

MEMS Nanopositioning Mechanisms: Design and Experimental Characterization

Jason J. Gorman, Sebastien Bergna and Nicholas G. Dagalakis

Intelligent Systems Division

Manufacturing Engineering Laboratory

National Institute of Standards and Technology

MEMS Alliance Symposium
April 19, 2005

Outline

- Background
 - MEMS nanopositioning applications
 - NIST macro-scale nanopositioners
- MEMS Nanopositioner Design
 - Performance specifications
 - Kinematics
 - Electro-thermal actuators
 - 1 DOF and 2 DOF mechanisms
- Mechanism Characterization
 - Methodology: SEM and OM
 - Displacement voltage calibration
 - Cross-talk error and rotational error measurements
- Conclusion

MEMS Nanopositioning

Nanopositioner Applications:

- Atomic Force Microscopy
- Scanning Tunneling Microscopy
- Optical Tweezers
- Nanomanipulation
- Beam Steering

MEMS Nanopositioners:

Applications:

- High-density data storage (IBM, Nanochip, etc.)
- Scanning probe arrays
- Parallel nanomanipulation and assembly
- Beam steering (alternative to micromirrors)

Critical Issues:

- Matching precision of macro-scale devices
- Controlling large arrays of MEMS
- Structural robustness, redundancy, failure

Parallel Dual Lever Nanopositioners

A number of novel macro-scale nanopositioning devices, which combine flexure mechanisms with piezoelectric actuators, have been developed at NIST.

First Prototype: 2 DOF

Compact Stages: 1 and 2 DOF mechanisms

Dimensions: ~ 8 X 8 cm

Materials:

Aluminum

Beryllium Copper

Invar

Steel

Titanium Alloy

Range: ~ 100 μm

- The parallel dual lever flexure mechanism uses symmetry for high precision guided motion
- Cross-talk and rotational motion errors have been shown to be very small

Design Objectives and Specifications

Project Objectives:

- Develop devices which meet or exceed the specifications of our macro-scale nanopositioners (range, resolution, accuracy, bandwidth, etc.)
- Apply these devices to critical problems in nanometrology (AFM, STM) and nanomanufacturing (nanoassembly)

Device Specifications:

- Motion range ~ > 20 μm
- Motion resolution ~ 5 nm
- Positioning accuracy ~ < 50 nm
- Cross-talk error ~ < 250 nm
- Rotational errors ~ < 10 μrad
- System Bandwidth ~ > 1 kHz

Design Considerations:

- Mechanisms must be strong enough for the connection of probes, grippers, etc.
- Scalable design, 1 DOF, 2 DOF, etc.

Mechanism Kinematics

- Circular notch flexure hinges are used for compliance (5 μm thickness)
- The flexures act as torsional springs or combined torsion/shear springs, depending on their location
- The motion amplification can easily be adjusted for different applications

Electro-Thermal Actuation

Bent-beam, or 'chevron', electro-thermal actuators have been selected for the

nanopositioners due to their:

- Straight line motion
- High force output
- Low voltage requirements
- Simple design and fabrication

Working Principle:

Voltage applied across the structure causes Joule heating, resulting in an expansion of the beams and linear motion of the transmission shuttle

$$\Delta y = \left((L + \Delta L)^2 + \frac{1}{4} w^2 \right)^{\frac{1}{2}} - h$$

$$\Delta L = \alpha L \Delta T$$

1 DOF Mechanism

The 1 DOF mechanism incorporates a dual lever flexure mechanism with a bent-beam electro-thermal actuator

- This mechanism is large in comparison to most MEMS (2 mm x 2 mm) due to structural constraints
- Range $\sim 15 \, \mu \text{m}$
- Device layer thickness = 10 μ m and 25 μ m
- Flexure width = $5 \mu m$ and $7 \mu m$
- Input voltage ~ 0 V to 15 V
- The bandwidth has not been measured yet, but it is expected to be limited by the thermal actuator rather than structural modes

2 DOF Mechanism

- The 2 DOF mechanism cannot use the nested design utilized in our macroscale nanopositioners due to constraints on the actuator fabrication
- Therefore, a coupled design has been adopted and a decoupling actuator transmission has been added.
- A prototype nanopositioner array has been fabricated

Mechanism Operation

Initial tests performed on a probing station and captured with a standard optical microscope and video camera

Input voltage = 1 Hz square wave

Input voltage = 3 Hz sine wave

Performance Characterization Methodology

Needs

- The mechanisms currently do not have built-in displacement sensors
- Standard sensors will need a calibration approach with the desired resolution (~ 5 nm)
- Several possible metrology tools already exist, based on white light interferometry, laser interferometry and video microscopy (see Veeco, Polytec, Umech)
- These instruments are very expensive and their results are difficult to verify due to proprietary software
- A scanning electron microscope will provide the same level of precision (or better) as any of these instruments when analyzing static performance

<u>Approach</u>

- Devices were placed in an SEM with a feed-through for providing input voltages
- Input voltages were applied and images were taken successively for the range of interest
- Image processing techniques were applied to extract the motion of the output stage along the y axis (desired linear motion), x axis (cross-talk error), and rotation about the z axis (yaw error)

Displacement - Voltage Calibration - SEM

- An SEM is used to take static images of the device 50 nm pixel resolution
- The edge of the output stage is detected and an average vertical position is calculated
- The relative displacement for each voltage increment is calculated, resulting in a displacement - voltage calibration curve
- The data is strongly quadratic, with the second order term providing the largest weight, as would be expected for a thermal actuator ($y \propto V^2$)

Typical Image

Actuator Motion

Stage Motion

Displacement - Voltage Calibration

- An optical microscope was used to take static images 500 nm pixel resolution
- The displacements were significantly smaller due to the effects of convection in air
- Calibration in air is necessary for many applications (AFM, beam steering)
- Therefore, the relationship between air and vacuum operation needs to be determined

Typical Image

Stage Motion

Cross-Talk Error

 Cross-talk and rotational errors are coupled when measuring them at the edge of the output stage

 A simpler metric of the cross-talk is the maximum deviation orthogonal to the desired axis of motion

• The cross-talk is linear, as in the macroscale mechanism $\sim 0.036~\mu\text{m}/~\mu\text{m}$

Typical Image

Rotational Errors

 Two points on the vertical and horizontal edges are measured

• The rotation is a function of the differential displacement of these points

• The error was on the order of 1.5 mrad

 However, the measurements are inconsistent, indicating a problem in the methodology

Typical Image

Conclusion

- MEMS nanopositioners based on a novel flexure mechanism have been designed, fabricated, and put through an initial set of performance tests
- The SEM, coupled with image processing, proved to be a straightforward and precise approach for characterizing the static performance of these devices
- The devices do not currently meet our desired specifications, but these results indicate that the specifications should be obtainable through modification of the design and additional testing

Work in Progress

- Redesign for stiffer stage (less cross-talk, rotation, etc.)
- Calibrated open-loop control (nanometer steps, trajectory following)
- Incorporate sensors (piezoresistive, fiber optic interferometers)
- Dynamic testing, frequency response, dynamic modeling
- Closed-loop control

