National Institute of Standards and Technology

Information Access Division (IAD)

Using an ongoing series of performance evaluations to drive speaker

recognition technology

Alvin Martin

NIST Multimodal Information Group

International Biometric Performance Conference March 2- 4, 2010

Outline

- Voice as a Biometric
- NIST Speaker Recognition Evaluations (SRE)
- Some SRE History
- Current NIST Programs

Voice as a Biometric

- Long recognized as a "natural" biometric
 - Most people readily recognize familiar voices
- Easy and non-invasive collection methodology
- Ubiquity of telephone system(s)
 - Supports recognition at a distance
 - Collection instruments in place
 - Use familiar to everyone
 - Routinely used for access to personal information

Performance Challenges Using Voice

- Extrinsic
 - Variability in collection devices
 - Microphone and handset type
 - Signal encoding and transmission
 - Variability in room acoustics
- Intrinsic
 - Short term
 - Emotion
 - Noise (Lombard Effect)
 - Illness
 - Speaking style
 - Long term
 - Health problems
 - Aging

NIST SREs 1996 - 2010

- Measure current state-of-the-art performance of research systems on common evaluation test sets
- Open to all interested participants worldwide
- Speech corpora collected to support evaluation
- Evaluation data distributed to all participants
- Participants submit system results to NIST
- Concluding workshops follow each evaluation
 - Participants share system descriptions
 - NIST analyzes performance results

SRE Corpora

- Successful evaluation is driven (or limited) by availability of corpora of appropriate data
- Linguistic Data Consortium (LDC) at the University of Pennsylvania has become the primary U.S. resource for speech data
 - Switchboard Corpus (~1991) laid the foundation for conversational telephone speech collection
 - Swithboard-2 (multiple phases) and Mixer Corpora have followed and been utilized in NIST SRE's

LDC Corpora Used in SRE

Name	Speakers	Conversations	Remarks
Switchboard-1	543	~2400	Groundbreaking original
Switchboard-2 Phase 1	657	3638	Most speaker from mid- Atlantic states
Switchboard-2 Phase 2	679	4472	Most speaker from Midwest
Switchboard Cellular Part 1	254	1309	Mainly GSM
Switchboard Cellular Part 2	419	2020	Mix of cellular types
Mixer 1/2	> 2224	13,769	Some multi-lingual speakers
Mixer 3	1867	19,951	Some multi-lingual speakers
Mixer 4	135	246	Includes room mic recordings
Mixer 5	~300	~1800 interviews	Mixer 3 speakers
Greybeard	171	4682	New and old calls

SRE Tasks

- Speaker Detection
 - Key task in NIST evaluations
 - Given a target speaker, determine if target is present in a test segment
 - Requires a decision ('T' or 'F') and a score higher score indicates more probable 'T'
 - Score may be used as decision threshold to define the range of possible operating points
- Speaker Tracking
 - Determine where in the speech signal each speaker is speaking
 - Included in earlier SREs and in other NIST evaluations
- Speaker Identification
 - Select speaker out of gallery of N possibilities (open or closed set)
 - Not addressed by NIST evaluations

SRE Performance Measure (Cost Function)

- Two types of error:
 - Miss
 - 'F' decision when target is present (target trial)
 - Cost of each is C_{Miss}
 - False Alarm
 - 'T' decision when target not present (non-target or impostor trial)
 - Cost of each is C_{FalseAlarm}
- System calibration depends on the prior probability of a target trial P_{Target}
- NIST uses a weighted combination of the two error rates as its cost function C_{Det} (primary metric):

$$C_{\text{Det}} = C_{\text{Miss}} \times P_{\text{Miss}|\text{Target}} \times P_{\text{Target}}$$

+ $C_{\text{FalseAlarm}} \times P_{\text{FalseAlarm}|\text{NonTarget}} \times (1-P_{\text{Target}})$

C _{Miss}	C _{FalseAlarm}	P _{Target}	
10	1	0.01	

SRE Cost Function Parameters

- NIST's C_{Det} has used a 10:1 weighting of FAs over misses
- Researchers often prefer other measures
 - Equal weighting (average of miss and FA rates)
 - Equal error rate point (ignoring calibration)
- Calibration matters, and real applications necessitate minimizing one error rate at expense of other
 - Equal error point not of primary interest for most real applications
- SRE10 will experiment with a 1000:1 ratio
 - More representative of application needs

10

March 3, 2010

Detection Error Tradeoff (DET) Curves

- Show range of possible operating points as decision threshold is varied
- Plot on normal deviate scale
- Actual (+) and minimum cost (o) operating point are marked
 - Distance between two points reflects threshold calibration

SRE Performance History

Best System C_{Det} (DCF) for similar test conditions

- Test conditions, and the phone system, have changed over SRE history
- Chart attempts to make apples-to-apples comparisons over multiple years of SRE
- Trend is improving performance over time

Thanks to Doug Reynolds of MIT Lincoln Lab for providing the plot

SRE Participating Sites

Increasing participation over time

■ 1996 – 2001: 8-12

2002 – 2005: 20-24

2006: 36

2008: 46

2010: 53 (to date)

- Bulk of participants were from U.S. in earlier years, later from Europe, now from Far East
 - Includes participants from Australia, South Africa, the Middle East, and Latin America

Current NIST Speaker Programs

- SRE10
- IARPA BEST Program
- Investigatory Voice Biometrics

SRE10

- Taking place spring 2010
 - Registration closes March 1
 - Workshop June 24-25 in Brno, the Czech Republic, in conjunction with Odyssey International Workshop
- Includes conversational telephone and interview speech recorded over multiple room microphones
- New Conditions tested
 - Speakers with training and test speech recorded years apart (Greybeard Corpus)
 - Vocal effort
 - Human Assisted Speaker Recognition (HASR)

IARPA BEST Program Biometrics Exploitation Science and Technology

- Seeks to drive research progress on face, ocular, and voice biometric technology
 - Advance the ability to achieve high-confidence match performance, despite features derived from non-ideal data
 - Significantly relax the constraints currently required to acquire high fidelity biometric signatures

IARPA BEST Program (cont'd) Biometrics Exploitation Science and Technology

- Program kicked off December 2009
- Phase I to last two years
- Three performance teams selected for speaker recognition effort
- Evaluation at end of Phase I
 - Coordinated by NIST
 - Open to outside participants

Investigatory Voice Biometrics

- Project begun in 2009 with FBI support
- Initial workshop held at NIST in March 2009
- Will produce roadmap document to support future collection efforts of government agencies addressed through four committees
 - Use Case
 - Collection Standards
 - Interoperability
 - Science and Technology