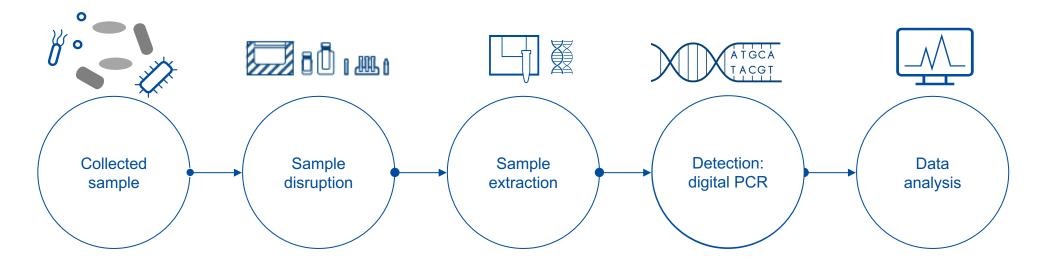
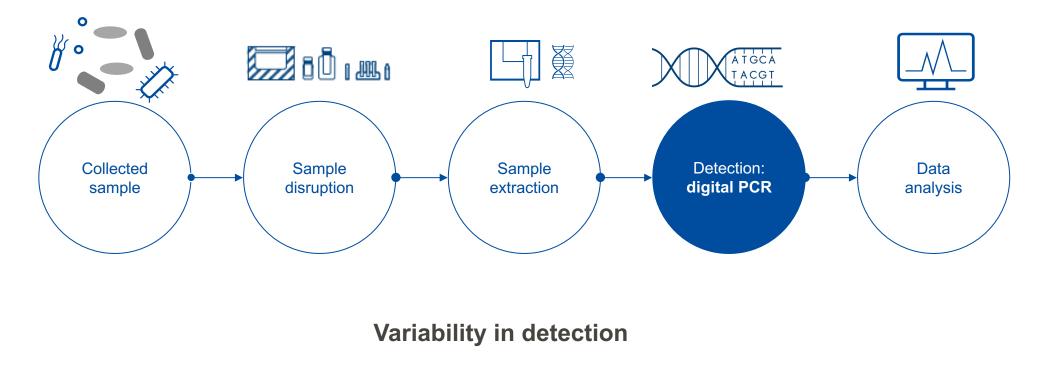




DHS/NIST Workshop: Standards to Support an Enduring Capability in Wastewater Surveillance for Public Health


June 2021 Michael Bussmann, Ph.D. Associate Director, Global Product Management Digital PCR

## Legal disclaimer


QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.

Sources of variability in wastewater testing



Sources of variability in wastewater testing



• Process complexity

Staff skill set

• Partition volume and count



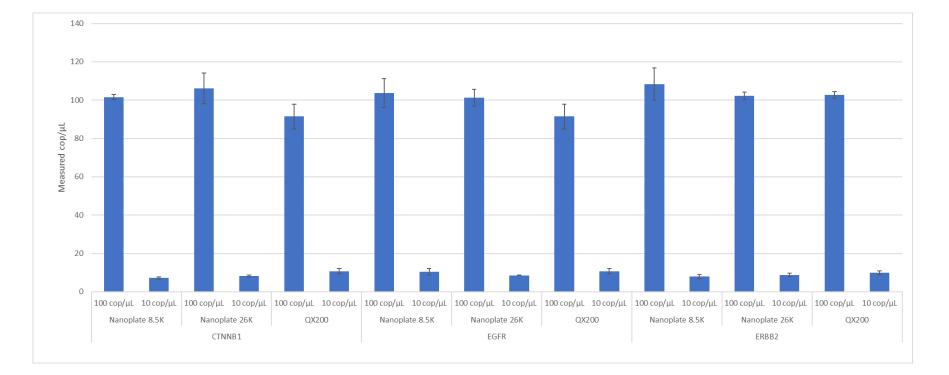
# Detection and absolute quantitation of pathogens in wastewater



#### Why digital PCR for wastewater testing?

- A standard curve is not required
- Better inter-laboratory comparability
- Higher precision due to absolute quantification
- Higher robustness for viral detection from complex samples




#### Why Nanoplate digital PCR?

- Fully integrated workflow with time-to-result ~2 h
- Easy operating and workflow like qPCR
- Flexible throughput and resolution options
- High multiplexing capability (up to 5plex)
  - Less expertise and experience needed to run digital PCR experiments

### Accuracy without complexity

Get accurate dPCR results with an easy-to-use and fast system NIST Reference Material 2372a (human DNA quantification standard)

- Probe based detection (genomic targets are: CTNNB1, EGFR, ERBB2)
- o NIST Reference Material was used to generate 10 and 100 copies/uL templates



### Scalable and comparable

#### Reliable and reproducible results over Different Systems

- Three runs per instrument and plate types
- Input (expected concentration): 500 copies/µl
- Assay: QIAGEN dPCR Demo Assay (FAM)

| Instrument type    |       |    |      |  |  |  |  |
|--------------------|-------|----|------|--|--|--|--|
| /Nanoplate 26K 24- | Mean  |    |      |  |  |  |  |
| well               | cp/µl | SD | CV%  |  |  |  |  |
| QIAcuity One       | 480   | 16 | 3.3% |  |  |  |  |
| QIAcuity Four      | 484   | 15 | 3.1% |  |  |  |  |
| QIAcuity Eight     | 480   | 16 | 3.4% |  |  |  |  |
| Mean               | 481   |    |      |  |  |  |  |
| SD                 | 3.83  |    |      |  |  |  |  |
| CV%                | 0.80% |    |      |  |  |  |  |

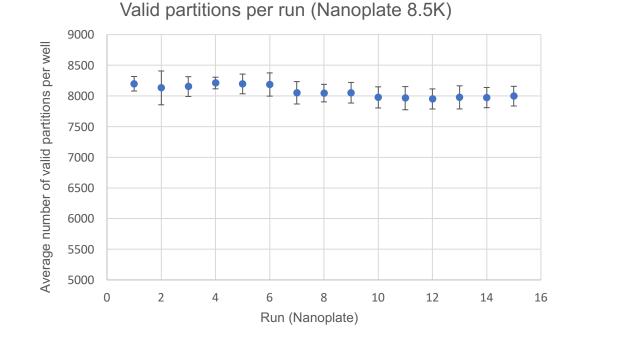
| Instrument type     |       |    |      |  |
|---------------------|-------|----|------|--|
| /Nanoplate 8.5K 96- | Mean  |    |      |  |
| well                | cp/µl | SD | CV%  |  |
| QIAcuity One        | 523   | 23 | 4.3% |  |
| QIAcuity Four       | 530   | 27 | 4.9% |  |
| QIAcuity Eight      | 521   | 27 | 5.1% |  |
| Mean                | 523   |    |      |  |
| SD                  | 8.86  |    |      |  |
| CV%                 | 1.69% |    |      |  |

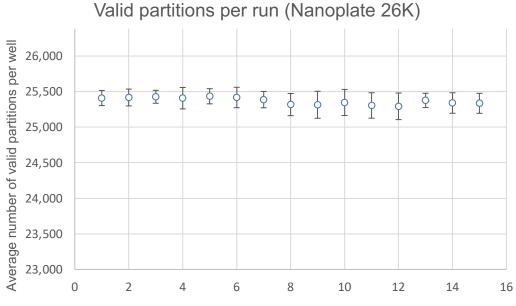
QIAGEN

### Scalable and comparable

#### Reliable and reproducible results over Different Systems

- Three runs per instrument and plate types
- Input (expected concentration): 500 copies/µl
- Assay: QIAGEN dPCR Demo Assay (FAM)


| Instrument type – total | Mean cp/µl |
|-------------------------|------------|
| QIAcuity One            | 499        |
| QIAcuity Four           | 507        |
| QIAcuity Eight          | 501        |
| Mean                    | 502        |
| SD                      | 22.23      |
| CV%                     | 4.43%      |


QIAGEN

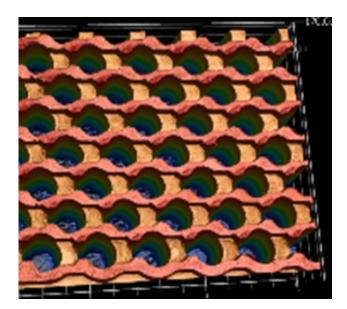
### Predictable partition count

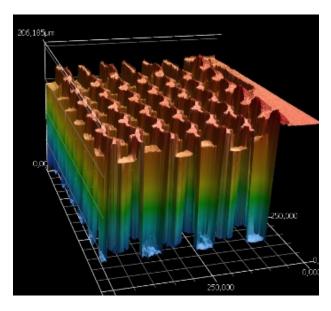
#### Robust quantification with high number of valid partitions

o Number of valid partitions per well for Nanoplate 26K 24-well and Nanoplate 8.5K 96-well






Run (Nanoplate)

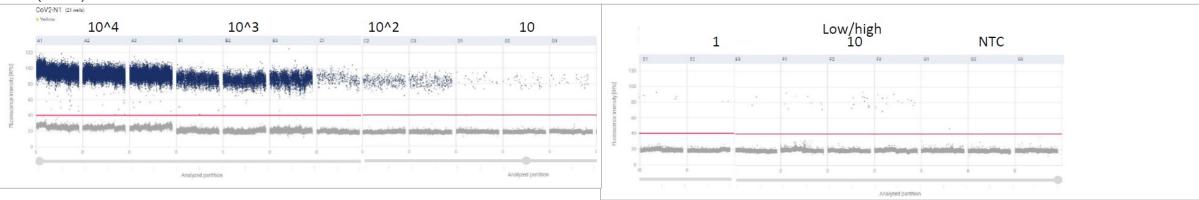

QIAGEN

Accuracy in all measurements without being a dPCR expert

The VPF (Volume Precision Factor)

• Nanoplates and the VPF enable control of the partition volume






- Ensure precision of the quantitation
- Nanoplate batch & reaction/well specific calibration of the partition volume
- Automatically applied

## Example of results: SARS CoV-2 quantification

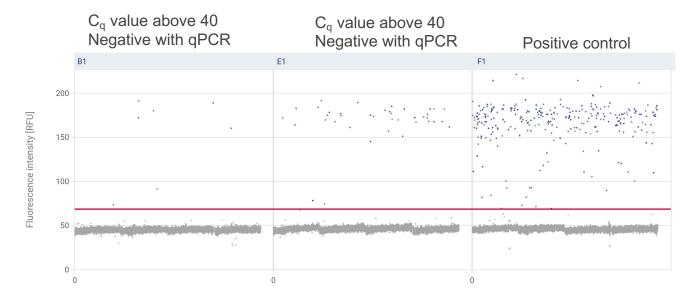
#### Sample: 10-fold serial dilution of positive control ATCC

- Concentration range between 10<sup>4</sup> to 1 copy/µl
- · Test all samples in triplicates, 4 µl template for both
- Panel 1\_3-plex SARS CoV2 N1/N2/E (HEX/Texas Red/FAM)
- "Low/high 10" → 10 copies of SARS-CoV-2 target in the presence of 10<sup>5</sup> copies each of the fecal indicator targets MS2, HF183 and crAssphage



### N1 (HEX)

#### Reference:


Taniuchi, Mami; Associate Professor, Medicine: Infectious Diseases and International Health; University of Virginia (Field tester of the QIAcuity One-Step Viral RT-PCR Kit, cus)

# Example of results: Norovirus G1 quantification

#### Experimental approach

- Samples water from swimming pools
- Sample prep QIAamp Viral RNA Mini kit

Consistent fluorescence intensity in reference channel is a good indicator of uniform partitioning across a nanoplate



Analyzed partition

|    | Reaction Mix | Target  | Sample/NTC/Control | Concentration<br>copies/µL | CI<br>(95%) | Partitions<br>valid | positive | negative | Threshold |
|----|--------------|---------|--------------------|----------------------------|-------------|---------------------|----------|----------|-----------|
| В1 | • A          | Noro g1 | 23 E2 Janv         | 0.349                      | 79%         | 25451               | 7        | 25444    | 60.18     |
| E1 | • A          | Noro g1 | 26 E1 Juin         | 1.9                        | 32.6%       | 25467               | 37       | 25430    | 110.92    |
| F1 | • A          | Noro g1 | 27 E2 Juin         | 14.0                       | 12%         | 24651               | 265      | 24386    | 68.85     |





Thank you for your attention.

Trademarks: QIAGEN<sup>®</sup>, Sample to Insight<sup>®</sup>, QIAcuity<sup>®</sup>, QIAseq<sup>®</sup> (QIAGEN Group); Atto<sup>™</sup> (ATTO-TEC GmbH); EvaGreen<sup>®</sup> (BIOTIUM, INC); FAM<sup>™</sup>, HEX<sup>™</sup> (Life Technologies Corporation); Horizon<sup>™</sup> (Horizon Discovery Limited); ROX<sup>™</sup> (Thermo Fisher Scientific or its subsidiaries); SYBR<sup>®</sup> (Life Technologies Corporation). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. PROM-18244-001 © 2021 QIAGEN, all rights reserved.

Sample to Insight