3 4 5 6 7 8				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8				Grey SILT, some cm	nf SAND, little cr				
3 4 5 6 7 8 9				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10 11				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10 11				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10 11 12 13				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10 11				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10 11 12 13				Grey SILT, some cm Possible Till	nf SAND, little cr				
3 4 5 6 7 8 9 10 11 12 13				Grey SILT, some cm Possible Till	nf SAND, little cr				

- 1. See Test Pit Photographs, attached.
- 2. Test Pit excavated and backfilled by a subcontractor to CME, utilizing a Link Belt Model LNK 27 excavator, equipped with a 24" wide bucket with teeth.
- 3. The Clayey Silt soils exhibit low permeability, and groundwater movement through this stratum is slow. Groundwater did not collect and accumulate in the test pit duting the short time the test pit was left open. Wet and/or grey soils were noted, which may be indicative of soils present below groundwater.

Figure 1: Test Pit TP-1

Figure 2: Materials Excavated from TP-1

Figure 3: Test Pit TP-2

Figure 4: Materials Excavated from TP-2

Figure 5: Test Pit TP-3

Figure 6: Materials Excavated from TP-3

Figure 7: Test Pit TP-4

Figure 8: Materials Excavated from TP-4

Figure 9: Test Pit TP-5

Figure 10: Materials Excavated from TP-5

Figure 11: Test Pit TP-6

Figure 12: Materials Excavated from TP-6

Figure 13: Test Pit TP-7

Figure 14: Materials Excavated from TP-7

Figure 15: Test Pit TP-8

Figure 16: Materials Excavated from TP-8

Figure 17: Test Pit TP-9

Figure 18: Materials Excavated from TP-9

Figure 19: Test Pit TP-10

Figure 20: Materials Excavated from TP-10

GENERAL INFORMATION & KEY TO TEST BORING LOGS

The **Subsurface Exploration** – **Test Boring Logs** produced **by CME Associates, Inc.** (CME) present observations and mechanical data collected by the CME Drill Crew while at the site, supplemented, at times, by classification of the materials removed from the borings determined through visual identification by technicians in the laboratory. It is cautioned that the materials removed from the borings represent only a fraction of the total volume of the deposits at the site and may not necessarily be representative of the subsurface conditions between adjacent borings or between the sampled intervals. The data presented on the Exploration Logs together with the recovered samples will provide a basis for evaluating the character of the subsurface conditions relative to the proposed construction. The evaluation must consider all the recorded details and their significance relative to each other. Often, analyses of standard boring data indicate the need for additional testing and sampling procedures to more accurately evaluate the subsurface conditions. Any evaluations of the contents of CME's report and the recovered samples must be performed by Licensed Professionals having experience in Soil Mechanics, Geological Sciences and Geotechnical Engineering. The information presented in this Key defines some of the methods, procedures and terms used on the CME Exploration Logs to describe the conditions encountered. Refer to the Log on page 4 for key number.

Key No. Description

- 1. The figures in the **DEPTH SCALE** column define the vertical scale of the Boring Log.
- 2. The SAMPLE NO. is used for identification on the sample containers and in the Laboratory Test Report or Summary.
- 3. The **SAMPLE DEPTH** column gives the depth range from which a sample was recovered.
- **4.** The **TYPE / SAMPLE RECOVERY** column is used to signify the various types of samples. "SS is Split Spoon, "U" is Undisturbed Tube, and "C" is Rock Core. For soil and rock samples, the recovered length of the sample is recorded in inches.
- 5. BLOWS ON SAMPLER This column shows the results of the "Standard Penetration Test (SPT) ASTM D1586", recording the number of blows required to drive a 2-inch outside diameter (O.D.) split spoon sampler into the ground beneath the casing. The number of blows required for each six inches of penetration is recorded. The total number of blows required for the 6-inch to 18-inch interval is summarized in the SPT "N" column and represents the "Standard Penetration Number". The outside diameter of the sampler, the hammer weight and the length of drop are noted in the Methods of Investigation portion of the log. A "WH" or "WR" in this column indicates that the sample spoon advanced a 6-inch interval under the Weight of Hammer + Rod or Weight of Rod, respectively. If a rock core sample is taken, the core bit size designation is given here.
- 6. The **DEPTH OF CHANGE** column designates the depth (in feet) that the driller noted a compactness or stratum change. In soft materials or soil strata exhibiting a consistent relative density, it is difficult for the driller to determine the exact change from one stratum to the next. In addition, a grading or gradual change may exist. In such cases the depth noted is approximate or estimated only and may be represented by a dashed line. When continuous split spoon sampling is not employed, or an interval of several feet exists between samplings, the Depth of Change may not be indicated at all.
- 7. VISUAL CLASSIFICATION OF MATERIAL Soil materials sampled and recovered are described by the Driller or Geotechnical Representative on the original field log. Notes of the Drillers observations are also placed in this column. Recovered samples may also be visually classified by a Geologist, Engineer, or Soil Technician. Visual soil classifications are made using a modified Burmister System as practiced by CME and as generally described in this Key and abbreviated on the Test Boring Log. This modified Burmister System is a type of visual-manual textural classification estimated by the Driller, Geologist, Engineer, or Technician on the basis of weight-fraction of the recovered material and estimated plasticity, among other characteristics. See Table 1 "Classification of Materials". The description of the relative compactness or consistency is based upon the standard penetration number as defined in Table 2. The description of the recovered sample moisture condition is described as dry, moist, wet, or saturated. Water used to advance the boring may affect the moisture content of the recovered sample. Special terms may be used to describe recovered materials in greater detail, such terms are listed in ASTM D653. When sampling gravelly soils with a standard two-inch O.D. Split Spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter. The presence of boulders, cobbles, and large gravel is sometimes, but not necessarily, detected by observation of the casing advancement and sampler blows and/or through the "action" of the drill rig, sampler and/or casing as reported by the Driller.

The description of **Rock** is based upon the recovered rock core. Terms frequently used in the description are included in Tables 3, 4 and 5. The length of core run is defined as length of penetration between retrievals of the core barrel from the bore hole, expressed in inches. The core recovery expresses the length of core recovered from the core barrel per core run, in percent. The size core barrel used is noted in Column 5. An "N" size core, being larger in diameter than "A" size core, often produces better recovery, and is frequently utilized where accurate information regarding the geologic conditions and engineering properties is needed. An estimate of in-situ rock quality is provided by a modified core recovery ratio known as the "**Rock Quality Designation**" (**RQD**). This ratio is determined by considering only pieces of core that are at least 4 inches long and are hard and sound. Breaks obviously caused by drilling are ignored. The percentage ratio between the total length of such core recovered and the length of core drilled on a given run is the RQD. Table 4 indicates in-situ rock quality as related to the **RQD**.

Page 1 of 4 KEY 112619

- 8. The SPT "N" or RQD is given in this column as applicable to the specific sample taken. In Very Compact coarse-grained soils and in Hard fine-grained soils the N-value may be indicated as 50+ or 100+. This typically means that the blow count was achieved prior to driving the sampler the entire 6-inch interval or the sampler refused further penetration. For an "N" size rock core, the RQD is reported here, expressed in percent (%).
- 9. GROUNDWATER OBSERVATIONS and timing noted by the Drill Crew are shown in this section. It is important to realize that the reliability of the water level observations depend upon the soil type (e.g. water does not readily stabilize in a hole through fine grained soils), and that drill water used to advance the boring may have influenced the observations. Groundwater levels typically fluctuate seasonally so those noted on the log are only representative of that exhibited during the period of time noted on the log. One or more perched or trapped water levels may exist in the ground seasonally. All the available resources and data should be evaluated. If definite conclusions cannot be made, it is often prudent to examine the conditions more thoroughly through test pit excavations or through groundwater observation well installations.
- 10. METHODS of INVESTIGATION provides pertinent information regarding the identity of the Drill Crew members, inspector (if any), drill rig make and model, drill rig mount vehicle, casing and type of advancement, soil and rock sampling tools and appurtenances used in the installation of the Test Boring.

T	ABLE 1 - CLASSIFICATION OF MATERIALS
GROUP	COARSE GRAINED SOILS TEXTURAL SIZES
BOULDERS	larger than 12" diameter
COBBLES	12" diameter to 3" sieve
GRAVEL	3" - coarse - 1" - medium - 1/2" - fine - #4 sieve
SAND	#4 - coarse - #10 - medium - #40 - fine - #200 sieve
GROUP	FINE GRAINED SOILS SIZE (PLASTICITY*)
SILT	#200 sieve (0.074mm) to 0.005mm size (see below *)
CLAY	0.005mm size to 0.001 mm size (see below *)
GROUP	ORGANIC SOILS, PEAT, MUCK, MARL
ORGANIC	Based on smell, visual-manual and laboratory testing

ABBREVIATIONS	TERM	ESTIMATED PERCENT OF TOTAL SAMPLE BY WEIGHT
f - fine	and	35 to 50%
m - medium	some	20 to 35%
c - coarse	little	10 to 20%
	trace	0 to 10%

		DRY STRENGTH TEST			
TERM	PLASTICITY INDEX	INDICATION	FIELD TEST RESULT		
non-plastic	0 - 3	Very low	falls apart easily		
slightly plastic	4 - 15	Slight	easily crushed by fingers		
plastic	15 - 30	Medium	difficult to crush		
highly plastic	31 or more	High	impossible to crush with fingers		

Page 2 of 4 KEY 112619

Primary Soil Type	Descriptive Term of Compactness	Range of Standard Penetration Resistance (N) less than 4 blows per foot		
COARSE GRAINED SOILS	Very Loose			
	Loose	4 to 10		
(More than half of Material	Medium Compact	10 to 30		
is larger than No. 200 sieve size)	Compact	Resistance (N) less than 4 blows per foo 4 to 10 10 to 30 30 to 50 Greater than 50 Range of Standard Penetra Resistance (N) less than 2 blows per foo 2 to 4 4 to 8		
	Very Compact	Greater than 50		
FINE GRAINED SOILS	Descriptive Term of Consistency	Range of Standard Penetratio Resistance (N)		
	Very Soft	less than 2 blows per foot		
(More than half of material is	Soft	2 to 4		
smaller than No. 200 sieve size)	Medium Stiff	4 to 8		
	Stiff	8 to 15		
	Very Stiff	15 to 30		
	Hard	Greater than 30		

^{*}The number of blows of 140-pound weight falling 30 inches to drive a 2-inch O.D., 1-3/8 inch I.D. sampler 12 inches is defined as the Standard Penetration Resistance, designated "N".

TABLE 3 - ROCK CLASSIFICATION TERMS							
Rock Classification	n Terms	Field Test or Meaning of Term					
Hardness	Soft	Scratched by fingernail. Crumbles under firm blows with a geologic pick.					
		Shallow indentations (1 to 3 mm) can be made by firm blows of a geologic pick. Can be peeled with a pocketknife with difficulty.					
	Medium Hard	Scratched distinctly by penknife or steel nail. Can't be peeled or scraped with knife.					
		Scratched with difficulty by penknife or steel nail. Requires more than one blow with a geologic hammer to break it					
		Cannot be scratched by penknife or steel nail. Breaks only by repeated heavy blows with a geologic hammer.					
Bedding	Thinly Laminated Laminated	less than 1/8 th inch 1/8 th to 1 inch					
(Divisional planes	Thinly Bedded	1 inch to 4 inches					
and/or surfaces	Medium Bedded	4 inches to 12 inches					
separating it from layers	Thickly Bedded	12 inches to 48 inches					
above and below)	Massive	greater than 48 inches					

TABLE 4 Relation of Rock Quality Designation (RQD) and in-situ Rock Quality							
RQD %	Rock Quality Term Used						
90 to 100	Excellent						
75 to 90	Good						
50 to 75	Fair						
25 to 50	Poor						
0 to 25	Very Poor						

Page 3 of 4 KEY 112619

TABLE 5 – BEDROCK WEATHERING CLASSIFICATION						
Classification	Diagnostic Features					
Fresh	No visible sign of decomposition or discoloration. Rings under hammer impact.					
Slightly Weathered	Slight discoloration inwards from open fractures, otherwise similar to Fresh.					
Moderately Weathered	Discoloration throughout. Strength somewhat less than fresh rock but cores cannot be broken by hand or scraped with knife. Texture observed.					
Highly Weathered	Most minerals somewhat decomposed. Specimens can be broken by hand with effort or shaved with knife. Core stones present in rock mass. Texture becoming indistinct but fabric preserved.					
Completely Weathered	Minerals decomposed to soil, but fabric and structure preserved (e.g. Saprolite). Specimens easily crumbled or penetrated.					
Residual Soil	Advanced state of decomposition resulting in plastic soils. Rock fabric and structure completely destroyed. Large volume change.					

		V ociates		East Syr	orporate Drive racuse, NY 13057 815-701-0522	SUBSURFACE EXPLORATION TEST BORING LOG				Boring No. Page No. Report No.	B-2 1 of 1		
Project .	Name:	a ·									Date Started		
Client:											Date Finished		
Location	n:										Surface Elev.		
	METHODS OF INVESTIGATION GROUNDWATER						ROUNDWATER	OBSERVAT	IONS				
Driller: Driller:		10 Casing: 10 Casing Hammer:				Date	Time		Depth (Ft.)	Casing At (Ft.)			
Inspecto	ector: Other:							While Drilling	9		9		
Drill Ri	ll Rig: Soil Sampler:					Befo	ore Casing Removed						
Type:	ype: Hammer Wt:				3		Afte	er Casing Removed					
Rod Size: Hammer Fall:							Afte	er Casing Removed					
	LOG OF BORING SAMPLES VISUAL CLASSIFICATION (SIFICATION C	F MATERIA	L				
Depth Scale (Feet)	Sample No.	1	e Depth t.) To	Type/ Sample Rec. (in.)	Blows on Sampler Per 6 Inches	Depth of Change (Ft.)	TOTAL CARROLL ACCUSED ACCUSED		and - 35 to 50% / some - 20 to 35% little - 10 to 20% / trace - 0 to 10%		10.70.	SPT "N" or RQD%	
1	2	3	3	4	5	6	7				8		

SS - Split Spoon, U - Undisturbed Tube, C - Core, WH - Weight of Hammer + Rod, WR - Weight of Rod Remarks:

Page 4 of 4 KEY 112619