Influence of Dispositional and Situational Factors on Human Perceptions of Fire Risk

Justin W. Bonny Isaac T. Leventon

Some of the data in this presentation has not been through the NIST review process and should be considered experimental and/or draft results.

Pre-Evacuation Behavior During Egress

Introduction

Background

PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

- A growing number of fire and life safety codes provide performance-based design options¹
 - Egress calculations are increasingly a part of performance-based analyses²
- Pre-action processes play an important role in egress planning
 - Can lead to delays in taking action in response to an emergency²¹
 - May be a more important element of required escape time than the time needed to move to a safe place 7,8
 - Significant impact on required safe egress time (RSET)

Pre-Evacuation Behavior During Egress

Introduction

Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Comprehensive egress models exist that account for individual differences in occupant decision making processes 4-6
 - Fidelity of human behavior in response to fire cues incorporated within models is still limited¹⁶
 - Including behavioral theories of human decision making can improve the timing of pre-evacuation actions in egress models regarding ¹⁷
 - Humans can fail to perceive signs of a hazardous event as indicative of risk ¹⁹
 - Normalcy bias: tendency of individuals to fail to recognize aberrant signals (e.g., smoke) as abnormal
 - Can lead to delays in responding to an emergency ¹⁷
 - Further research is needed to identify individual differences that influence decision making ¹²

Framework for Occupant Response During Emergency

Introduction

Background PADM Purpose of Study

Methods

Judament Task Participant Information

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

The Protective Action Decision Model (PADM) describes processes that individúals may engage in when encountering hazard cues¹⁸

Figure 1. Portions of PADM (adapted from Lindell & Perry, 2012).

Framework for Occupant Response During Emergency

Introduction

Background **PADM** Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Dispositional traits and situational factors can affect:
 - Perception of cues as indicative of risk²⁰
 - Decision making regarding whether such cues warrant taking protective action²¹
- Supporting evidence for the order of PADM processes consists of post-hoc interviews and observational data¹⁷
 - Open questions remain regarding the extent to which perceptions and judgments when viewing fire cues are influenced by dispositional traits and situational factors

Focus of this Study

Introduction

Background PADM **Purpose of Study**

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Psychophysical models used to assess the point during fire growth at which individuals viewing developing fires reliably perceived:
 - Deviation from normalcy
 - Risk was present

8/23/2019

Interflam 2019

- Protective action required
- Correlational analyses examined whether individual differences in judgments were connected to variations in dispositional traits (e.g., temperament, risk-taking)

engineering

Impact of this Study

Introduction

Background PADM **Purpose of Study**

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Develop a framework to *quantify* occupant perceptions of fire scenarios
- Use results to inform models of risk perception in emergency scenarios
 - May enable *prediction* of evacuee behavior, accounting for individual differences in dispositional traits
- Hypothesis: As intensity of fire cues increase in room fires, the point at which changes in judgments occur will align with the PADM

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

Fixation

0.8 s

Room Fire 4.0 s

Word Response (does word match image?)

Participants presented with room fire images and asked whether a presented word did or did not match the image

8

8/2

Interflam 2019

8/23/2019

engineering laboratory

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

8/23/2019

Interflam 2019

Fixation

0.8 s

Room Fire 4.0 s

Word Response (does word match image?)

Each participant completed task on all 216 combinations of 36 images (4 scenes, 9 images per scene) and 6 stimuli (prompt words)

9

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

- Images were taken during different stages of fire development in realistically furnished rooms
 - Two bedroom scenes and two kitchen scenes

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

 Images were taken during different stages of fire development in realistically furnished rooms

- Nine images per scene
- Apparent fire size/intensity varied

Kitchen 1

time

Sequence Number

1

9

Interflam 2019

Bedroom 1

Bedroom 2

11

8/23/2019

engineering laboratory

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

A_{flame} calculated for two scenes

- Proportion of image area occupied by visible flames (Min = 0.00; Max = 0.80)
- Metric for quantifying apparent flame size

Fire Development (increasing A_{flame})

8/3

Interflam 2019

8/23/2019

engineering laboratory

8/23/2019

Interflam 2019

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Tobii X3–120 eye tracker and software used to present task
 - Eye fixation data was collected, beyond scope of talk
- Words presented following each image, were selected to reflect earlier versus later processes associated with human responses to emergencies

Category	Sti	muli
Normalcy	Normal	Ordinary
Risk	Danger	Emergency
Protective Action	Evacuate	Flee
		611

engineering

laboratory

National Institute of Standards and Technology U.S. Department of Commerce

Participant Information

Introduction Background PADM Purpose of Study

Methods

Judgment Task
Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

• Forty participants

- Undergraduate students from mid-sized university in the Baltimore-Washington metropolitan area (USA)
- Received course credit for completing study
- Demographics
 - Age = 20.6 ± 2.3 years
 - Sex: Female, N = 35; Male, N = 5
 - Race:
 - Black (N = 37 including 4 Hispanic)
 - White (N = 2 including 0 Hispanic)
 - Mixed race (N = 1 including 0 Hispanic).
- Research protocol was approved by an institutional review board (IRB)

Dispositional Measures

Introduction Background PADM Purpose of Study

Methods

Judgment Task **Participant Information**

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

- Adult Temperament Questionnaire
 - 77-item questionnaire used to assess aspects of adult temperament ²⁶
 - For each item, individuals judged the extent to which a statement described themselves
 - Focused on four factors ²⁷:
 - Fear
 - Discomfort •
 - Attentional control
 - Neutral perceptual sensitivity

Dispositional Measures

Introduction Background PADM Purpose of Study

Methods

Judgment Task
Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

Risk–Taking Questionnaire

- 18 item questionnaire, observed to reliably assess²⁵ the extent to which young adults engage in risky behaviors
- For each item, participants indicated whether they agreed or disagreed that a statement applied to themselves
- Scores were summed into two subscales

engineering

laboratory

- Behavior
- Assessment

8/23/2019

Eye Fixations

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

Interflam 2019

Eye Fixations

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Time to first fixation
 - Elapsed time to initial eye fixation to visible flame in image

• Linear regression

8/23/2019

Interflam 2019

- Sequence: #(4132.739) = -14.560, p < .001

Eye Fixations

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Total Fixation Duration
 - Total duration of eye fixations to visible flame in image

• Linear regression

Interflam 2019

- Sequence: #(7630.540) = 33.022, p < .001

Introduction

Background PADM

Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

National Institute of Standards and Technology U.S. Department of Commerce

20

- Introduction Background PADM
 - Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

• Response coding:

- Normalcy, no risk, no protective action = 0
- Deviation from normalcy, risk, protective action = 1

Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- **Binomial Regression** •
 - Sequence N: $\chi^2(1) = 70.936$, p < 0.001
 - Word type: $\chi^2(2) = 70.947$, $\rho < 0.001$
 - Sequence N × Word type: $\chi^2(2) = 29.871$, $\rho < 0.001$

- Planned Contrasts (p's < .001)
 - Word type (Intercept):
 - Deviation from Normalcy > Risk > Protective Action
 - Sequence N \times Word type (Slope):
 - Deviation from Normalcy > Risk > Protective Action

Introduction

Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

Introduction Background

PADM

Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

Evidence of situational effects

8/23/2019

Interflam 2019

- Slopes / intercepts varied by scene
- Can analyze effects of word type on slope, intercept using the average across scenes

engineering

laboratory

Threshold Analysis

8/23/2019

• Threshold:

Interflam 2019

 Point at which participants reliably (75%) judged a word applied to an image

engineering

laboratory

Threshold Analysis

- Planned Contrast (Sequence Number)
 - #(58.948) = 7.400, p < 0.001

8/23/2019

Interflam 2019

 Deviation from Normalcy < Risk < Protective Action

• Binomial Regression

- Sequence N: $\chi^2(1) = 70.936$, $\rho < 0.001$
- Word type: $\chi^2(2) = 70.947$, $\rho < 0.001$
- Sequence N × Word type: $\chi^2(2) = 29.871$, $\rho < 0.001$

Threshold Analysis

• Bootstrap analysis (A_{flame})

8/23/2019

- Bedroom 1 and Kitchen 1
- 973 iterations

Correlational Analyses

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses

Dispositional Traits

Conclusions and Future Work

• Significant correlations:

8/23/2019

Interflam 2019

- Deviation from normalcy and risk thresholds
- Risk and protective action thresholds

Factor	1	2
1-Deviation from normalcy Threshold		
2-Risk Threshold	0.502	
3-Action Threshold	0.289	0.545

Correlational analyses (Pearson *r* statistic) examined the strength of linear relations between individual variations in <u>word type thresholds</u> and scores on temperament and risk taking <u>questionnaires</u>

engineering laboratory

Correlational Analyses

Introduction Background PADM Purpose of Study	 Significant correlations: – Risk threshold and Discomfort 			
Methods Judgment Task Participant Information	Factor	1-Normalcy	2-Risk	3-Action
	4-ATQ Fear	0.075	0.199	0.05
Results and Discussion	5- ATQ Discomfort	0.248	0.381	0.178
Task Responses Dispositional Traits Conclusions and Future Work	6-ATQ Attentional Control	0.236	0.095	-0.055
	7-ATQ Neutral Perceptual Sensitivity	0.238	0.036	0.042
NIST National Institute of Standards and Technology U.S. Department of Commerce	8-RT-18 Assessment	0.036	0.112	-0.001
	9-RT-18 Behavior	-0.048	0.012	0.075

8/23/2019

Interflam 2019

engineering laboratory

Conclusions

Introduction Background PADM Purpose of Study

Methods

Judament Task Participant Information

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

- Methodology developed to quantify decision making when presented with visual fire cues
- Results suggest judgments of visual cues can be used to examine how humans perceive a fire-related emergency
 - Performance aligns with earlier and later stages of the PADM¹⁷ as well as previous observational and self-report evidence collected from fire-related emergencies²⁰

Interflam 2019

Conclusions

Introduction Background PADM Purpose of Study

Methods

Judament Task Participant Information

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

- Strong positive correlation between:
 - Deviation from normalcy and risk thresholds
 - Indicates that participants who judged images with ٠ less intense fire cues as indicative of risk also judged images as indicative of protective action with less intense cues
 - Demonstrates that normalcy biases can influence when individuals identify cues as indicative of an emergency ²¹

Risk and protective action thresholds

- Aligns with stages of the PADM: when individuals ٠ decide a situation poses an imminent risk, they are more likely to take protective action ¹⁷
- Risk threshold and discomfort temperament
 - Greater negativity towards sensory stimulation
 - \rightarrow more time needed to identify images as indicative of risk

Interflam 2019

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

- Provide participants with scenarios that emphasize the potential risk to others
 - May better determine whether temperament of individuals influences judgment
- Virtual reality can increase perceived presence in an environment²⁹
 - 3D immersive videos available (e.g., wildfires, in-room kitchen fires)
- Can an artificial environment simulate real videos?
 - Ability to control exact fire size, environment

Interflam 2019

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Determination of which stages of PADM judgment words most directly align with
 - Consider different words to elucidate more refined differentiations in stages of the process, beyond broad steps of normal/risk/take protective actions
- Compare vs. actual fire size (i.e., Heat Release Rate, HRR, not A_{flame})
- Use study to separately determine participants' perception/estimation of rate of fire growth
- Move Survey online

Interflam 2019

 Larger numbers of participants, better statistical information regarding impact of dispositional factors

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses Dispositional Traits

Conclusions and Future Work

- Fire risk often perceived by non-visual cues (e.g., other sensory modalities, such as smell)⁸
 - Open questions remain as to whether patterns in performance observed in the present study would be observed when using fire cues of different, or multiple, sensory modalities

engineering

- Incorporate these results into actual egress models
 - Impact on response (i.e., predicted egress time, calculation of RSET)

8/23/2019

References

Introduction Background	1	G. V. Hadjisophocleous, N. Benichou, A.S. Tamim, Literature review of performance-based fire codes and design environment, J. Fire Prot. Eng. 9 (1998) 12–40. doi:10.1177/104239159800900102.
	2	B.J. Meacham, R.L.P. Custer, Performance-based fire safety engineering: An introduction of basic concepts I Fire Prot Eng. 7 (2007) 35–54. doi:10.1177/104239159500700201
Purpose of Study	3	S. Gwynne, E.R. Rosenbaum, Employing the hydraulic model in assessing emergency movement, in: M. Hurley (Ed.), SFPE Handb. Fire Prot. Eng. Fifth Ed., 2016: pp. 2115–2151. doi:10.1007/978-1-
Methods		4939-2565-0_59.
Judament Task	4	P. Reneke, Evacuation Decision Model (NIST IR 7914), Gaithersburg, MD, 2013.
Participant Information	5	R. Lovreglio, E. Ronchi, D. Nilsson, An Evacuation Decision Model based on perceived risk, social influence and behavioural uncertainty, Simul. Model. Pract. Theory. 66 (2016) 226–242. doi:10.1016/j.simpat.2016.03.006.
Results and Discussion	6	R. Lovreglio, E. Ronchi, D. Nilsson, A model of the decision-making process during pre-evacuation,
Task Perpanses		Fire Saf. J. 78 (2015) 168–179. doi:10.1016/j.firesaf.2015.07.001.
	7	J. Bryan, A selected historical review of human behavior in fire, Fire Prot. Eng. 16 (2002) 4–10.
Dispositional Iraits	8	M. Kobes, I. Helsloot, B. de Vries, J.G. Post, Building safety and human behaviour in fire: A literature review, Fire Saf. J. 45 (2010) 1–11. doi:10.1016/j.firesaf.2009.08.005.
Conclusions and Future Work	9	P. Brennan, Timing Human Response In Real Fires, in: Proc. Fifth Int. Symp. Fire Saf. Sci. (IAFSS 5). International Association for Fire Safety Science, 1997; pp. 807–818. doi:10.3801/jafss.fss.5-807
	10	 P. Brennan, Modelling cue recognition and pre-evacuation response, in: Proc. Sixth Int. Symp. Fire Saf. Sci. (IAFSS 6), International Association for Fire Safety Science, 2000: pp. 1029–1040. doi:10.3801/JAESS ESS 6-1029
	11	M Liu S M Lo. The quantitative investigation on people's pre-evacuation behavior under fire
		Autom. Constr. 20 (2011) 620–628. doi:10.1016/j.autcon.2010.12.004.
	12	E. Kuligowski, Burning down the silos: Integrating new perspectives from the social sciences into human behavior in fire research. Fire Mater 41 (2017) 389–411. doi:10.1002/fam.2392
	13	P.G. Wood The Behaviour of People in Fires 1972
	14	J. Bryan, Smoke as a determinant of human behavior in fire situations, University of Maryland.
		College Park, 1977.
National Institute of Standards and Technology U.S. Department of Commerce	15	O.F. Thompson, E.R. Galea, L.M. Hulse, A review of the literature on human behaviour in dwelling fires, Saf. Sci. 109 (2018) 303–312. doi:10.1016/j.ssci.2018.06.016.

Interflam 2019

engineering laboratory

References

Introduction	16	E.D. Kuligowski, S.M.V. Gwynne, M.J. Kinsey, L. Hulse, Guidance for the model user on representing
Background	17	human behavior in egress models, Fire Technol. 53 (2017) 649–672. doi:10.100//s10694-016-0586-2. E. Kuligowski, Predicting human behavior during fires. Fire Technol. 49 (2013) 101–120
PADM		doi:10.1007/s10694-011-0245-6.
Purpose of Study	18	M.K. Lindell, R.W. Perry, The protective action decision model: Theoretical modifications and additional
	19	evidence, Risk Anal. 32 (2012) 616–632. doi:10.1111/j.1539-6924.2011.01647.x.
	17	N.C. McConnell, K.E. Boyce, J. Snields, E.R. Galea, R.C. Day, L.M. Hulse, The UK 9/11 evacuation study: Analysis of survivors' recognition and response phase in WTC1. Fire Saf. J. 45 (2010) 21–34
Methods		doi:10.1016/i.firesaf.2009.09.001.
Judgment Task	20	M.T. Kinateder, E.D. Kuligowski, P.A. Reneke, R.D. Peacock, Risk perception in fire evacuation
Participant Information		behavior revisited: definitions, related concepts, and empirical evidence, Fire Sci. Rev. 4 (2015) 1–26.
	21	doi:10.1186/s40038-014-0005-z.
Results and Discussion	21	M.J. Kinsey, S.M.V. Gwynne, E.D. Kuligowski, M. Kinateder, Cognitive Blases within Decision Making During Fire Evacuations, Fire Technol (2018) 1–22, doi:10.1007/s10694-018-0708-0
Task Responses	22	E.D. Kuligowski, The Process of Human Behavior in Fires, 2009.
Dispositional Traits	23	D.C. Schwebel, K.K. Ball, J. Severson, B.K. Barton, M. Rizzo, S.M. Viamonte, Individual difference
Dispositional traits		factors in risky driving among older adults, J. Safety Res. 38 (2007) 501-509.
	24	doi:10.1016/j.jsr.2007.04.005.
Conclusions and Future Work	24	D.C. Schwebel, D. Stavrinos, E.M. Kongable, Attentional control, high intensity pleasure, and risky pedestrian behavior in college students. Accid. Anal. Prev. 41 (2009) 658–661
		doi:10.1016/j.aap.2009.03.003.
	25	L. de Haan, E. Kuipers, Y. Kuerten, M. van Laar, B. Olivier, J.C. Verster, The RT-18: a new screening
		tool to assess young adult risk-taking behavior., Int. J. Gen. Med. 4 (2011) 575-84.
	26	doi:10.2147/IJGM.S23603.
	20	M.K. Kotnoart, D.E. Evans, S.A. Anadi, Temperament and personality: Origins and outcomes, J. Pers. Soc. Psychol. (2000). doi:10.1037/0022-3514.78.1.122
	27	D. Derryberry, M.K. Rothbart, Arousal, affect, and attention as components of temperament., J. Pers. Soc.
		Psychol. 55 (1988) 958–966. doi:10.1037/0022-3514.55.6.958.
	28	K. Knoblauch, L.T. Maloney, Modeling psychophysical data in R, Springer-Verlag, New York, NY,
	29	2012. doi:10.1007/978-1-4614-4475-6.
Standards and Technology MORCAN	27	virtual environments. CyberPsychology Behav. 6 (2003) 181–188
U.S. Department of Commerce STATE UNIVERSITY		

Interflam 2019

engineering laboratory

Introduction Background PADM Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses **Dispositional Traits**

Conclusions and Future Work

Results

Introduction Background PADM

Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Task Responses

Dispositional Traits

Conclusions and Future Work

• Plot of set of curves for one scenario

- Intro each data point, what the solid lines are (logistic curves) what the horizontal line is (75% threshold), how normalcy is flipped to reflect deviation from normalcy
- If all the same, say so, then so average
- If notable differences, show all four as a split screen
- Task responses

- Effect of sequence number
- Interaction between sequence number and word category
- Linear contrast codes (order of deviation, risk, action)
- Bootstrap analysis
- Discuss limitations + future analysis goals
- Threshold questionnaire scores (individual diffs)
 - Model vs. individual response, planned contrast
 - Proper description/overview of the math
 - Big old table highlighting all the factors
 - Highlight/bold key correlations of interest
 - Discuss limitations + future analysis goals

Pre-Evacuation Behavior During Egress

What is the what?

The Protective Action Decision Model

Fig. 1. Information flow in the PADM. Source: Adapted from Lindell & Perry (2004).

Interflam 2019

Introduction

PADM

Background

8/23/2019

engineering laboratory

617

Introduction

Background PADM of Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Header 1 Header 2 Header 3

Conclusions and Future Work

• Fixation (800 ms)

Introduction

Background PADM of Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Header 1 Header 2 Header 3

Conclusions and Future Work

• Room Fire Image (4000 ms)

8/23

Interflam 2019

8/23/2019

Introduction

Background PADM of Purpose of Study

Methods

Judgment Task Participant Information

Results and Discussion Header 1 Header 2 Header 3

Conclusions and Future Work

• Word Response

Interflam 2019

engineering

laboratory

