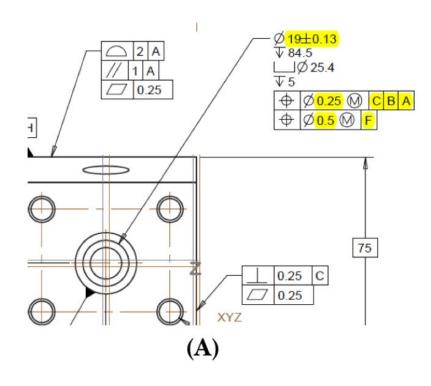
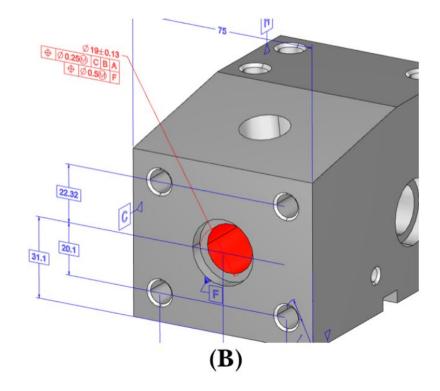


'The Cost of Enabling the Digital Thread'

Matthew F. Bowden Michael C. Jones 31 March, 2020

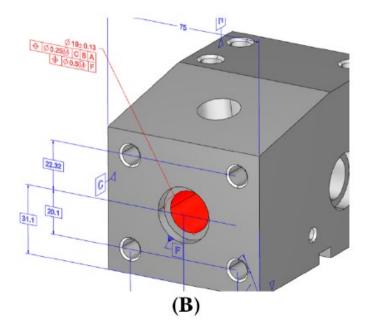
- Background
- Purpose
- Assumptions
- Method
 - Data Synopsis
 - Data Normalization Synopsis
- Analysis
- Conclusion
- Future Research
- Questions?


MBE – "an organization and/or an operation that uses model-based definitions (MBD) for the purpose of commissioning, operating, servicing, and decommissioning a product." (Hedberg et al, 2017)


MBD – "The practice of using 3D datasets containing the exact solid representation, associated 3D geometry and 3D annotations of a product's dimensions, tolerances, materials, finishes and other notes to specify a complete product definition." (MIL-STD-31000; ASME Y14.41)"

Digital Thread – a method "to convey the data flows between engineering, manufacturing, business processes, and across supply chains." (Hedberg et al, 2016)

2D Drawing vs. 3D MBD


Graphics obtained from Hedberg et al, 2016

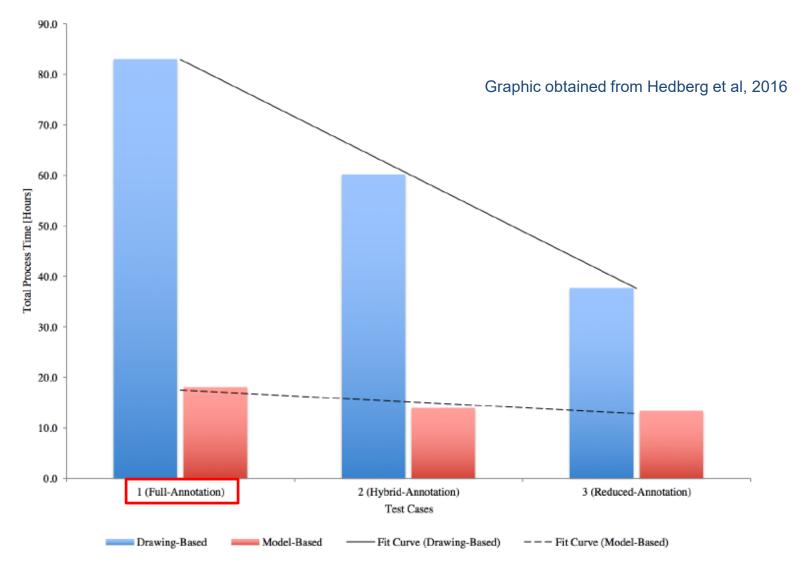
MBD

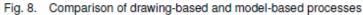
For Human Consumption

For Computer Consumption

<?xml version ="1.0" encoding="UTF-8"?> <ModelTree3D Version = "1.0"> <Node Name="DIM"> <Property Name="cadEntityId" Value="1339"/> <Property Name="dimensionText" Value="{0: n }{1:@D}{2: # 0.13}"/> <Property Name="dimensionType" Value="DIMTYPE DIAMETER"/> <Property Name="displayedValue" Value="19.000"/> <Property Name="gt1 gtolType" Value="GTOLTYPE POSITION"/> <Property Name="gt1 isComposite" Value="false"/> <Property Name="gtl isOverallTolerance" Value="true"/> <Property Name="gtl isPerUnitTolerance" Value="false"/> <Property Name="gt1 materialCondition" Value="GTOLMATCOND MMC"/> <Property Name="gt1 overallToleranceValue" Value="0.250000"/> <Property Name="gtl primaryBasicDatumName" Value="C"/> <Property Name="gtl secondaryBasicDatumName" Value="B"/> <Property Name="gtl showAllAroundSymbol" Value="false"/> <Property Name="gt1 showDiameterSymbol" Value="true"/>

(C)


Graphics obtained from Hedberg et al, 2016



'Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection' (Hedberg et al, 2016)

- Compared 2D DWG processes vs 3D MBD processes
 - Design -> Manufacture -> Inspect (for mechanical components)
- Three different test cases of varying level of annotations
 - Full, hybrid, and reduced annotations
- Findings: 3D MBD more efficient overall, but can be more labor some during design phase

Table 2. Observed time to annotate the design definition				
Test Case	Number of Characteristics	Drawing Time [hrs]	MBD Time [hrs]	Delta [hrs]
1	84	3.1	8.7	5.6
2	57	2.7	2.1	-0.6
3	53	2.2	2.0	-0.2
Total	194	7.9	12.8	4.9

Graphic obtained from Hedberg et al, 2016

- Fill literature gaps
 - Findings supported by **quantitative evidence** are limited
 - Findings supported by real-world/non-piloted evidence are limited
 - Quantitative analysis from a Systems Engineering use case/viewpoint
- Validate/Extend existing work
- Focus on ROI & potential counterproductiveness

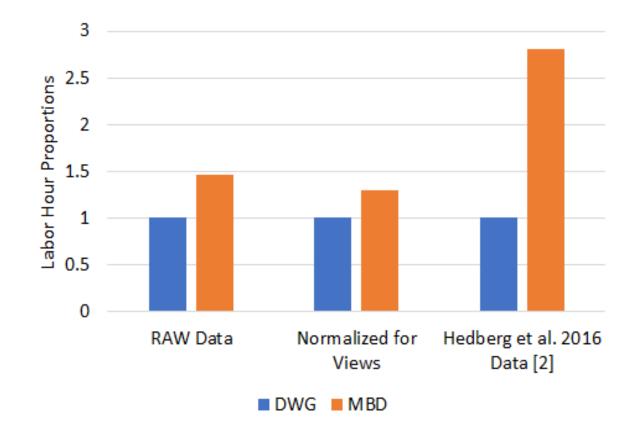
- model organization schema for MBD data include annotations and no attributes (as defined by ASME Y14.47)
- the data sets best compare to the full annotations test case of Hedberg et al.'s 2016 [2] study
- model organization schema for the MBD data sets are for human consumption
- the scope of all data sets is inclusive of annotating the design definition only
- learning curves are non-existent as both the 2D DWG and 3D MBD are not new to the designers/engineers
- both the 2D DWGs and 3D MBD geometric models were created in the same CAD environment using the same business rules
- both the 2D DWGs and 3D MBD have dimensions and tolerances in accordance with ASME Y14.5

Stepped approach conducted in three parts:

- 1) Validation of existing research on MBD
 - Comparison of 2D vs 3D Design Effort for Mechanical Components using real-world data (raw and normalized data)
- 2) Extending the existing research...
 - Comparison of 2D vs 3D Design Effort for Varying Types of Drawing Formats using real-world data (raw and normalized data)
- 3) Extending the existing research...
 - Comparison of the trends between Part 1 and Part 2

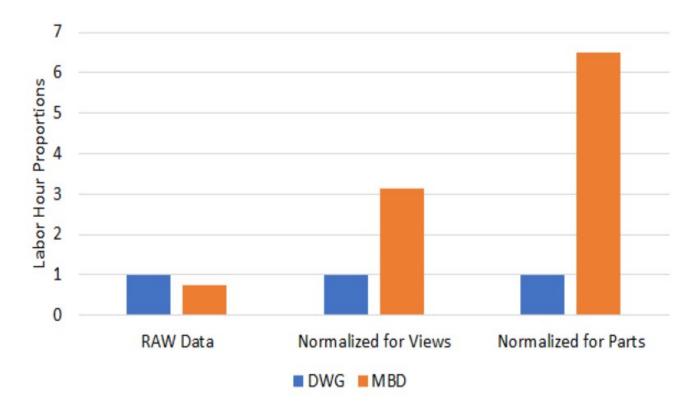
The data being used is suitable for the comparison as...

- products for the 2D DWG and 3D MBD practices are of similar content, size and complexity
- 2D DWG data were annotated using MIL-STD-100G and ASME Y14.5
- 3D MBD data were annotated using MIL-STD-31000A and ASME Y14.5

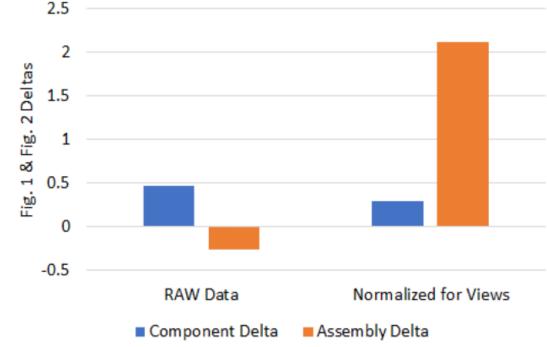


Data Normalization Synopsis

- Part 1 & 3
 - Normalized for number of views
- Part 2
 - Normalized for number of views
 - Normalized for number of parts
- Using ASME Y14.47 it was determined that the MBD was ...
 - maturity states of M3 (i.e. production)
 - geometry states of G3 (full)
 - annotation and attribute states of A3 (full)


Part I – Validate Hedberg et al, 2016 findings

Comparison of 2D DWG and 3D MBD Design Efforts for Components


Part 2 – Extending existing research

Comparison of 2D DWG and 3D MBD Design Efforts for Assemblies

Part 3 – Comparison of the trends between Part 1 and Part 2a

Comparison of 2D vs 3D Proportion Trends Between Components and Assemblies

- Part 1
 - Partially validates Hedberg et al, 2016's work
 - Sets a benchmark for the study and validates data
- Part 2
 - Suggests the trends found by Hedberg et al, 2016 are consistent at the assembly level
- Part 3
 - Inconclusive due to affects of unknown variables

Future Research

- Compare 2D DWG vs 3D MBD assemblies in a controlled environment
- Compare 2D DWG vs 3D MBD for varying engineering disciplines
- Extend the research of this paper to the manufacturing and inspection phases to calculate ROI
- Investigate the benefits of MBD throughout the change process

QUESTIONS?

- T. Hedberg, J. Lubell, L. Fischer, L. Maggiano and A. B. Feeney, "Testing the digital thread in support of model-based manufacturing and inspection," Journal of Computing and Information Science in Engineering, p. 16(2), 2016.
- Department of Defense, Department of Defense Standard Practice for Engineering Drawings: MIL-STD-100G, 1997.
- American Society of Mechanical Engineers, Dimensioning and Tolerancing. ASME Y14.5-2009, 2009.
- Department of Defense, Department of Defense Standard Practice Technical Data Packages: MIL-STD-31000A, 2013.
- American Society of Mechanical Engineers, "Model Organization Practices ASME Y14.47-2019," 2019.