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Light-pulse atom interferometer 

2014 laboratory sensor, atomic 

wavepackets  separate by 8 cm 

before interfering, 5e-13 g 

resolution* after 1 hr. 

1991 demonstration 

of an atom 

interferometer 

gravimeter 

Atoms imaged in middle of 

interferometer 

Interference at 

output 
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Semi-classical approximation 

Three contributions to interferometer phase shift: 

Propagation    
shift: 

Laser fields        
(Raman 
interaction): 

Wavepacket 
separation at 
detection:  For example, Bongs, App. Phys. B, 2006; 

with Gen. Rel., Dimopoulos, PRD, 2008. 
Graham lectures 



Laboratory gravity gradiometer (1997-2002) 

1.4 m 

Distinguish gravity induced 
accelerations from those due to 
platform motion with differential 
acceleration measurements. 
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Demonstrated differential 
acceleration sensitivity 
(McGuirk, PRA 2001): 
4x10-9 g/Hz1/2  

Atoms 

Atoms 

Use laser cooled ensembles in 
atomic fountain configuration 
for high sensitivity/accuracy 



Measurement of G (2003/7) 

Fixler PhD thesis, 2003; Science 2007. 

Proof 
masses 
shuffled 



Measurement procedure 



Errors 

Systematic error sources 
dominated by initial 
position/velocity of atomic clouds. 

Time lapse images 
of atoms during 
launch 
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LENS (Tino), 2014 



LENS, Measurement of G, 2014 

Measurement limited by knowledge of atomic trajectories. 
   



Gravity gradiometer for SSBN navigation 
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Moving-base gravity gradiometer 
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Atom interferometric gravity 
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Moving-base gravity gradiometer 

Demonstrated accelerometer 
resolution: ~10-11 g. 



Gravitational portal detector 

Discover high mass objects through their 

gravitational signature 

 

AOSense/LLNL collaboration. 

(www.aosense.com) 

Envisioned portal Proof-of-concept 
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AOSense 
Gradiometer 



Joint LLNL/AOSense/Stanford G Measurement 

LLNL:  Proof mass metrology  (co-I S. Libby) 
AOSense: Gravity gradiometer (co-I T. Loftus)    

Gradiometer 
Attachment 

Objective:  dG/G ~ 1e-4 

LLNL precision machined fixtures 



Prototype gradiometer for satellite geodesy 

Simulation of hydrology map 
from space-borne atom 
interferometer gravity 
gradiometer.   
 

~ 1 cm equivalent water height 
resolution. 
 
Instrument:  
 1 m baseline 
 single-axis 
 rotation compensation 
 
Development of prototype recently 
funded by NASA IIP (Saif, PI); 
Instrument to be built by AOSense, 
Inc. 
 
 
 Analysis from S. Luthke,  GSFC 

GRACE 

CAGG 



Defense sensors 

• High accuracy AI gradiometers will become commercially 
available in the next 5 years (subject to ITAR). 

• Will support G determination at the < 1e-5 accuracy 
level. 

• Error models and noise performance understood across 
generations of instruments. 

• Proof-mass metrology and personnel salary likely  the 
dominant expense in performing a G measurement with 
this hardware class. 

 



2014 Stanford 10 m baseline interferometer 

Current demonstrated 
statistical  resolution, 
~5e-13 g in 1 hr (87Rb)  

 

Gravitational 
acceleration from 40 cm 
dia. sphere (10 g/cm3), 
40 cm from center of 
sphere is ~5e-8 g. 

 

Suggests feasibility of 
ppm class 
measurements. 

 

 



Large wavepacket separation 

8 cm wavepacket 
separation 

4 cm 

  LMT demonstration at 2T = 2.3 s 
  Contrast loss consistent with spontaneous emission 

Sequential Raman transitions with long interrogation time. 

>98% contrast 



G in the 10 m tower 

 54 mradlas 

 1400 mradprop 

 700 mradtot 

 

Sample 8ћk 

interferometer 

simulation with T 

= 1.2 s 
 



Ultra-ultra cold atoms 

Collimated cloud has inferred effective 
temperature of 50 picoKelvin 

 

Kovachy, et al., arXiv 1407.6995  

Atom cloud refocused to <200 microns 
(resolution limited) after 2.6 seconds drift. 

A lens for atom clouds is 
realized using a laser beam: 

Laser beam profile 
used in exp’t.   

Dramatically improved control over atom velocity distributions. 



Vertical velocity determination 

>2000 photon  
recoils to launch to 
top of tower. 

 
Momentum 
transferred in 2 
photon recoil 
increments. 

Excellent control over the mean vertical velocity using delta-kick 
cooled atomic source and an optical lattice launch. 
 



Point source interferometry/spatial readout 

Exploit point-source geometry to directly 
detect phase shift as a function of atomic 
trajectory. 
 
Avoids signal integration errors from 
previous instruments. 

Interference fringes 



G Measurement at Stanford 

• Trade exceptional instrument sensitivity for proof-mass 
homogeneity. 

• Measurement in a regime where quantum (recoil) phase 
shift terms dominate. 

• Proof-of-concept in FY15. 

• Pathway to < ppm sensitivity. 
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