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ABSTRACT
We derive a model of congestion control where the trade-off
between utility and path diversity can be investigated. In
a network where there can be multiple routes between loca-
tions, each source s is assigned a route according to an allo-
cation scheme where the degree of randomness and therefore
path diversity is controlled by hs, the entropy of the distribu-
tion defined by the allocation. Model equations are derived
from a network utility maximization problem and the results
of the analysis of two networks with a single source desti-
nation are presented. We conclude for each such network
there is a critical value of hs for which stable equilibrium
solutions of the model equations exist and using the results
of [9] it can be shown that they are also solutions of the
original optimization problem. Treating hs as a parameter,
the trade-off is discussed in terms of the behavior of the time
averaged utility as a function of hs.

Categories and Subject Descriptors
C.2 [Network Protocols]: [Routing Protocols]
Keywords:TCP/IP protocols, multipath routing, discrete
dynamics,

1. INTRODUCTION
In recent years, network protocols have been interpreted

as algorithms that solve a convex optimization problem ( see
e.g. [13], [8]). In this set-up overall congestion control is for-
mulated as a network utility maximization problem (NUM)
that is solved in a distributed fashion by the various net-
work layers. The network topology and the capacity of its
links introduces constraints on the optimal solution. Then
algorithms solve the problem by computing and modifying
the primal and dual variables based on efficient communi-
cation between users, link and router layers of the network.
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Since the work of Kelly et al [8] congestion control protocols
have been seen as regulating user network transmission rates
so that the objective function that is, the aggregate utility,
is maximized subject to capacity constraints ([9], [3]). The
utility function incorporates efficient utilization and fair allo-
cation of resources among users. Significantly such functions
have been identified for existing protocols such as TCP and
BGP (Border Gateway Protocols) through a process of ”re-
verse engineering”, thus opening up opportunities for anal-
ysis and improvement of existing protocols as well as the
development of new ones.

The paradigm just described has been extended to the
problem of characterizing protocols that jointly control con-
gestion and routing ([13], [3], [4], [6],[7]). Aside from the
obvious improvement in the utilization of network resources
that could be gained by such an approach, there are benefits
in this time of cybersecurity concerns to building adequate
network robustness against route disruptions. However im-
plicit in such a protocol is a tradeoff between robustness
through path diversity on the one hand and network per-
formance or utility on the other. Single path routing based
on e.g. the OSPF (Open Shortest Path First) protocol can
lead to route flapping instability and reduced utility. How-
ever splitting traffic equally across all paths regardless of
cost would also imply reduced utility. The best tradeoff if it
exists would have to navigate between these extremes. Thus
the design of stable, implementable algorithms that achieve
maximum aggregate utility remains a challenge.

Our purpose is to propose a generalized NUM optimiza-
tion problem for joint congestion control routing where we
can examine the behavior of the time averaged utility as a
function of entropy, a model parameter that can be inter-
preted as a measure of path diversity. This paper is not
presenting an algorithm to be implemented on a real net-
work but is rather, a theoretical study of issues that must
be addressed by any algorithm that solves the NUM prob-
lem we discuss. Our model contains a routing scheme that
allocates users according to a fixed vector whose components
sum to one. The degree of path diversity of the route or path
allocation for a class of network users s, can be measured
in terms of the entropy hs of the probability distribution
defined by the allocation. We discuss two example networks
with a single source and destination.

Treating hs as a parameter, we find that as we increase hs
from 0, the model equations fail to converge to an equilib-
rium until the entropy reaches a critical value (see Section
4 for TwoLinks and Section 5 for Diamond). Stable equi-



libria exist for values of hs greater or equal to the critical
value and we show that the corresponding equilibrium pair
(x∗s , β

∗
s ) are solutions of the optimization problem.

We also calculate the time averaged aggregate utility for a
range of values hs for each topology (see Figure 3, Figure 5).
These graphs show how the utility decreases as the entropy
increases and they illustrate the fact that one can always
increase the utility for a route allocation that has entropy
greater than the critical value by changing the allocation to
one with a smaller entropy. This automatically decreases
the mean route cost. A protocol based on the model we pre-
sented does not allow one to decrease the entropy below the
critical value. We conjecture that the behavior of the model
for entropy values less than the critical value corresponds
to the unstable behavior seen in the single path TCP/IP
protocols discussed in reference [13].

We now turn to a description of the organization of the pa-
per. The NUM optimization problem for a general network
is presented in the next section, is followed by a description
of the model of the dynamics of the protocol in time. This
can be found in Section 3. The relationship between the
NUM problem, the dual optimization problem and the re-
sulting model equations is not the main focus of this paper
so we defer discussion of these points until the end of the pa-
per in the appendix. There following the work in references
[9], [13] it is shown that the model equations (6)-(9) imple-
ment a solution of the NUM optimization problem stated
in equations (1)-(4). They are specialized to the TwoLinks
topology (see equations in (10)) and the Diamond topology
(equations (15)-(19)). A discussion of how the aggregate
utility varies as a function of the parameter hs for these two
topologies can be found in Section 4.1 and 5.1 respectively
and finally the conclusion can be found in Section 6.

2. OPTIMIZATION PROBLEM
Consider a planar network to be a graph with nodes rep-

resenting physical nodes in the network and edges repre-
senting links. The link capacities are defined by the vec-
tor c = (c1, c2, · · · , cL). A user who requires bandwidth to
transmit from one node to another in the network (or a single
TCP session between those two nodes) is indexed by s, the
index of the source-destination pair. For each s the network
operator assigns a bandwidth rate xs and uses a twice differ-
entiable strictly concave utility function Us : [ms,Ms]→ R.
Here ms and Ms are lower and upper bounds respectively
on the bandwidth rate. Us(xs) measures the degree of user
satisfaction, network fairness and efficiency for the part of
the network defined by s. Users in a source-destination class
s are assigned a path by edge routers so that the fraction of
users allocated to path or route r is βsr with 0 < βsr ≤ 1.
We can regard βs = {βsr}r∈Rs as a probability distribution
because the fractions sum to 1. Here Rs is the set of all
paths available to s. The distribution is constrained so that
the traffic on any link does not exceed the link capacity.

The optimization problem that our protocol seeks to solve

is therefore:

max
β≥0,x∈X x≥0

∑
s

Us(xs) (1)∑
s

∑
r∈Rs(l)

βsrxs ≤ cl (2)

∀s
∑
r∈Rs

βsr = 1, βsr ≥ 0 (3)

−
∑
r∈Rs

βsr log βsr ≥ hs (4)

x = {xs : s = 1, 2, · · ·S} is the vector of source rates with
each xs ∈ [ms,Ms] where ms ≥ 0 and Rs(l) is the set of
routes used by source s that require link l. In this paper we
will take ms = 0 for all s and Us(xs) = ws(1 − αs)x1−αs

s

with αs = 2. The matrix β = {βsr}s,r is a set of probability
distributions that define path allocations for each source s.
The constraints in (2) state that all routes that use link l
i.e. routes r in Rs(l) of source s be assigned bandwidth rates
βsrxs so that the total link load does not exceed the capacity
cl. Equation (3) is the usual requirement for probability
distributions and equation (4) places a lower bound on the
degree of randomness for the distribution {βsr} for source s.
Indeed recall that for any allocation βs, the entropy of the
associated probability distribution is:

H(βs) = −

(∑
r∈Rs

βsr log βsr

)
. (5)

Thus equation (4) is just H(βs) ≥ hs. By putting a lower
bound on the entropy we exclude allocations that place a
majority of traffic on too few paths. The remaining path al-
locations have a greater degree of diversity, insuring some ro-
bustness in the system depending on the values of hs. Small
values of hs indicate that the problem is closer to the single
path case since allocations that use fewer paths are admis-
sible but as hs increases we are closer to the equiprobable
case (a version of the multi-path problem) and the resulting
set of feasible allocations reduces to those that have a higher
degree of path diversity and higher average path cost.

In [10] where the idea of random route allocation was
first proposed, the authors introduced an adaptive algorithm
involving non-constant values of hs. Through simulations
they demonstrated the trade-off between stability and util-
ity. They found that the maximum utility occurs near the
boundary between stability and instability.

3. DESCRIPTION OF MODEL
To describe the results of this paper, the model equations

are presented next. As is customarily the case in a con-
strained optimization problem, dual variables- in our case
the link costs, play an integral role in the solution of equa-
tions (1)-(4). The solution of the dual problem (if it exists)
can be used to find the solution of NUM. To solve the dual
problem, a projection gradient procedure is employed and
as in previous works, (see references [9], [13]), the dynamics
of the link costs {pl, l = 1, 2, · · · , L} and route allocations
at each iteration step is a model of the behavior of the pro-
tocol at each time step. Under appropriate conditions on
Us and the initial link costs (see reference [5]) the iterations
converge to an optimal cost vector p∗ corresponding to the
optimal values of x∗ and β∗ of equations (1)-(4).



Figure 1:

If pl(k) is the link cost at time k and cl is the capacity of
the lth link then the equations of the model are

p
(k+1)
l =

p(k)
l − h

cl −∑
s

xs(k)
∑

r∈Rs(l)

β(k)
sr


+

l = 1, · · ·L

(6)

β(k)
sr = exp(−γs(k)dr(k))/Zs(k) (7)

where dr(k) =
∑
l∈r p

(k)
l is the cost of route r at time k, h

is a step size , [a]+ = a if a > 0 and is 0 otherwise.

Zs(k) =
∑
r∈R(s) exp(−γ(k)

s dr(k)) is the normalization fac-

tor for the route distribution and, the variable γ
(k)
s is the

solution of the implicit equation,

γ(k)
s Ds(k) + log(Zs(k)) = hs, Ds =

∑
r∈R(s)

β(k)
sr dr(k) (8)

The model equations are completed by a relation between
the bandwidth rate xs(k) and Ds(k), the mean route cost
at time k for positive constants ws and M .

xs(k) = min

((
ws

Ds(k)

)1/2

, M

)
(9)

Equations 7 and 8 force the route distribution β
(k)
sr to be

the unique distribution of entropy hs with the smallest mean
route cost at each time step k. Thus the condition on the
route distributions is H(βs) = hs. This constant entropy
requirement will constrain the set of values {pl | l = 1 · · ·L}
for which a bounded γ

(k)
s exists. The precise set depends on

the network topology and capacity of the links. In the simple
sample networks we discuss these regions can be determined.

4. TWO LINKS TOPOLOGY
A network consisting of a single source-destination pair of

nodes connected by two links is depicted in Figure 1. The
equations 6 become:

p
(k+1)
1 =

[
p
(k)
1 − h{c1 − βk1xs(k)}

]+
,

(10)

p
(k+1)
2 =

[
p
(k)
1 − h{c2 − βk2xs(k)}

]+
Each link is a path or route so di = pi i = 1, 2.

Assuming c1 > c2, and initial link prices p
(0)
1 < p

(0)
2 , there

is a critical entropy hT (c) < log 2 given by,

hT (c) = −
[

c1
c1 + c2

log
c1

c1 + c2
+

c2
c1 + c2

log
c2

c1 + c2

]
(11)

with a corresponding critical route distribution,

β∗1 =
c1

c1 + c2
, β∗2 =

c2
c1 + c2

(12)

We say that p
(k)
i ∈Wi if pki −h{ci−β

(k)
i xs(k)} > 0. Figure 2

shows the behavior of iterates of equations in 10. If R is the
region bounded by the lines L0, the p2 axis, the line L2 and
the line { p |p1 = p2 }, then H = R∩W1∩W2. Lines L0 and
L2 are perpendicular to the line x̄∗ = β∗1p1 + β∗2p2. If J =
{p | p = (p1, p2)| p1 < p2, p1 > 0, p2 > 0 }, then it can

be shown ([5]) that iterates of a point p(0) beginning in the
region H ⊂ J remain in H and converge to an equilibrium
point on the line of points with constant average p value x̄∗

(see Figure 2). We claim in fact that if p
(k−1)
1 < p

(k−1)
2 ,

the allocations at time k ≥ 1 satisfy, β(k) = (β
(k)
1 , β

(k)
2 ) =

β∗ = (β∗1 , β
∗
2 ). To see this note that the implicit equation

(8) forces the entropy of βk) to be hT (c). There are only
are only two distributions with that entropy value and the

conditions p
(k−1)
1 < p

(k−1)
2 imply that β

(k)
1 > β

(k)
2 . Since β∗

is the unique distribution satisfying the latter condition the
claim is proved. Each equilibrium point (p∗1, p

∗
2) corresponds

to the unique solution (xs∗, β∗) of the optimization problem
when h is sufficiently small with,

x∗s =
(ws
x̄∗

) 1
2

(13)

x̄s
∗ = β∗1p

∗
1 + β∗2p

∗
2 (14)

The proof of optimality follows along the same lines as the
proof of Theorem 1 in [9] and uses [1] p. 214.

Orbits starting outside of H either converge to the inter-
section of the p2 axis with the x̄∗ line or they approach the
line p1 = p2 and fail to converge (see [5]).

In the case where hs < hT (c) we can also conclude that
the route allocation distribution is constant while the iter-
ates are in the region J . This is proved using the same
reasoning as in the case hs = hT (c). Here a point beginning
in J will remain there and converge to a unique point (0, p∗2)
on the p2 axis. Thus the larger link 1, is saturated, while
link 2 reaches some positive equilibrium price. However the
equilibrium bandwidth xs∗ will be smaller than the value
achieved at hT (c). When hs < hT (c), orbits leave J and
move towards the line {(p1, p2) : p1 = p2 } as k → ∞.

Meanwhile, the solution of the implicit equation γk) → ∞
and the corresponding entropy approaches log 2. Thus the
orbit leaves the feasible region and fails to converge.



Figure 2: Iterates of Equation 10 (in brown and
green) for hs = hT (c)

Figure 3: hs-ref is the critical entropy hT (c).

4.1 Utility/ Entropy tradeoff for TwoLinks
For general multipath models the tradeoff between path

diversity and utility is not well understood but introducing
the entropy hs as a measure of path diversity, directly into
our model equations allows us to address the question of
tradeoff in terms of a study of the utility as a function of hs.
For the TwoLinks (and the Diamond) topology the utility
was computed at each time step over a finite time interval.
This was done for each hs over a range of values where the
minimum hs was less than critical value hT (c) and the maxi-
mum hs was greater. An example of such a computation can
be seen in Figure 3. As hs increases from 0 the average util-
ity steadily increases and plateaus near the average utility
value at hT (c) and then decreases for increasing hs > hT (c).
Thus (approximately) this graph mirrors the simulations by
Marbukh and Klink [10] of a stochastic model where hs is
adjusted adaptively. Here N is the number of iterations
performed at each hs, and M is the number of hs values.

5. DIAMOND TOPOLOGY
We turn our discussion now to another simple topology

(see Figure 4 ) with 5 links attached to a single source des-
tination pair. As seen in the figure there are 3 routes, using
the links indicated in the figure.

Figure 4: DIAMOND NETWORK

Inspection of the figure leads to the system:

p
(k+1)
1 =

[
p
(k)
1 − h{c1 − (β

(k)
1 + β

(k)
3 )xs(k)}

]+
(15)

p
(k+1)
2 =

[
p
(k)
2 − h{c2 − β(k)

2 xs(k)}
]+

(16)

p
(k+1)
3 =

[
p
(k)
3 − h{c3 − β(k)

1 xs(k)}
]+

(17)

p
(k+1)
4 =

[
p
(k)
4 − h{c4 − (β

(k)
2 + β

(k)
3 )xs(k)}

]+
(18)

p
(k+1)
5 =

[
p
(k)
5 − h{c5 − β(k)

3 xs(k)}
]+

(19)

where as in the previous section, the bandwidth rate is

xs(k) = min(
(

ws
E[d(k)]

) 1
2
,M) , with E[d(k)] =

∑3
r=1 β

k
r d

(k)
r =∑3

r=1 β
(k)
r

(∑
l
′∈r p

k
l
′
)
. The route probabilities are defined

by the following equations:

β
(k)
i =

exp
(
−γ(k)d

(k)
i

)
Z(k)

i = 1, 2, 3 (20)

where Z(k) =
∑3
i=1 exp

(
−γ(k)d

(k)
i

)
and

d
(k)
1 = p

(k)
1 +p

(k)
3 , d

(k)
2 = p

(k)
2 +p

(k)
4 , d

(k)
3 = p

(k)
1 +p

(k)
5 +p

(k)
4 .

(21)
Here led by the search for strictly interior equilibria of equa-
tions (15)-(19) we take

c2 = c3, c1 = c3 + c5, c4 = c2 + c5. (22)

As motivation we can think of link 1 and 3 as an input/
output pair while links 2 and 4 are a corresponding in-
put/output pair.

There are only two distributions β = (β1, β2, β3), with
given entropy hs < log 3 , satisfying the condition β1 =



β2. The choices correspond to the inequalities, β1 > β3

or β1 < β3. Furthermore, if we choose initial link prices

p
(0)
l l = 1...5 that are compatible with equation (22) then

β
(k)
1 = β

(k)
2 k ≥ 1.

Given 1 ≤ i ≤ 5, for any k ≥ 0 we will say that p
(k)
i ∈Wi if

p
(k+1)
i > 0.

Lemma 1. Suppose the capacities in equations (15)-(19)
satisfy equation (22). Further suppose the initial conditions

p
(0)
2 = p

(0)
3 , p

(0)
1 = p

(0)
3 + p

(0)
5 , p

(0)
4 = p

(0)
2 + p

(0)
5

hold, with p
(0)
i ∈Wi, i = 1, ...5. Then

p
(k)
2 = p

(k)
3 , p

(k)
1 = p

(k)
4 , k ≥ 1

and β
(k)
1 = β

(k)
2 for k ≥ 1.

Proof. The proof is by induction on k.

The conclusion of the lemma thus implies that with appro-
priate choice of initial link prices there are at most two possi-
ble distributions β with a given entropy hs and one can show

that if d
(k)
3 ≥ d

(k)
1 = d

(k)
2 then there is just one. Therefore

as long as iterates remain in the region { p : d1 < d3 },
(β

(k)
1 , β

(k)
2 , β

(k)
3 ) is constant after one time step. In reference

[5] we describe the analytical and computational study of
equations (15)-(19) and find that the algorithm converges
for values hs ≥ hD(c) where hD(c) is

hD(c) = −[
c2

c2 + c3 + c5
log

c2
c2 + c3 + c5

+ (23)

c3
c2 + c3 + c5

log
c3

c2 + c3 + c5
+

c5
c2 + c3 + c5

log
c5

c2 + c3 + c5
]

Using arguments similar to those used for TwoLinks at the
critical value hT (c), we can show at hs = hD(c) there exist
a family of equilibria in the d1, d3 plane that lie along the
line { (d1, d2, d3) : d1 = d2 x̄∗ = β∗1d1 + β∗2d2 + β∗3d3}.
These points correspond to a unique (x∗s , β

∗) solution of the
optimization problem where β∗ is the route distribution cor-
responding to the critical entropy hD(c),

β∗ =

(
c2

c2 + c3 + c5
,

c3
c2 + c3 + c5

,
c5

c2 + c3 + c5

)
The proof of optimality as in the TwoLinks case uses the
fact that iterates stay within a region where the route dis-
tribution is constant.

Values of hs > hD(c) corresponding to route distributions

β =

(
νc2

c2 + c3 + c5
,

νc3
c2 + c3 + c5

,
c5 + (1− ν)(c2 + c3)

c2 + c3 + c5

)
(24)

for ν < 1 were analyzed and computations were done. We
show that under the hypotheses of Lemma 1 iterates of the
algorithm converge to a unique equilibrium where p∗i = 0 1 ≤
i ≤ 4, and p∗5 > 0 when hs is the entropy of the distribution
in equation 24. The algorithm fails to converge if ν > 1,
a situation where hs < hD(c). Here orbits approach the
line in the (d1, d3) plane d1 = d3 as k → ∞. Since we

have d
(k)
1 = d

(k)
2 for all k ≥ 1 by Lemma 1, the iterates

Figure 5: DIAMOND Utility vs. entropy

leave the region of feasibility. Thus we see that hD(c) marks
the boundary between convergence and divergence of this
algorithm.

5.1 Utility/Entropy tradeoff for Diamond topol-
ogy

The variation of utility as a function of hs in the Diamond
topology is illustrated in Figure 5. The average utility over
a finite time interval (defined by the number of iterations N)
was computed for a given value of hs. Again the minimum hs
was less than hD(c) while the maximum value was greater.

Although the average utility decreases for hs ≥ hD(c), the
maximum is not achieved at the critical value. It continues
to increase until the value log 2 is reached. A plot of β3,
the fraction of traffic allocated to route 3 as a function of
hs shows that β3 decreases as hs decreases until β3 = 0 at
log 2. We find this to be the case even when link 5 is not
an obvious bottleneck e.g. when c5 > c2 = c3. Thus the
route with the cross link 5 is eliminated and the network is
reduced effectively to TwoLinks. Numerically we find that
we cannot even iterate long enough to calculate the average
utility when hs < log 2.

6. CONCLUSION
We presented a network utility maximization problem that

is equivalent to a convex optimization problem that incorpo-
rates a measure of path diversity in the assignment of paths
to users transmitting between two locations in the network.
Within the framework of our model it is possible to exam-
ine the tradeoffs between utility maximization that could be
offered by single path routing on the one hand and robust-
ness on the other, by introducing an entropy parameter hs
directly into the optimization problem (and thus the model
equations). One can then study the utility as a function
of hs. In this paper, the proposed method is demonstrated
for two example topologies TwoLinks and Diamond. Think-
ing of hs = 0 as representing a single path scheme while
hs = log(number of routes) represents the most robust
multipath scheme, we see that our results suggest that the
degree to which a network can approach single path rout-
ing is limited by the link capacities and its topology. In
each case, there is a critical value hs, hT (c) in the case of
TwoLinks and hD(c) for Diamond, so that model equations



diverged for hs less than the critical value. On the other
hand we presented sufficient conditions for the model equa-
tions to converge to equilibria that correspond to solutions
of the optimization problem. The extension of this method-
ology to more complex networks is needed as well as the con-
sideration of other approaches e.g. subgradient algorithms.
It is possible that the problem of divergence could be ad-
dressed in this way.

APPENDIX
A. DERIVATION OF THE MODEL

The NUM problem in equations (1)-(4) is not convex in
(x, β) but through a change a variables (x, β) 7→ (x, y) it can
be transformed to one. The new problem is:

max
x,y

∑
s

Us(xs) (25)∑
s

∑
r∈Rs(l)

ysr ≤ cl (26)

xs =
∑
r∈Rs

ysr, ysr ≥ 0 (27)

−
∑
r∈Rs

ysr
xs

log
ysr
xs
≥ hs (28)

This is a convex program because the functions in equations
( 25)-(28) are clearly concave. If we assume the conditions∑

s
′

ms
′ < cl

hold for each l, where the summation is over all source-

destination pairs s
′

that use link l, then there is a Slater
point ([12]) and the Slater constraint qualification is satis-
fied. Thus the problem in equations ( 25)-(28) is supercon-
sistent and Lagrange multipliers exist. The Lagrangian for
the problem is:

L(x, y, λ, p) =
∑
s

[Us(xs)−
∑
r∈Rs

(
∑
l∈r

pl)ysr

−λ1
s(
∑
r∈Rs

ysr log(
ysr
xs

)+hsxs)−λ2
s(xs−

∑
r∈Rs

ysr)]+

L∑
l=1

plcl

where λ = [λ1
s, λ

2
s : s = 1, · · ·S] are Lagrange multipliers for

constraints in equations (27) and (28). To obtain solutions
x, y we consider the solutions of the problem;

max
x,y

L(x, y, λ, p) = max
x

max
y

L(x, y, λ, p)

where maximization is first performed in y with x and p
held fixed. The problem maxy L(x, y, λ, p) is equivalent to
the constrained problem

max
y

∑
s

Us(xs)−
∑
r∈Rs

(
∑
l∈r

pl)ysr (29)

xs =
∑
r∈Rs

ysr, ysr ≥ 0

−
∑
r∈Rs

ysr
xs

log(
ysr
xs

) ≥ hs

Problem equation (29) has a Slater point so it too is super-
consistent. A solution y∗ to (29) exists if and only if there

is a λ∗ that satisfies the KKT conditions ([12] p.182,183).
Reintroducing βsr = ysr

xs
where βsr is independent of xs, we

obtain the following form of the optimal solution of (29) for
each fixed xs and p.

βsr =
exp(−γ ∗ dr)

Zs
(30)

where

Zs =
∑
r∈Rs

exp(−γ ∗ dr), dr =
∑
l∈r

pl

and γ = 1
λ2
s

is the solution of the implicit equation,

γ ∗Ds + logZs(γ) = hs Ds =
∑
r∈Rs

βsrdr (31)

Recognizing that equations (29) is equivalent to the prob-
lem of minimizing

∑
r∈Rs ysrdr = xsDs subject to the con-

straints, we see that the optimal solution can be obtained
by setting γ equal to the unique positive root of equation
(31). Indeed there are in general two roots of this equa-
tion when hs < log |Rs| and the positive root provides the
smallest value of Ds. Given γ > 0, call any βsr subject
to (30) and (31), β∗sr. Then we have y∗sr = xsβ

∗
sr. The

{y∗sr : r = 1, · · ·Rs} are unique since for each s, (31) has a
unique positive solution. Set

L(x, p) = max
y

L(x, y, λ, p) = L(x, y∗(x, p), λ∗(x, p), p)

where y∗(x, p) and λ∗(x, p) are the optimal solution and La-
grange multipliers of equation (29) for fixed x and p. It can
be shown that L is convex in p. To see this note that

−Λs(p) = −
∑
r∈Rs

(
∑
l∈r

pl)β
∗
sr ≥ −

∑
r∈Rs

(
∑
l∈r

pl)βr (32)

and is the supremum over all vectors β; β :
∑
r∈Rs βr =

1,−
∑
r∈Rs βr log βr ≥ hs. Thus L(x, p) is the supremum

of set of convex functions over an infinite (convex) set (p.
81 [2]). Applying the same reasoning to L we can conclude
that the dual function

Q(p) = max
x

L(x, p) = max
x

max
y

L(x, y, λ, p) (33)

is convex in p. The remainder of this derivation follows the
work in references [9] and [13]. First the dual problem for p
is formulated as:

min
p:pl≥0

Q(p) (34)

If Λ is differentiable at p, Danskin’s theorem [1] applied to
L implies the differentiability of Q. Indeed the unique max-
imizing x̄ and y = xβ̂∗ are differentiable in p and λ.This
can be seen in the case of β̂ by using the necessary opti-
mality condition ∂L

∂βsr
= 0. At x̄, either x̄s(p) = Ms or

U
′
s(x̄s)(p)) = Λs(p). If x̄s(p) < Ms, then a condition intro-

duced in [9], U
′′

(xs) ≥ δs > 0 for all xs ∈ (0,Ms], together
with the differentiability of Λs with respect to p and λ, im-
ply that x̄s is differentiable and thus L(x̄, y∗, λ, p) is differ-
entiable. The condition that Λ be differentiable at p holds
we conjecture for values of p that lie in a convex subset.
The exact nature of the subset depends on the existence of
a finite positive root of equation (31). We have determined
the region for sample problems discussed in this paper. In
general however we do not expect Q to be everywhere differ-
entiable. However when it is differentiable our interest lies



in understanding the dynamics of the following equation for
solving the optimization problem in equation (34):

p
(k+1)
l =

p(k)
l − h{cl −

∑
s

x(k)
s

∑
r∈Rs(l)

β(k)
sr (

∑
l
′∈r

p
(k)

l
′ )}

+

(35)

l = 1 · · ·NL

The equations (35) are supplemented by the relations com-
ing from the optimality conditions.

β(k)
sr =

exp
(
−γ(k)

s (
∑
l∈r pl)

)
Z(γ

(k)
s )

(36)

x(k)
s = min(

(
ws
E[d]

) 1
α

, M) , E[d] =
∑
r∈Rs

β(k)
sr (

∑
l
′∈r

p
(k)

l
′ )

(37)

where γ
(k)
s is the solution of equation (31) using β

(k)
sr and

Z(γ
(k)
s ) is defined analogously to Z(s). Equation (31) effec-

tively insures that at each time step k the route distribution{
β

(k)
sr : r ∈ Rs

}
has entropy hs for every s.
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