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Multitudinous Magnets

e Magnetoresistive RAM (MRAM),
hard drives depend on magnets

e Need to examine magnetic
structure of new materials to
find those with useful
properties




Magnet Math

e Ground state orientation of
spins in a magnetic structure
is derivable

e Don't know which
interactions create the
ground state
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Interaction Models

Nearest neighbor Next nearest neighbor




Magnet Math

Inelastic neutron scattering
excites the system to create

a spinwave that is dependent
on the types and strengths of
the interactions

Want to measure the energy
of the spinwave along
directions of the structure
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https://docs.google.com/file/d/1s7SuvK5zuJ9YWOoqFVislq1Jgn5KAutC/preview

SpinW/bumps
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e MATLAB bound to Python N
e Generates dispersion graph
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Omega (meV)

given structure, interactions

e Bumps can fit dispersion to
get ] values (strengths of

-30

interactions)
e Compare goodness of fit to
pick model

Certain commercial products are mentioned for information purposes
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e Beam time is valuable -
limited access

e Select more efficient
measurements as not all

The Problem . D o

quickly select
measurements that
describe both type and
strength of interactions




The Solution: Reinforcement Learning

AlphaGo Deepmind

Teaching a computer to
make optimal decisions
using rewards



Reinforcement Learning

EPISODE: 1

Reward:

Massimiliano Patacchiola

Observes environment to make
decisions

Each step it receives a reward
Next decision is based on that
reward and new environment
information



Reinforcement Learning

EPISODE: 1 EPISODE: 2 EPISODE: 3

Reward: Reward: Reward:

Massimiliano Patacchiola

Learns each step and each episode to create the fastest navigation
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Applying Reinforcement Learning

60

e Action: select a direction to
calculate the dispersion

e State: all previously measured
directions

e Reward: low chi squared, low
uncertainty, and high
difference between models

Omega (mev)

e Ends episode with low chi ~40 1

squared and low uncertainty
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Results: Nearest Neighbor

Reward Per Episode Steps Per Episode
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It's Essentially A Square

e Out of the plane of the
square, not much is
happening

e Valuable information
only found in directions
with some aorb
component
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Gorrectness: Nearest Neighbor P

First 1000 Eps. Last 1000 Eps.
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Correctness: Nearest Neighbor

e Always chose the correct
model

e Due to the process of O
model selection, this is > 0
unsurprising

e Model with fewer

parameters and same fit
will be chosen
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Next Step: Next-Nearest Neighbor




Future Steps

Calculate and fit neutron
intensities instead of
merely dispersion

Add finite resolution of
the instrument

Attempt same problem
with Gaussian processes
Publish!
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