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ABSTRACT
The lattice Boltzmann method is a promising approach for modeling single and

multicomponent fluid flow in complex geometries like porous materials. Here, we
review some of our previous work and discuss some recent developments concern-
ing fluid flow in multiple pore size materials. After presenting some simple test
cases to validate the model, results from large scale simulations of single and multi-
component fluid flow through digitized Fountaine sandstone, generated by X-Ray
microtomography, are given. Reasonably good agreement was found when compared
to experimentally determined values of permeability for similar rocks. Finally, mod-
ification of the lattice Boltzmann equations, to describe flow in microporous ma-
terials, is described. The potential for modeling flows in other microstructures of
interest to concrete technology will be discussed.

INTRODUCTION
Diffusive and moisture transport in porous materials like ceramics, concrete,

soils, and rocks plays an important role in many environmental and technological
processes [1]. For example, the service life and durability of concrete can depend
on the rate of ingress of chloride ions while the diffusion of carbon dioxide controls
the rate of carbonation of the cementitious matrix. Further, such processes depend
on the degree of saturation of the porous medium. The detailed simulation of such
transport phenomena, subject to varying environmental conditions or saturation,
is a great challenge because of the difficulty of modeling fluid flow in random pore



geometries and the proper accounting of the interfacial boundary conditions. In
this paper, we will review [2] some recent advances in the modeling of fluid flow
in complex geometries using the discrete Boltzmann methods. Discrete or lattice
Boltzmann methods (LB) have emerged as a powerful technique for the computa-
tional modeling of a wide variety of complex fluid flow problems including single
and multiphase flow in complex geometries. These methods naturally accommodate
a variety of boundary conditions such as the pressure drop across the interface be-
tween two fluids and wetting effects at a fluid-solid interface. Since the LB method
can be derived from the Boltzmann equation, its physical underpinnings can be un-
derstood from a fundamental point of view. Indeed, discrete Boltzmann methods
serve as an ideal mesoscopic approach that bridges microscopic phenomena with
the continuum macroscopic equations. Further, it can be directly implemented as
a numerical method to model the time evolution of such systems. Finally, the LB
method generally needs nearest neighbor information, at most, so is well suited to
take advantage of parallel computers.

An outline of the paper goes as follows. After a brief review of the theory of the
LB method, results are presented to validate predictions of fluid flow through a few
simple pore geometries. Large scale simulations of fluid flow through a Fontainebleau
sandstone microstructure, generated by X-ray microtomography, will then be pre-
sented. Single phase flow calculations were carried out on systems containing 5103

computational elements. We also calculate relative permeability curves as a func-
tion of fluid saturation and driving force. The next section describes solution of
the Brinkman equation using a lattice Boltzmann based approach. Finally, a com-
parison of the performance of such codes on different computational platforms is
presented.

A LATTICE BOLTZMANN MODEL OF MULTICOMPONENT FLUIDS
The LB method of modeling fluid dynamics is actually a family [3] of models

with varying degrees of faithfulness to the properties of real liquids. These methods
are currently in a state of evolution as the models become better understood and are
corrected for various deficiencies. The approach of LB is to consider a typical volume
element of fluid to be composed of a collection of particles that are represented in
terms of a particle velocity distribution function at each point in space. The particle
velocity distribution, ni

a(x, t), is the number density of particles at node x, time t,
with velocity, ea, where (a = 1, ..., b) indicates the velocity direction and superscript
i labels the fluid component. The time is counted in discrete time steps, and the
fluid particles can collide with each other as they move under applied forces.

For this paper we use the D3Q19 (3 Dimensional lattice with b = 19) lattice[4,5].
The microscopic velocity, ea, equals all permutations of (±1,±1, 0) for 1 ≤ a ≤ 12,
(±1, 0, 0) for 13 ≤ a ≤ 18, and (0, 0, 0) for a = 19. The units of ea are the lattice
constant divided by the time step. Macroscopic quantities such as the density,
ni(x, t), and the fluid velocity, ui, of each fluid component, i, are obtained by taking
suitable moment sums of ni

a(x, t). Note that while the velocity distribution function



is defined only over a discrete set of velocities, the actual macroscopic velocity field
of the fluid is continuous.

The time evolution of the particle velocity distribution function satisfies the
following LB equation:

ni
a(x + ea, t + 1) − ni

a(x, t) = Ωi
a(x, t) − gi

a, (1)

where Ωi
a is the collision operator representing the rate of change of the particle

distribution due to collisions and gi
a is body forcing term. The collision operator is

greatly simplified by use of the single time relaxation approximation[6,7]

Ωi
a(x, t) = −1

τ i

[

ni
a(x, t) − ni(eq)

a (x, t)
]

, (2)

where n
i(eq)
a (x, t) is the equilibrium distribution at (x, t) and τi is the relaxation

time that controls the rate of approach to equilibrium. The equilibrium distribution
can be represented in the following form for particles of each type [5,8]:

ni(eq)
a (x) = tan

i(x)

[

3

2
(1 − do) + 3ea · v +

3

2
(3eaea : vv − v2)

]

(3)

n
i(eq)
19 (x) = t19n

i(x)

[

3do −
3

2
v2

]

, (4)

where

v =

∑S
i mi

∑

a ni
aea/τi

∑S
i mini(x)/τi

, (5)

S is the number of fluid component, mi is the molecular mass of the ith component,
ta = 1/36 for 1 ≤ a ≤ 12, ta = 1/18 for 13 ≤ a ≤ 18 and t19 = 1/3 . The free
parameter do can be related to an effective temperature, T , for the system by the
following moment of the equilibrium distribution:

T (x, t) =

∑

a n
i(eq)
a (x, t)(ea − v)2

3ni(x, t)
, (6)

which results in T = (1 − do)/2 (we take units such that the Boltzmann constant
kb = 1).

The above formalism leads to a velocity field that is a solution of the Navier-
Stokes [7] equation with the kinematic viscosity, ν = c2

6 (
∑S

i ciτi − 1
2) where ci is the

concentration of each component [8].



Phase Separation of Fluids
There are a variety of approaches to modeling the phase separation of fluids [3,9].

In the Shan-Chen model, a force, dpi

dt
(x), between the two fluids is introduced that

effectively perturbs the equilibrium velocity [4,5] for each fluid so that they have a
tendency to phase separate:

ni(x)v
′

(x) = niv(x) + τi
dpi

dt
(x) (7)

where v′ is the new velocity used in Eqs. [3] and [4]. A simple forcing that depends
on the density of each fluid, is as follows [4,5]:

dpi

dt
(x) = −ni(x)

S
∑

i′

∑

a

Ga
ii′n

i′(x + ea)ea (8)

with Ga
ii′ = 2G for |ea| = 1; Ga

ii′ = G for |ea| =
√

2; and Ga
ii′ = 0 for i = i′.

G is a constant that controls the strength of the interaction. Clearly, the forcing
term is related to the density gradient of the fluid. It has been shown that the
above forcing term can drive the phase separation process and naturally produce an
interfacial surface tension effect consistent with the Laplace law boundary condition
[5].

Phase separation of fluid can also be modeled by directly incorporating the force,
dpi

dt
(x), into the body force term. First note that in the continuum Boltzmann

equation, the body force term is written a · ∇en(x, e), where a is an acceleration
field due to a body force. A representation [10] of this body force term to second
order in Hermite polynomials, in the discrete velocity space of the D3Q19 lattice is

ga = −3tan(x) [(ea − v) · a + 3(ea · v)(ea · a)] (9)

To first order, the body force term is written as ga = −3tin(x)ea · a.
In both models, phase separation takes place when the mutual diffusivity of the

binary mixture becomes negative. An analytical expression for the mutual diffusivity
has been determined in a previous work [8]. For the case of a critical composition,
the condition for the system studied to undergo phase separation is G ≥ T

12(n1+n2) .

IMPLEMENTATION
The approach to implementation of the algorithm is relatively straightforward.

At each active site is the necessary velocity and mass data for each fluid component.
Over the course of an iteration we visit each cell in the data volume and calculate the
distribution (ni

a) of each fluid component to be streamed to neighboring cells. New
mass and velocity values are accumulated at each cell as its neighbors make their
contributions. The most notable aspects of the implementation were our tactics
for managing the large amounts of memory required by the algorithm, and the
adaptation of the code for use in parallel computing environments.



MEMORY OPTIMIZATIONS
Experience with the implementation of related algorithms indicated that the

memory required for modeling large systems would be prohibitive. We therefore
looked for ways to conserve and reduce memory usage. There are several tactics
that we used in this implementation:

• Store data only at the active sites.
This is accomplished in the C implementation by representing the medium as a
three dimensional array of pointers. At each active site, the pointer references
a data structure with the necessary velocity and mass data. At the inactive
sites, the pointer is NULL; no additional storage is required at the inactive
sites. For a low porosity medium, the memory savings are very large.

• Assume that τ = 1.
This assumption simplifies evaluation of equations 1-5 such that at each active
site we need only store the density of each fluid component, and a single ve-
locity vector. Without this assumption, we must store all 19 values associated
with the velocity distribution, ni, at each site.

• Only one copy of the data volume is stored.
Rather than keeping an entire second data volume in which to accumulate the
newly calculated data, we exploit the fact that the algorithm only uses nearest
neighbors at each site. Thus we only need an additional buffer of three planes
of data at any one time.

Assuming that floating point numbers and C pointers each take four bytes,
these memory optimizations yield savings of over 94 % of memory usage in the one
component case for systems of useful sizes. The memory savings are even greater
when more fluid components are used or when larger floating point representations
are used.

PARALLELIZATION
The amount of computation and memory required for a large system suggested

that it would be advantageous to adapt the implementation so that a single prob-
lem could be run in parallel across a collection of processors. The nearest-neighbor
dependence of the algorithm also suggested that parallelization would be straight-
forward and would yield substantial benefits. Parallelization enables us to run larger
systems by distributing the memory requirements across many machines, and gives
us faster performance by distributing the computation.

We implemented the parallel version of the algorithm using the Message Passing
Interface (MPI) [11]. This is an industry-standard library of routines for coor-
dinating execution and communicating between processes in a parallel computing
environment. The parallelization was accomplished within a simple Single Program
Multiple Data (SPMD) model. The data volume is divided into spatially contiguous



blocks along the Z axis; multiple copies of the same program run simultaneously,
each operating on its block of data. Each copy of the program runs as an indepen-
dent process and typically each process runs on its own processor. At the end of
each iteration, data for the planes that lie on the boundaries between blocks are
passed between the appropriate processes and the iteration is completed. The pe-
riodic boundary condition is handled transparently; the process handling the “top”
plane of data volume simply exchanges data with the process handling the “bottom”
plane of the data volume.

NUMERICAL TESTS
Several numerical tests were carried out to verify our algorithm. Results from

two cases, fluid flow between parallel plates and through an overlapping sphere
model, are given below. For both cases we determined the fluid permeability, k,
as defined by Darcy’s law [1], 〈~v〉 = − k

µ
〈∇P 〉, where 〈~v〉 is the average flow rate,

∇P is the average pressure gradient and µ is the fluid viscosity. Figure 1 shows the
permeability, in units of the lattice spacing squared, as a function of the distance
between parallel plates. Clearly, there is excellent agreement between the simulation
and theoretical prediction. Surprisingly, very accurate results were obtained even
for the case of a one node wide channel. Since permeability depends on the average
flow or net flux rate of fluid, we conclude that the LB method accurately determines
the net flux across a voxel surface, not the velocity at a point. Hence, resolving the
actual local flow field at a point would require more nodes. We next consider the
permeability of the pore space around a simple cubic array of solid spheres that
are allowed to overlap for large enough radius (i.e. when the solid fraction, c,
exceeds c ≈ 0.5236). In Figure 2, we compare our simulation data with that of
Chapman and Higdon[12], which is based on the numerical solution of coefficients of
a harmonic expansion that satisfies the Stokes equations. Note that our calculations
were performed on a relatively small 643 system. Again, agreement is very good,
especially given that we used digitized spheres, while Chapman and Higdon used
smooth spheres.

COMPARISON WITH EXPERIMENTAL DATA
We next determined the permeability of several microtomography-based images

of Fontainebleau sandstone. Figure 3 depicts portions of two of these sandstone
images. The resolution was 5.72 µm per lattice spacing and data sets were 5103

voxels in size. A mirror image boundary condition was applied along directions
perpendicular to the applied force. The porous medium was made periodic in the
flow direction by creating its mirror image at the inlet. The numerical calculations
were carried out on a 1020×510×510 system for all but the lowest porosity system.
We found that at the lowest porosity (7.5 %) there were not enough nodes across
the pores to produce a reliable flow field. So for this case the permeability was
determined from a 2563 piece of the sandstone image that was mapped to a 5123

image, and calculations were performed on a 1024×512×512 system. In addition to



Figure 1: Flow through parallel plates. The permeability, k, is in units of lattice
spacing squared, while the gap between plates is in units of lattice spacing.

requiring sufficient resolution, another potential source of error is not having precise
knowledge of the location of the pore/solid interface. For example, an error of half a
lattice spacing could be significant when modeling flow in narrow channels like that
in the low porosity system. Figure 4 shows the computed permeability compared
to experimental data [13]. Clearly there is good agreement, especially at the higher
porosities.

RELATIVE PERMEABILITY
We next present a sample calculation of the relative permeability for the 22 %

porosity Fontainebleau sandstone. In this case, the pore space is filled with two
fluids. One fluid preferentially wets the solid surface and the second fluid is non-
wetting. The degree of saturation, Θw is Vw/Vp, where the Vw is the volume of the
wetting phase in the pore space and Vp is the volume of the pore space. Although
there is debate as to the correct formulation of the macroscopic two phase flow
equations [14], we use the following empirical relation to describe the response of a
multiphase fluid system to an external driving force:

~v1 = −K12

µ2
∇P2 −

K11

µ1
∇P1 (10)



Figure 2: Flow through spheres centered on a simple cubic lattice. The permeability
is normalized by the square of the distance, d, between the sphere centers.

~v2 = −K21

µ1
∇P1 −

K22

µ2
∇P2 (11)

Here the Kij are the components of a permeability tensor and the applied pres-
sure gradient on each fluid component ∇Pi is from a simple body force, ∇P = ρg,
where g is an acceleration constant. The average velocity of each fluid component
is given by ~v1 and ~v2. The forcing can be applied to each phase separately allowing
determination of the off-diagonal terms in the permeability tensor. The viscosity µi

is the same for both fluids. Relative permeability data is usually presented in terms
of constant capillary number, Ca = µv

γ
, where γ is the interfacial surface tension.

For our body force driven fluids, we can define an effective capillary number, C ∗

a ,
by replacing v with the Darcy velocity so that C ∗

a = µ<v>
γ

= kρg
γ

. Figure 5 shows

the relative permeability of the φ = 22 % rock for the cases of C ∗

a = 7.5 × 10−4 and
7.5 × 10−5.

APPLICATION TO CEMENT BASED MATERIALS
LB algorithms are applicable to a wide variety of microstructures associated with

cement based materials including cement paste, mortar, and concrete. For example,
we have studied fluid flow in fractured mortars. A series of X-ray microtomogra-
phy based images of fractured mortars as a function of applied strain have been



Figure 3: 64× 64 portions of the Fontainebleau sandstone media. On the left is the
7.5 % porosity medium, on the right is the 22 % porosity medium. The solid matrix
is made transparent to reveal the pore space (grey shaded region).

obtained by Landis and Keane [15]. Figure 6 shows a typical fracture image. The
image used in the flow simulation was 2003 voxels in size with lattice units equal
to 6.0 · 10−6 m. For this system, we found k = 1.35 · 10−11 m2. Clearly, given the
very low permeability of the uncracked mortar (k ≈ 10−18 m2), nearly all fluid flow
should be through the crack.

Solution of the Brinkman Equation: Multiple Scale Porous Media
Modeling fluid flow in porous heterogeneous materials with more than one typical

pore size (e.g. concrete, microporous rocks and fractured materials) presents a
challenge because it is difficult to simultaneously resolve all the microstructural
features of the porous medium that are at different length scales. One possible
approach is to divide the porous medium into two regions: (1) the larger pores and
(2) homogeneous regions of smaller pores. In the larger pores, the Stokes’ equations
for incompressible flow hold:

∇p = µ∇2v (12)

∇ · v = 0 (13)

where p is the pressure, v is the fluid velocity and µ is the fluid viscosity. Regions



Figure 4: Measured (line) and modeled (diamonds) permeabilities of Fontainebleau
sandstone medium.

with the smaller pores are treated as a permeable medium and flow is described by
Darcy’s law. The two boundary conditions to be satisfied at the pore/permeable
medium interface are continuity of the fluid velocity and the shear stress [16,17].
Darcy’s law alone is not sufficient to satisfy these boundary conditions. The Brinkman
equation [17] is a generalization of Darcy’s law that facilitates the matching of
boundary conditions at an interface between the larger pores and the permeable
medium. Brinkman’s equation is

〈∇p〉 = −µ

k
v + µe∇2〈v〉 (14)

where v is the fluid velocity, µ is the fluid viscosity, and µe is an effective viscos-
ity parameter. The so-called effective viscosity should not be thought of as the
viscosity of the fluid but only a parameter that allows for matching of the shear
stress boundary condition across the free-fluid/porous medium interface. That is,
(µd〈v〉/dy (y = 0+)= µed〈v〉/dy (y = 0−) where y = 0 specifies the location of the
interface for this example. The + and − refer to regions in the free-fluid and porous
medium, respectively.

Although the Brinkman equation is semi-empirical in nature, it has been val-
idated by detailed numerical solution of the Stokes’ equations in regions near the
interface between dissimilar regions [18]. Numerical solution of the Brinkman equa-



Figure 5: Relative permeabilities of 22 % porosity Fontainebleau sandstone versus
wetting fluid saturation, ΘW . The solid and dashed lines correspond to C∗

a =
7.5 × 10−4 and C∗

a = 7.5 × 10−5 respectively. The lower curves correspond to the
off-diagonal elements of the permeability tensor with the ∗ denoting the case where
the nonwetting fluid is driven.

tion by more traditional computational methods (e.g. finite difference and finite
element) is certainly possible. However, a recent lattice Boltzmann (LB) based
model by Spaid and Phelan [19], along with recent improvements [20], has proven
to be a simple and computationally efficient method to numerically approximate
fluid flow described by the Brinkman equation.

To produce flow consistent with the Brinkman equation, a dissipative forcing F =
−µv

k
is used. Originally, this forcing was incorporated into a LB model, normally

used to approximate the Navier Stokes equations, by introducing a velocity shift,
∆v = τF/n, (τ is a relaxation parameter and n is the density) in the Boltzmann
equilibrium distribution according to the method of Shan and Chen [4]. However it
is well known that this approach will produce errors of order τ 2F 2 in the pressure
tensor [20]. Such errors can have a significant impact on the fluid dynamics of such
systems. Hence, it can be advantageous to instead apply the force in the body force
term.

To first validate this model, a simple Couette flow geometry was used (see Fig-
ure 7). Starting with a parallel plate geometry, a permeable medium is positioned



Figure 6: Single slice from an X-Ray microtomography based image of a fractured
mortar. The image on the left is based on the original data set. The image on the
right was produced by processing the original data set to distinguish between pore
(black) and solid (white). The fluid flow was calculated throughout the pore region.
The X-ray microtomography image was obtained by Eric Landis using the National
Synchrotron Light Source, Brookhaven National Laboratory.

such that there is a gap between the permeable medium and the upper plate. The
upper plate is given a velocity Vw to the right. Analytic solution of the Brinkman
equation predicts a linear velocity profile in the gap and an exponentially decaying
velocity profile in the porous medium. The rate of decay depends on the value of
√

µe

µ
[16]. In Figure 7, velocity profiles are compared for the case of µe

µ
=4 and the

assumption of µe

µ
= 1. The solid line is the analytic solution of the Brinkman solu-

tion. Clearly, there is excellent agreement between simulation and theory and there
can be a considerable change in the velocity profile when µe

µ
6= 1. In addition, the

lattice Boltzmann method also does a reasonably good job capturing the disconti-
nuity of the gradient of the velocity field at the free-fluid/porous medium interface
for the case of µe

µ
=4. Note that this is achieved without direct incorporation of the

stress boundary condition in the simulation model.
For this test case, k = 1/11 in units of lattice spacing squared. Such a choice

of k, ignoring tortuosity effects, corresponds to a porous medium with a typical
pore size of order a lattice spacing as can be seen by noting that the permeability
associated with a cylindrical tube is k = r2/8 where r is the tube radius.

We next consider solution of the Brinkman equation using the Fontainebleau
sandstone, described earlier, as a porous medium where the solid phase is now



Figure 7: Velocity field of a sheared system next to a porous medium. The filled
triangles and circles represent data from the lattice Boltzmann simulation using
(µe/µ = 1 and µe/µ = 4, respectively). The solid lines are analytic solutions of the
Brinkman equation. The region below the dashed line y = 34.5 (in units of lattice
spacing) corresponds to a porous medium. The moving wall is at y = 44.

assigned a permeability ks. Although this may not be the case for the original rock,
the sandstone image serves as a convenient ”random” pore structure to use. Four
different permeable media were used with porosity ranging from about 7 % to 40 %.
Here, the porosity refers to the original pore structure. In Figure 8, we plot the
bulk permeability, kb, of the overall system vs ks. Clearly, kb increases with ks.
At lower values of ks, the higher porosity system appears to be less sensitive to
ks as a result of the the larger pores carrying most of the flow. Fluid flow in the
lower porosity systems are much more influenced by ks, as a larger fraction of the
system is composed of the permeable medium. It should also be pointed out that
an alternate version [21] of the lattice Boltzmann method was used to determine
results for ks < 0.1 as the above described model is unstable in this regime. The
instability is a result of the fixed time step used in the LB method. The alternate
version allows for introducing smaller time steps so that the instability is avoided.
The reader is referred to [21] for more details.

PERFORMANCE RESULTS
We ran a series of timing tests in an effort to understand how performance of our



Figure 8: Bulk permeability, kb vs permeability assigned to the normally solid por-
tion of the microstructure. The curves (top to bottom) correspond to microstructres
whose initial porosity was 40 % (squares), 22.5 % (Xs), 13.0 % (circles), and 7.5 %
(triangles). The isolated data points on the left represent the case where ks = 0.

implementation scales on different computer architectures. We have tested on an
SGI Onyx with 12 R10000 processors running at 196 MHz, and an IBM SP2 with 37
RS/6000 processors, most running at 66 MHz. The same code and the same cases
were run on the two systems. The results are presented in Tables I and II. The
performance reported was somewhat affected by other jobs that were running at the
same time that the tests were being run, although efforts were made to minimize
this effect.

Table I. Execution times in seconds Table II. Execution time in seconds
for one iteration on the SGI Onyx. for one iteration on the IBM SP2.

# # Fluid Components
Processors 1 2 3

1 14.70 24.70 33.27
2 7.39 12.22 16.69
4 3.80 6.23 8.57
8 2.14 3.48 4.68

# # Fluid Components
Processors 1 2 3

1 38.48 62.36 99.93
2 19.30 31.32 51.16
4 10.44 16.83 26.97
8 6.86 10.01 15.54
16 4.37 6.00 8.30



These data closely agree with a very simple model describing performance:
T = P/N + S, where T is the total time for a single iteration, P is the time for
the parallelizable computation, S is the time for the non-parallelizable computa-
tion, and N is the number of processors. The parallelizable computation is that
portion of the processing that can be effectively distributed across the processors.
The non-parallelizable computation includes processing that cannot be distributed;
this includes time for inter-process communication as well as computation that must
be performed either on a single processor, or must be done identically on all proces-
sors.

For example, the two-component fluid performance data for the SGI Onyx closely
match this formula: T = 4.78 + 487.26/N s, where N is the number of processors.
Similarly, the timings for the two component runs on the IBM SP2 closely match:
T = 41.67+1198.45/N s. Formulae for the other cases are easily derived. Figures 9
and 10 present these results graphically.

Figure 9: Time in seconds for one iteration on the SGI Onyx.

Much of the difference between the performance of these two systems is likely due
simply to the relative computational speeds of each processor. But the difference
in the serial overhead (4.78 s on the SGI versus 41.67 s on the IBM), is most likely
due to the different memory architectures of the two systems. The SGI Onyx uses a
Non-Uniform Memory Access (NUMA) architecture that enables processes to pass
data to one another through shared memory. However, on the IBM SP2 no memory



Figure 10: Time in seconds for one iteration on the IBM SP2.

is shared and data must be transferred over an external high-speed network. Thus
the overhead for message passing on the SGI Onyx is considerably lower than that
on the IBM SP2.

The time for the parallelizable portion of the code is expected to be in proportion
to the number of active sites, which depends on the porosity and the size of the
volume. But the time for the non-parallelizable portion of the code is likely to be
dominated by the inter-process communication. Assuming that communication time
is roughly proportional to the amount of data transferred, the communication time
should be proportional to the number of active sites on an XY plane.

So as we process larger systems, the time for the parallelizable portion of the
code should increase proportionally with the cube of the linear size of the system,
while the non-parallelizable portion should increase with the square of the linear
size of the system. This means that for larger systems, a larger proportion of the
time is in the parallelizable computation, and greater benefits can be derived from
running on multiple processors.

These performance data give us a general idea of how long it takes to get practi-
cal results for real-world problems on the computing platforms tested. For example,
a typical case requires about 10000 iterations to converge. So from the performance
described above, a one-component run of the sample size and porosity (22 %) de-
scribed above will take about 41 h on one processor on an SGI Onyx. On four



processors, the same run will take approximately 10.6 h. Approximate times for
other sizes and porosities are easily calculated from the data above.

CONCLUSIONS
Lattice Boltzmann methods for simulating fluid flow in complex geometries have

developed rapidly in recent years. The LB method produces accurate flows and
can accommodate a variety of boundary conditions associated with fluid-fluid and
fluid-solid interactions. With the advent of large memory/parallel workstations (or
Linux clusters), computations on fairly large systems that were considered beyond
the reach of even some ”super” computers from a decade ago can now be consid-
ered routine. We are clearly in a good position to study fluid flow in a variety of
microstructures relevant to concrete technology.
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