Modeling the Rheological Properties of Concrete

Nicos Martys
James Sims

Input

- •Cement Paste
 - -Viscosity
 - -Yield stress
- •Aggregates
 - grading
 - concentration

Prediction

Output

Mortar/concrete

- Viscosity
- •Yield stress

Viscosity vs. Solid Concentration

What is Concrete?

- Aggregates: 1- 20 mm
- Sand: 0.5 1 mm
- Fine fillers: $< 5 \mu m$
- Cement: 1-100 μm
- Water
- Chemical admixtures

Divide and Conquer

- Cement Paste: Water + Cement Particles + Admixtures + ...
- Mortar: Cement + Sand
- Concrete: Mortar + Aggregate

Dissipative-Particle-Dynamics

- Mesoscopic particles represent clusters of molecules.
- Interactions conserve mass and momentum, isotropic and Galilean invariant produce hydrodynamic behavior consistent with Navier-Stokes equations.
- Molecular Dynamics: Brownian motion + velocity dependent dissipation.

Dissipative Particle Dynamics

$$\vec{p}_i' = \vec{p}_i + \sum \Omega_{ij} \vec{e}_{ij}$$

$$\vec{r}_i' = \vec{r}_i + \frac{dt}{m_i} \vec{p}_i'$$

$$\Omega_{ij} = W(|\vec{r}_i - \vec{r}_j|) \{ \Pi_{ij} - \mathbf{w}(\vec{p}_i - \vec{p}_j) \cdot \vec{e}_{ij} \}$$

Suspension of spherical aggregates

Technology Administration, U.S. Department of Commerce

Tracking of particle motion

Relative viscosity vs. packing fraction

de Kruif, van Lersel, Vrij, Russel

Tumbling of an aggregate under shear

Jeffrey's tumble

Ellipsoidal aggregates under shear

High solid fraction suspension under shear

Flow under gravity between rebars

Future Work

- Larger particle size distribution
- Add inter-particle interactions
- Model flow in more complex geometries
- Flow around rebars
- Multiphase flow

