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Multitudinous Magnets

● Magnetoresistive RAM (MRAM), 
hard drives depend on magnets

● Need to examine magnetic 
structure of new materials to 
find those with useful 
properties
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Magnet Math
● Ground state orientation of 

spins in a magnetic structure 
is derivable

● Don’t know which 
interactions create the 
ground state

Ji,j = strength of interaction
Si & Sj= spins
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Magnet Math
● Inelastic neutron scattering 

excites the system to create 
a spinwave that is dependent 
on the types and strengths of 
the interactions

● Want to measure the energy 
of the spinwave along 
directions of the structure

https://docs.google.com/file/d/1s7SuvK5zuJ9YWOoqFVislq1Jgn5KAutC/preview


6

SpinW/bumps

Certain commercial products are mentioned for information purposes, but are not endorsed by NIST

● MATLAB bound to Python
● Generates dispersion graph 

given structure, interactions
● Bumps can fit dispersion to 

get J values (strengths of 
interactions)

● Compare goodness of fit to 
pick model [1 1 0]

J1 = -5
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The Problem

● Beam time is valuable – 
limited access

● Select more efficient 
measurements as not all 
are required

● Determine how to 
quickly select 
measurements that 
describe both type and 
strength of interactions
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The Solution: Reinforcement Learning
AlphaGo Deepmind

Teaching a computer to 
make optimal decisions 

using rewards



Reinforcement Learning
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● Observes environment to make 
decisions

● Each step it receives a reward
● Next decision is based on that 

reward and new environment 
information

Massimiliano Patacchiola



Reinforcement Learning
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Learns each step and each episode to create the fastest navigation

Massimiliano Patacchiola



Applying Reinforcement Learning
● Action: select a direction to 

calculate the dispersion
● State: all previously measured 

directions
● Reward: low chi squared, low 

uncertainty, and high 
difference between models

● Ends episode with low chi 
squared and low uncertainty 
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Results: Nearest Neighbor
Reward Per Episode Steps Per Episode
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It’s Essentially A Square
● Out of the plane of the 

square, not much is 
happening

● Valuable information 
only found in directions 
with some a or b 
component

3 Å

3 Å
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Correctness: Nearest Neighbor

● Slightly higher at first, 
probably not significant

● Likelihood of picking bad 
measurement compared 
to any other option much 
decreasedMe
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Correctness: Nearest Neighbor

● Always chose the correct 
model

● Due to the process of 
model selection, this is 
unsurprising

● Model with fewer 
parameters and same fit 
will be chosen

~100%
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Next Step: Next-Nearest Neighbor



Future Steps

● Calculate and fit neutron 
intensities instead of 
merely dispersion

● Add finite resolution of 
the instrument

● Attempt same problem 
with Gaussian processes

● Publish!
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Questions


