AM Part Qualification by ICME Analysis and Real Time NDE Monitoring (Additive Manufacturing Science)

Frank Abdi¹, Rashid Miraj¹, Clement Tam¹, Isis Roche Rios², Vasyl Harik¹ ¹AlphaSTAR Corporation, Long Beach, CA, USA ²Raytheon Missile System, Tucson, AZ, USA

March 30, 2020

Technical Agenda

- 1. Motivation/Problem
- 2. Micro Structure Material Modeling
 - Gain Modeling (Diffusional Creep): Defects, Cracks, Oxidation, Surface Roughness
 - Mechanical Properties Prediction: Stress-Strain Curve, Effect of Voids
 - Fracture Fatigue Properties Prediction: Toughness, Fatigue Crack Growth
- 3. Process Model
 - Path Coverage: Defects
 - Residual Stress, Net Shape, shrinkage
 - Topology Optimization/DOE
- 4. Thermal Management:
 - Thermal State: Heat Affected Zone, Melt, Super melt, Super heated Cool, Sintering/Consolidation, Cooling
 - Material state: (density, void), and
 - Process Map (Power, Velocity, Temperature)
- 5. Qualification & Quality Assurance:
 - a) AM Properties: Scatter uncertainties
 - b) Service Loading: Static, Fracture control Plan, Fatigue, Life
- 6. Emerging Technology: In-Situ Monitoring
- 7. Conclusion

Void Detection Chamber Nozzle (Inconel-718)

[,] IphaSTAR

Key Challenges: to Polymer Additive/Reactive Manufacturing

A large number of variables can influence the number and locations of defects in the additively manufactured part.

Weak Fiber-Matrix Interphase

Delamination & Porosity

Cross-section of bloated specimer

Reactive: Bloating & Acid Formation

- Shrinkage and Warpage
- Cracks and Delamination
- High Porosity
- Interfacial Bonding
- Residual stress
- Wrinkles
- Fiber Waviness and Agglomeration
- Others

Cracks within/between Beads

These challenges can be addressed using ICME material modeling and print error management tool sets

Delamination

Wrinkle in Thermoset: due to residual stress, interphase, surface functionalization

Challenges in Metal AM

Defects Resulting From AM Process Related to Thermal Behavior

- High Residual Stresses
- Surface Roughness
- Voids and Cracks
- Oxidation
- Inconsistent Density
- Anisotropic Microstructure
- Mechanical Behavior

Surface Crack

200 µm

- Speed and Power Range (All Phenomena)
- Unfused Powder: Insufficient Melting
- Humping: Meltpool Length and Duration Humping: Meltpool Pile-up
- Gas Pores/Keyhole: Trapped Gas in Particles Swelling & Balling: Surface Tension Effects

Surface Roughness

Gas pores

Roughness, Netshape, Shrinkage

GENOA3DP – ADDRESSES METALS, POLYMERS, AND CERAMICS

Composite

Multi Material (ULTEM-Silver) Diffusion/Inclusion

Wing (Thermoplastic-PPS) Delamination/CTE

Ceramic Part (Binder Jet) PIP & Voids

UAV Wing (Titanium) Design Stress Free Support Structure

Heated Chamber Nozzle (Inconel) In-Situ Roughness

Box (Inconel) Roughness & Net Shape

Conformal HeX (steel) Weight Minimization, Thickness & Leakage

Mount Ring (Inconel 718) Roughness, Warpage, Base Plate & Support Design

and the second

5

Metal

In-Situ Monitoring

Benefit of Big Data Processing/Discovery: Monitor Defects in Real Time

Big Data Monitoring, Real-time Process

Visualization

- Surface Roughness by Profilometer
- Heat Affected Zone form IR Thermal Came
- Photo-Diodes: Meltpool, Plasma duration

Calculation

- Real-Time Calculation
 - > Heating, Meltpool, Solidification, Cooling
- Absorption of Laser Energy in Powder
- Microstructure and Voids

Surface Roughness from Laser Profilometer

IN718 Chamber Liner

..................

Roughness/Delamination

3D Visualization Anomaly Size/Intensity

IphaSTAR

Part Qualification Account for Defects

GENOA 3DP PathCoverage: Anomalies Visualization, Material Degradation

PathCoverage: Tracks Void (shape, size, distribution), Predicts Stiffness/strength Degradation Methodology: Inputs: bead width, gcode, FE mesh

— Superimpose G-code to FE mesh calculating material properties (strength/stiffness) degradation per element

GENOA 3DP Thermal Management (TMg) - Micro Scale

- A. Extremely fast calculation and high accuracy
- B. Predicts Thermal History (6 regions)

i) Heating, ii) Melting, iii) Melt-superheated iv) Superheatcooling v) Solidification/Sintering & vi) Cooling

C. Calculates Meltpool size/shape

Length, Width, & Depth

- D. Calculates transient material states Density, Volume of Solid (VOS), void ratios
- E. Predicts 3D dynamic process map (power, speed, vs. temperature)

safe/unsafe regions & optimum printing parameters to avoid defects due to Thermal behavior

F. Grain-boundary engineering (Beta-Release) Phase-Diagram, Crystallization, Temperature Time Transformation (TTT) Diagram, Continuous Cooling Transformation (CCT), Fine/Coarse Grains

Data Base:

Metal: Titanium, Steel(SS 316L), Inconel 718, AlSi10Mg Polymer: PA11, PA12, ABS (CF), ULTEM (9085, 1010), PLA

E. Process map

Case Study: Validated Dynamic Meltpool Evolution

Validated Dynamic Meltpool Depth & Width (Micro-scale): TMg vs. X-ray Image

Material: Ti-6AI-4V

Meltpool Depth vs. Time: 3DP TMg VS. X-Ray

Meltpool Depth/Width vs. Time: 3DP TMg VS. X-Ray

Validated Dynamic Meltpool Evolution, Power = 520 W, 3DP TMg VS. X-ray Image, Laser Powder Bed Fusion (LPBF)

ICME Workflow for Metal AM

Building Block Validation

AlphaSTAR Metal ICME Tool

Multi-Scale Modeling: Material, Process, Qualification

Global Local Modeling

Diffusional Creep: Predict Void, Oxidation, Residual Stress in local model

Part Qualification

Net Shape: Sensitivity to Bolt (Fixed Corner) Removal

3D Printing SS Curve Prediction vs. Test

DMLS Material Model, Nano Based Inclusion/Defects Algorithm

Output: Modulus, Strength, Longitudinal Stress-Strain Strength for Aligned (Orthotropic) Mechanical Properties (N/ (mm^2)) 05E03 1603 9.5E02 Strength 9502 8.5E02 8E02 7.5E02 7E02 6.5502 6E02 5.5E02 5E02 4.5E02 4E02 3.5E02 3E02 2.5E02 2E02 1.5E02 1E02 5201 DEDC \$11T S110 \$22T 6220 CODT 6126 Strength for Aligned (Orthotropic) Mechanical Properties 1.045050E+03 (N/(mm^2)) 1.045050E+03 (N/(mm^2)) 511T 511C 522T 522C 9.090330E+02 (N/(mm^2)) 9.090330E+02 (N/(mm^2)) \$33T 9.090330E+02 (N/(mm^2)) \$33C 9.090330E+02 (N/(mm^2)) \$125 6.817740E+02 (N/(mm^2)) \$135 6.817740E+02 (N/(mm^2)) \$235 6.742360E+02 (N/(mm^2)) SS Curve Ti 6Al 4V and the second second --- Wrought -Wrought with Air Particles ---- As-Built LENS Longitudinal Stress-Strain 2 5 3 4 True Strain EPS (%)

Input Properties for Ti-6AI-4V and Inclusion

1,100

1,000

900

800

700

600

\$ 500

100

3D Printing Fatigue Prediction vs. Test

Validation of Ti 6AI 4V – DMLS at Room Temp

 IphaSTAR

Allowable Generation: EBM Ti-6AI-4V

AM Test Data Scatter Predicted (Yield, Ultimate and Strain) at Room and 700F

- Print Direction will affect stiffness and strength properties
- Void Shapes and Sizes are key in determining properties
- Scatter (COV) Prediction was performed with acceptable results for Room and High Temperature

Prediction Vs. Test at RT Yield, Ultimate, Elongation

RT	YS, ksi	MCQ	%Diff	UTS, Ksi	MCQ	%Diff	El, %	MCQ	%Diff
Mean	141.1	142.1	-0.7	146.1	146.2	-0.1	13.9	12.6	9.4
SD	3.96	3.86	2.4	2.81	2.68	4.5	1.22	1.25	-2.6
COV (%)	2.81	2.72	3.1	1.92	1.83	4.6	8.78	9.76	-11.1
HT	YS, ksi	MCQ	%Diff	UTS, Ksi	MCQ	%Diff	El, %	MCQ	%Diff
Mean	78.1	75.3	3.5	96.0	87.7	8.6	19.1	18.2	4.9
SD	2.83	2.79	1.4	2.46	2.55	-3.8	0.84	0.91	-7.4
COV (%)	3.63	3.71	-2.2	2.56	2.91	-13.6	4.42	4.98	-12.9

SS Curves from MCQ Predictions

CDFs for Reliability

Part Qualification & Requirement

Qualification Categories

Qualification Category	Description
1-Micro defects	Micro voids/Density during thermal history, super melting
	sintering and solidification
2-Macro defects	Macro porosity: Printing error around hole and boundary
3-Surface roughness	Diffusional creep, Triaxial stress
4-Intergranular cracks	Diffusional creep, Biaxial stress
5-Scatter in material	Stress-strain relation (yield stress, ultimate/plastic strain) due
properties	to voids (micro/macro) and cracks
6-Fracture control plan	Characterization of fracture properties, fatigue crack growth,
	stress intensity curve
7-Warpage	Evaluation of support, Residual stress
8-Net shape	Residual stress, Baseplate removal
9-As-built performance	In-service loading
10-Post heat treatment	Grain growth, lower strain; thermal analysis

Primary Machine Parameters

ltem	Parameter	Description	Controled or Predefined
1	Average Power, P	Total Energy Output of Laser	Controlled
2	Scan Velocity, v	Velocity of laser across surface	Controlled
3	Scan Spacing, Ss	Distance between neighboring passes	Controlled
4	Scan Strategy	Pattern of laser scanning (spirals, zig-zag)	Controlled
5	Deposition System Parameters	Recoater vel, pressure, recoater type, closing	Controlled
6	Layer thickness, L	Height of single powder layer	Controlled
7	Powder bed temperature, Tp	Build temperature of powder bed	Controlled
8	Oxygen level, %O2	Likely most important environment parameter	Controlled
9	Gas flow velocity, vg	Influences convective cooling	Controlled
10	Ambient Temeprature, Tinf	Affecting cooling, reheat, and residual stress	Controlled

Netshape

Safety Margin

Roughness

Porosity

Part Distortion: ULTEM 9085

Materia

PAR⁻

AlphaSTAR

Allowable-Sensitivity Sensitivity Analysis

2E00

20

Service Loading Qualification & Damage Evolution

Multi-Scale Progressive Failure Analysis

Open-Hole Plate Part – Test

Open-Hole Plate Prediction

21

Load Displacement

Damages Type

Case Study: Warpage & Residual Stress Prediction

Stress buildup leads to Bracket and Support Warpage – Reduce Trial-Error, Scrap Rate Problems

Ring Bracket Built Using Inconel 718 Powder

Part

Good

Build -

3rd

Warping eliminated through simulation DOE: improved support design and optimized build parameters to reduce residual stresses

Mount Ring Virtual Quality Assessment

Layer 50 % Voids Content Computed

Net Shape, Defects

- Detailed stress model for part optimization
- Utilizes mapped void content

 reduced stiffness and strength
- QUALIFY AS BUILD PARTS

Voids detected form path coverage amount mapped to detailed stress model

2D/3D Defect Computed

Net shape scan (0.0164"in)

AlphaSTAR

Conclusion

ICME: Simulated AM Process Considering Defects and Inclusion

Metal Material Model:

- ✓ Effect of Defects,
- ✓ Mechanical Properties: Prediction (Strength-Stiffness) Fracture Properties,
- ✓ **Fracture Control Plan**: Toughness, Fatigue, Diffusional Creep, Allowables
- ✓ Creep Diffusion: Surface Roughness, Internal Voids and Defects.

Process Simulation for Residual Stress and Deflection:,

- ✓ Void and Defect Prediction and Effect on Mechanical Properties;
- Local Void/Roughness/Oxidation Models,
- ✓ **Path Coverage Module:** Detect Voids from Gcode/FEM, Predicts Reduced Properties

Qualification Service Model:

- ✓ Static, Fatigue, PSD, Impact
- ✓ Probabilistic Analysis Module: Consider Defects & Uncertainty to Qualify Printed Part

In-Situ Monitoring:

- ✓ Visualization & Calculation
- ✓ **Data Driven:** Profilometer and IR Thermograph Camera available on AM Printer
- ✓ Data Driven Thermal Management:
 - ✓ Heat Affected Zone, Melt Pool, Material State (Void, Density)
- **Surrogate Model Optimization Data or Simulation Driven Optimization**
- □ Integrated with CAE Standard:
 - ✓ ANSYS (Work Bench), ABAQUS (CAE Plug-In) , and NX NASTRAN

