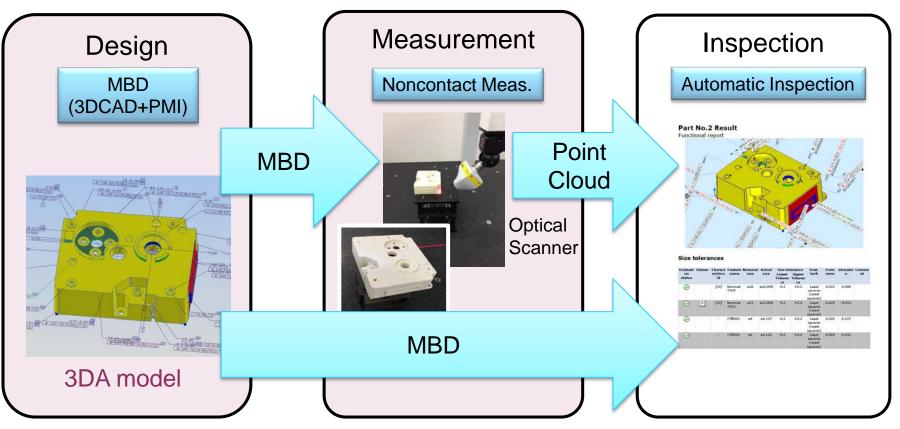
Automation of noncontact measurement processes based on MBD

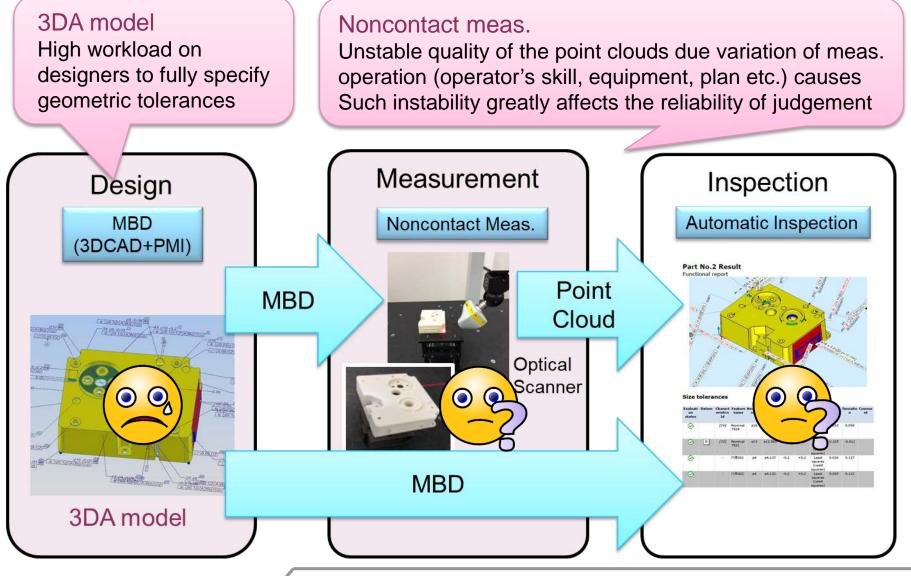
Hiromasa Suzuki, Univ. of Tokyo Toshiaki Takahashi, 3D+1 Labo Atsuto Soma, Elysium


Today's Inspection Process

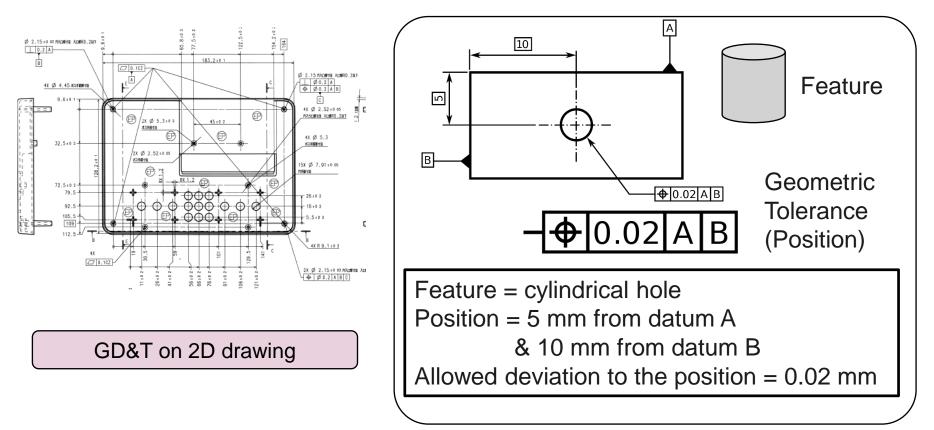
Human intensive process with various engineer/operator intervention

- Manual input & output, subjective judgement, manual report generation etc.
- Large amount of non-productive rework
- Long measurement operation time by using contact measurement

Goal: Automatic Inspection Process

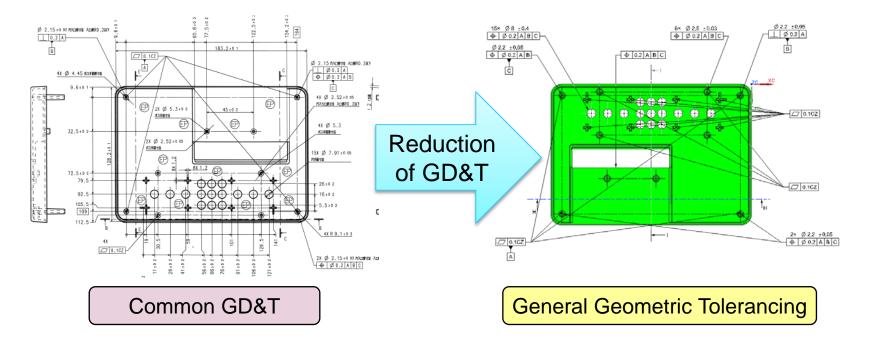

Purpose

more efficient, less non-subjective and more accurate inspection process


No reworking by seamless integration

Goal: Automatic inspection process with MBD + noncontact meas. + MBD based inspection

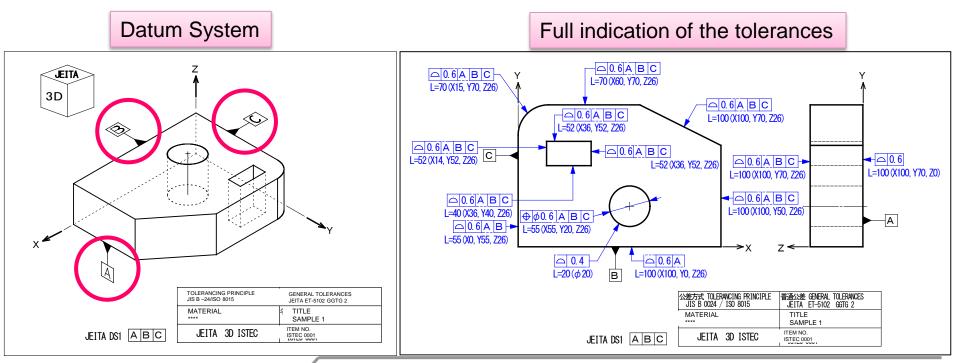
Critical Issues



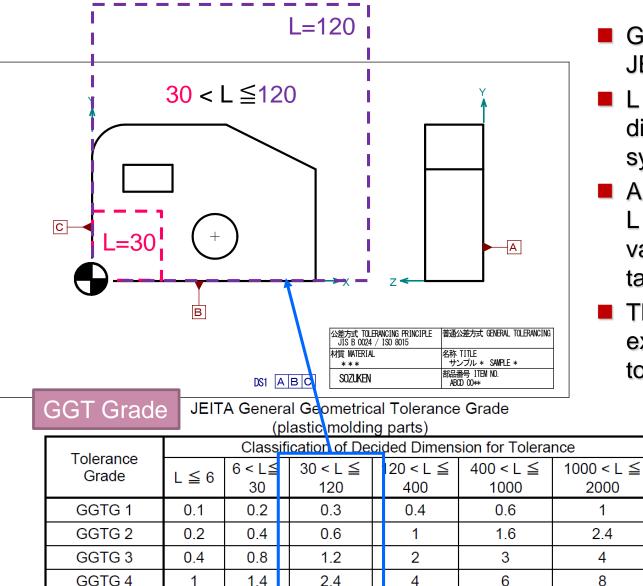
Geometric Tolerancing (GD&T/GPS)

- Geometric Tolerance defines nominal geometry and its allowable variation of a feature (eg. planar surface, cylindrical hole, slots etc.)
- Designer has to specify geometric tolerances for all the features of a part.
- It requires high workload on designers especially in 3D CAD.

General Geometric Tolerancing (GGT)

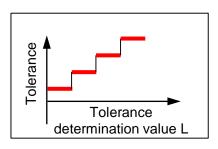

For saving effort of the tolerancing work

- Specify tolerances only for features with special care
- Omit toleranecs for features whose quality requirements can be satisfied by general manufacturing process.
- General Geometric Tolerancing
 - Specify tolerance for the unspecified features with standard rules

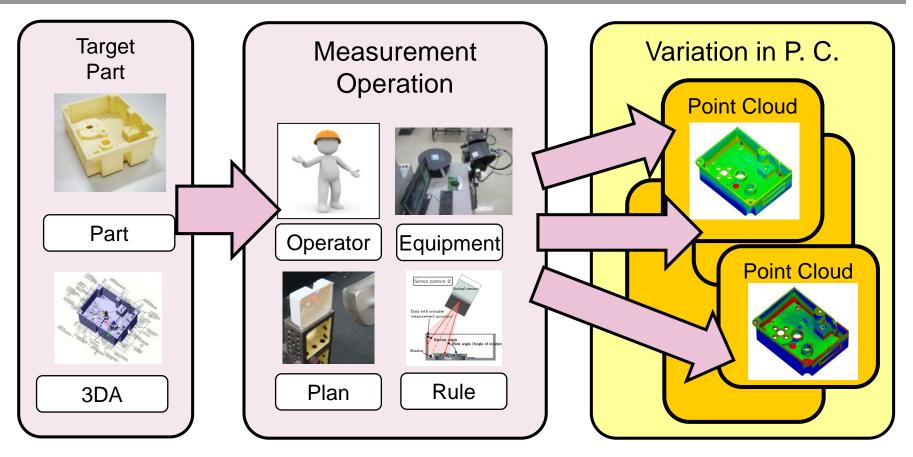

Overview of JEITA GGT ET-5102

GGT rules [2017]

- If a datum system of 3 planes is defined
- tolerance zone for all of the features are defined by using profile any surface (and position)
- Their tolerance values shall depend on the distance from the origin of the datum coordinate system.



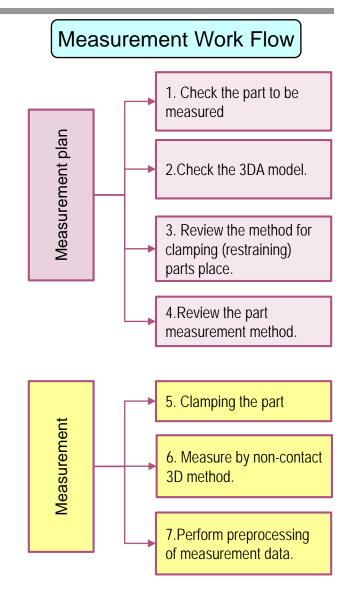
Overview of JEITA GGT ET-5102 (2)


Note GGTG stands for General Geometrical Tolerance Grade.

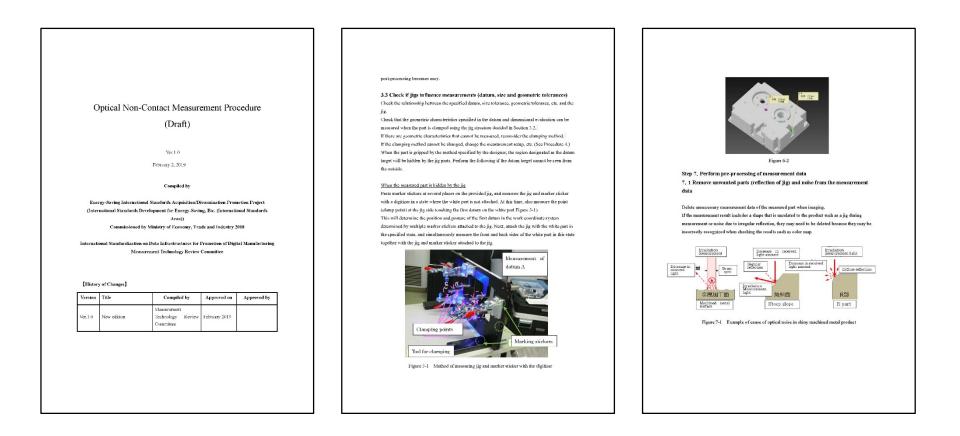
- GGT values are given in JEITA GGT Grade table
- L : tolerance det. value = distance from the datum system to a feature
- A feature at the distance L is given tolerance value defined in the table.
- Thus no need to explicitly define a tolerance for the feature.

Digital Mfg. Innovation, Japan 8

Importance of Standard Measurement Operation



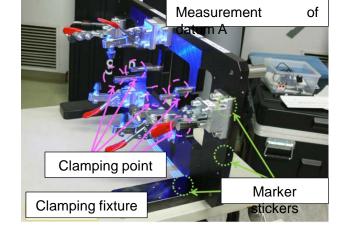
- Unstable quality of the point clouds due to variation of meas. operation (operator's skill, meas. plan, meas. equipment etc.)
- Such instability greatly affects the reliability of judgement
- Need Standard Operation Manual to reduce such dependency.


Development of Work Procedure Manual of Noncontact Meas.

Development process

- Formulate a workflow of measurement by the committee members
- Conduct measurement experiments according to the document using test pieces by test users:
 - 5 companies
 - 7 public organizations
- 3. Evaluation & Revision of the guidelines
 - Compare the results from the test users
 - Revise the document according to the feedback from the test users


Guideline Document



"Optical Non-Contact Measurement Procedure", 2019

a base document for more formal documentation in coming years.

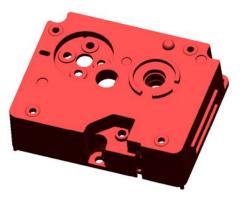
Ex. Clamping Part

Use of fixture

- a fixture is used to clamp the part to determine the first datum
- the first datum may be hidden by the fixture

Solution

- Paste marker stickers at several locations on the fixture
- Measure the clamping point (on the first datum) and the marker stickers without attaching the part
- Attach the part to the fixture and measure it with the maker stickers

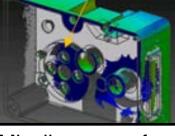

Ex. Join Multiple Point Clouds of a Part

- Multiple times of measurements of a part to generate several sets of point clouds
- Need to perform registration of these point clouds
- Characteristic shapes in the overlapped area are necessary for registration
 - Overlapping areas need to be fully considered at the planning stage prior to the measurement

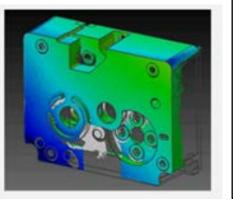
Multiple point clouds

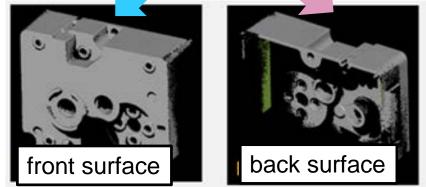
Positioning of point clouds

Integrated point clouds

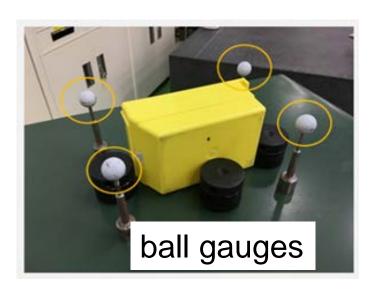

Ex. Two Sided Part (1)

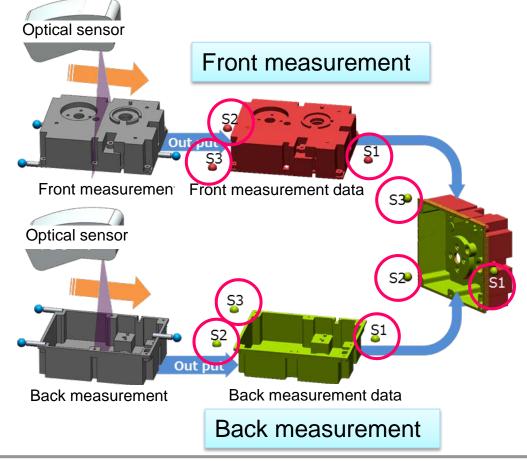
- Measurement of a part with front and back surfaces
- Measure twice from the front and back then merge their point clouds
- When the overlap of the point clouds of the front and back is too little, these two surfaces cannot be aligned correctly.


<image>


Color map of deviation from 3D CAD

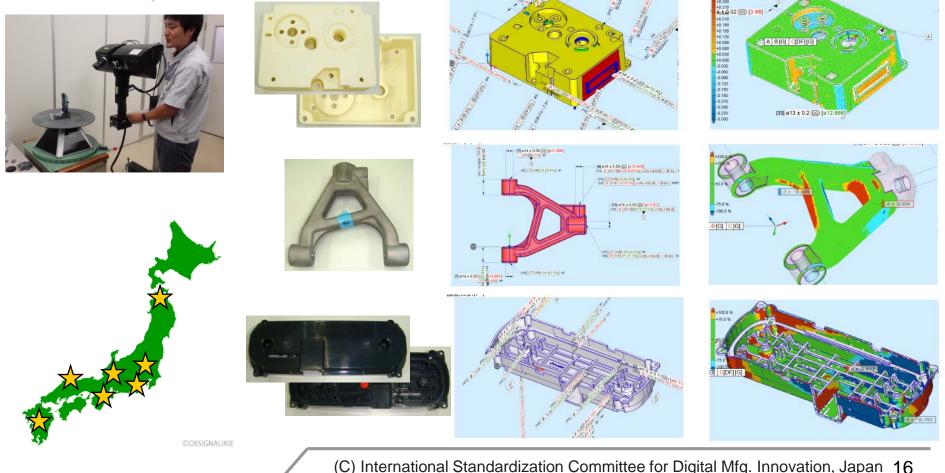
Misalignment of the back surface





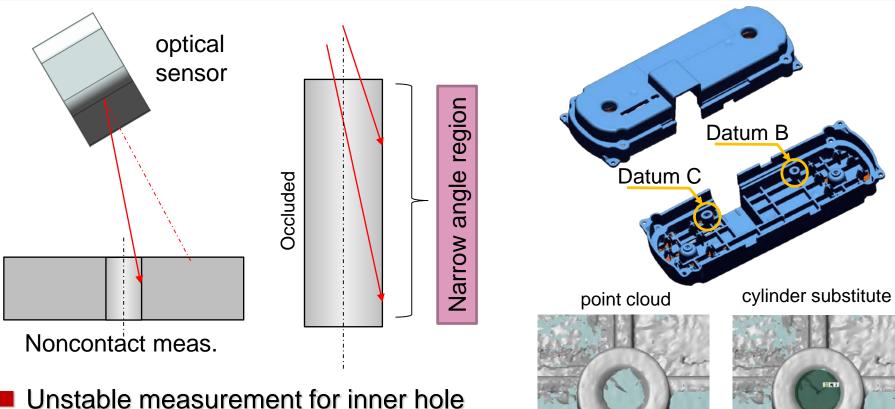
Ex. Two Sided Part (2)

Solution


- Locate some positioning reference objects (ex. ball gauges) and measure them with the part
- Use them to merge the point clouds of the front and back

Feasibility Study

- Conduct feasibility study to evaluate the manual and to solicit comments
- Measure a set of three test pieces by following the manual
- Volunteers (5 companies and 7 local government industrial research Institutes)



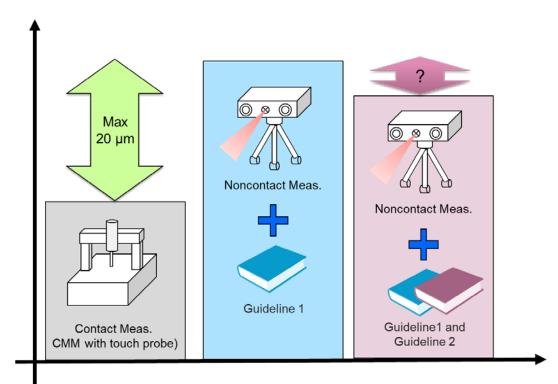
Intermediate Results

- Several issues have been raised and found for revising the manual.
 The results of tolerance evaluation with the measured point clouds are
- stable.

							$\langle $	5 companies				
											$\overline{}$	
	CID	Feature	Label	Nominal	Upper tol	Lower tol	Α	В	С	D	E	Range
		Width(3D)001	Size 「C」	3.100	0.030	-0.030	3.052	2.696	3.078	3.063	2.959	0.382
		Cyl001	Size 「B」	3.100	0.030	-0.030	3.052	2.687	3.093	3.074	3.665	0.978
		Cyl002	Size	3.200	0.100	-0.100	3.127	2.774	3.154	3.146	2.380	0.774
Г		Cyl003	Size	3.200	0.100	-0.100	3.115	2.867	3.160	3.156	2.896	0.293
		Cyl007	Size	3.000	0.100	-0.100	2.940	2.595	2.971	2.971	3.003	0.408
•		Cyl006	Size	3.000	0.100	-0.100	2.926	2.568	2.964	2.948	2.667	0.396
,		Cyl005	Size	3.000	0.100	-0.100	2.958	2.484	2.980	2.966	1.783	1.197
5		Cyl004	Size	3.000	0.100	-0.100	2.965	2.547	2.980	2.971	1.604	1.376
		Cyl008	Size	3.000	0.100	-0.100	2.960	2.374	2.977	2.949	3.355	0.981
		Cyl009	Size	3.000	0.100	-0.100	2.941	2.432	2.983	2.979	2.838	0.551
5		Cyl010	Size	3.000	0.100	-0.100	2.959	2.460	2.994	2.988	2.546	0.534
		Cyl011	Size	3.000	0.100	-0.100	2.939	2.772	2.956	2.972	3.332	0.560
	44	Width(3D)001	Position_0.1 A B	0.000	0.100	0.000	0.102	0.076	0.099	0.110	0.402	0.326
	46	Plane005	Position_0.2 A/#2	0.000	0.200	0.000	0.238	0.071	0.173	0.123	0.629	0.558
	67	Plane007	Position_0.2 A/#2	0.000	0.200	0.000	0.101	0.109	0.110	0.134	1.239	1.138
	39	Plane008	Position_0.4 A/#2	0.000	0.400	0.000	0.278	0.220	0.118	0.091	1.430	1.339
	48	Plane004	Position_0.4 A/#2	0.000	0.400	0.000	0.289	0.242	0.142	0.107	0.741	0.634
	18	Pattern002	Position_d0.4CZ A B C[DF]	0.000	0.400	0.000	0.397	1.029	0.361	0.373	2.756	2.395
	34	Pattern003	Position_d0.4CZ A B C[DF]	0.000	0.400	0.000	0.321	1.171	0.324	0.337	1.992	1.671
	35	Pattern001	Position_d0.4CZ A B C[DF]	0.000	0.400	0.000	0.320	0.782	0.325	0.321	1.161	0.841
;	57	Cyl001	Perpendicular_d0.1 A	0.000	0.100	0.000	0.123	1.016	0.055	0.055	0.034	0.982
	45	Plane004	Flatness_0.1/#2	0.000	0.100	0.000	0.074	0.106	0.064	0.069	0.430	0.366
	49	Plane005	Flatness_0.1/#3	0.000	0.100	0.000	0.079	0.038	0.045	0.077	0.216	0.178
	40	Plane006	Flatness_0.1/#4	0.000	0.100	0.000	0.059	0.053	0.024	0.022	0.228	0.206
	65	Plane007	Flatness_0.1/#5	0.000	0.100	0.000	0.062	0.048	0.030	0.023	0.383	0.360
	64	Plane009	Flatness_0.1/#7	0.000	0.100	0.000	0.085	0.104	0.243	0.143	0.909	0.824
	66	Plane008	Flatness_0.2/#6	0.000	0.200	0.000	0.034	0.031	0.030	0.040	0.677	0.647
L	7	Width(3D)001	SurfaceProfile_0.03	0.000	0.030	0.000	0.106	0.542	0.076	0.065	0.117	0.477
/	/	Cyl001	SurfaceProfile_0.03/#8	0.000	0.030	0.000	0.070	0.681	0.023	0.050	1.113	1.090
/	44	Surf001	SurfaceProfile_0.4 A B C[DF]	0.000	0.400	0.000	0.915	1.561	1.081	1.094	1.689	0.774

Typical Issues: Measurement of holes

- surface to give an insufficient number of points to cover the hole surface
- Difficult to substitute a cylinder to establish a datum to the hole
 - Special treatment is needed.

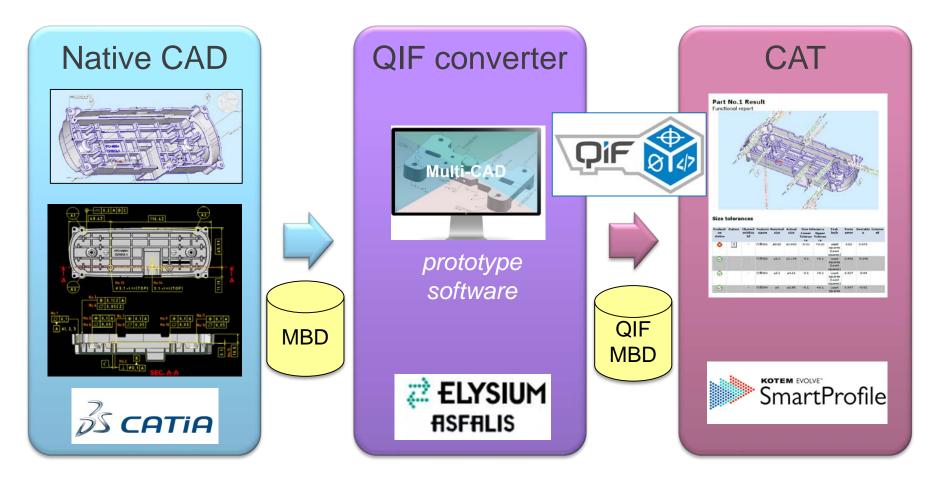

How to compute the substitute cylinder 1. Compute the center by fitting a circle

2. Compute the axis vector by fitting a plane to the top surface

Acceptance Judgment of Measurement Results

Key question?

- Do our guidelines contribute to improve measurement accuracy?
- Experience with the 1st guideline in 2018
 - Max 20 µm difference in measurement results between CMM with touch probe and noncontact measurement using the guideline

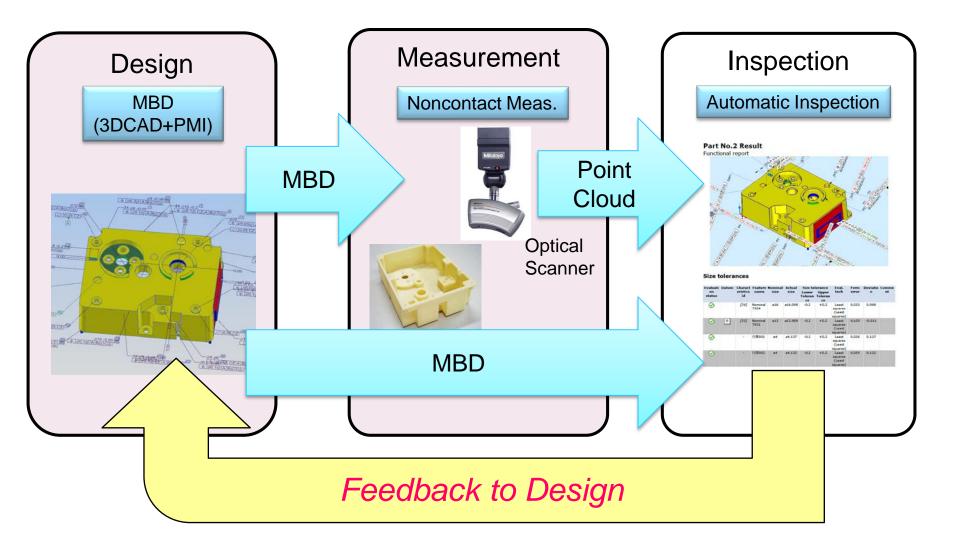


Investigate the measurement results with our new 2nd guideline.

2 guidelines

- 1. "Guideline for Contactless Measurement Data Processing", 2018
- 2. "Optical Non-Contact Measurement Procedure", 2019 *← Today's topic*

Data Flow from CAD to CAT


- MBD data of the test piece created by a native CAD system
- MBD data is converted to QIF MBD by a prototype software
- QIF MBD is transferred to a CAT software

Comparison of Noncontact and Contact Meas.

Contact Meas. CMM with touch probe)				Noncontact Meas.		Difference	Large planar features \triangle flatness tolerances < 150 µm \triangle position tolerances < 50 µm Note: noncontact measurement based on		
ID	Tol. Type	#points	CMM	Noncont.	Diff.	Feature	numerous point clouds is much more		
1	Flatness	10	0.061	0.201	0.140		realistic than those from touch probe measurement with small number of points.		
3	Position Flatness	8	0.036		0.153	Large plane	medsurement with small number of points.		
	Position	12	0.061	0.133	0.072				
6	Flatness	12	0.001	0.133	0.014		Small planar features		
7	Position	12	0.088		0.013		△flatness tolerances < 30 µm		
8	Flatness	12	0.003	0.025	0.023		\land \triangle position tolerances < 70 µm		
9	Position	12	0.177	0.072	-0.105	Small plane			
10	Flatness	12	0.011	0.044	0.033				
11	Position	12	0.164	0.076	-0.088		Cylinder feature of a side face		
12	Flatness	12	0.011	0.023	0.012		of a hole could not be		
2	Perpend.	24	0.168	N/A		Side of hole	evaluated its perpendicularity		
13	Radius	24	3.097	3.552	0.456	use	due to its deep interior.		
14	Width	6	3.095	3.586	0.491	susbstitution			
15	Height	6	10.536	10.528	-0.008				

Summary

- Standard procedure of noncontact measurement and that of data processing are proposed.
 - "Optical Non-Contact Measurement Procedure", 2019
 - "Guideline for Contactless Measurement Data Processing" (post-process of the contactless measurement)
- A feasibility study using realistic test models is conducted to evaluate these guidelines and to solicit comments.
 - 5 industrial members + 7 local government research institutes
- The effects of the guidelines were well evaluated.
- We will keep improving our guidelines and solving issues identified during the feasibility study.
- In addition, they are being proposed to DMSC so that it will be included in a future version of QIF.
- Project Info.
 - International Standardization Committee for Digital Manufacturing Innovation, Japan (2018-2020)

