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Introduction

Collection and Imaging of Evidence Fragments

Finding Patterns between Matches and Non-matches
Statistical Tools for Matching and Confidence Assessment
lllustration and Performance

Concluding Remarks
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Broken incomplete pieces, often found at crime scenes
include

P metal fragments

P pieces of rubber, e.g. sole of suspects shoe

P glass pieces (e.g. window or automobile glass)

» plastic (objects or auto parts)

» wood (bats or blocks)
Reliably matching fragments, especially those found partly
at crime scenes and partly elsewhere important

» also want to numerically quantify confidence in decision

Focus on metal fragments
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Eample: Moatehing Tuvo Hrife Fragments

true match false match

» Consider the example of knife fragments, part of which has
been found at a crime scene and the other part possibly
found at a different location.

» Interest to determine whether two fragments match.

» confidence in the probability of matching
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no magnification 10x 20x magnification

» Traditional forensics practice visually compares fracture
surfaces of materials to determine if two separate pieces of
material can possibly belong to the same origin

» physical characteristics of the fracture, such as shape,
color, and other surface features
p tactile pattern matching under comparative microscopy

» Confidence in decision not always numerically quantified.
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Figure: Association of forensic fragments. (A) Visual jigsaw match o
the macroscopic crack trajectory. (B) Tactile pattern match with
comparative microscopy. (C) SEM image of the microscopic details of
the tortuous path of a crack through or around the microstructure’s
grains, showing the microscopic features of the fracture surface.

» Complex jagged trajectory of macro-crack through given
forensic article can be used to recognize a “match”.
» use unique features of microstructure along fractured
surfaces to determine match.

» Derive objective approach with quantified confidence.
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p Basis for physical matching is assumption of indefinite

number of matches all along the fracture surface.

» contend that irregularities of fractured surfaces are unique
» rough and irregular metallic fracture surfaces carry many
details of metal microstructure as well as loading history.

» exploit for forensic purposes.
Randomly propagating crack will exhibit unique fracture
surface topological details when observed from a global
coordinate that does not recognize crack propagation
direction.

» uniqueness of these topological features mean that they
can be used to individualize and distinguish the association
of paired fracture surfaces.

Hypothesis: microscopic features of the fracture surface
possess unique attributes at some length scale that arise
from the interaction of the propagating crack-tip
process-zone and microstructure details.
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Figure: Fracture surface characteristics. (a) 3D surface topology
rendering of fractured surface, showing a biased orientation of the
low frequency texture of the fracture surface. (b) Height-height
correlation variation with the size of the imaging window, showing the
domain of the self-affine characteristics of the fracture surface, and its
upper limit with saturation corresponding to long-range roughness

(> 100um)
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bending fixture set of fractured knives

» Set of nine knives, each broken similarly with bending
» Obtain tip-base pairs for each sample

» surface images by standard non-contact 3D optical
interferometer (Zygo-NewView 6300)
» samples provided both match and non-match specimens

» Data on second set of knives — training & test set
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@ Image 1

Image 9
TO1-Base-9  TO1-Base-8  TO1-Base-7 TO1-Base-6 TO1-Base-5 TO1-Base-4 TOl1-Base-3 TOl1-Base-2 TO1-Base-1

TO1-Tip2  TO1-Tip-1

» Imaging with 75% overlap between adjacent surfaces.
P 2D FFT of each image — analysis in spectral domain
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4(1/mm)

(a) (b)

) Correlation between spectra from corresponding images
on tip and base surfaces in different radial frequency
bands calculated.

» image pairs for when the tip and base surfaces from same
knife are true matches

» pairs from when the tip and base surfaces from different
knives are true non-matches

» This is our dataset.
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Corvnelation d@m@m of $FC: Dhaerations
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» 81, 648 match/non-match correlations
» 1range = matches/non-matches imperfectly separated
» Training set: Matches/non-matches distinct w/ both ranges
) Test set: 1 true match correlation not separated

» individually separated with correlations from all 9 pairs
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j G nabracting Huteh Roule - Gomenal Gonategy

b Rule uses correlations from image pairs in training set

>
>

QDA classifier trained to identify matching base and tip
pairs on set of correlations in 5-10um~".

logistic regression classifier with a weakly informative prior
was trained for 10-20m—".

b Rule classifies correlations from image pairs in training set

»

cloaitna, maitra@iastate edu

yield 18 match probabilities for each base-tip pair.

» 9 from 5-10um~" + 9 from 10-20pm™".
projecting onto the first PC of 18 probabilities for the set of
base-tip pairs.
LDA classifier trained on 1D projection to produce a final
probability that the given base-tip pair are a match.
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3 C[(j;(O—ZO) corr. in 10 — 20um~", kth image of base-tip i/, j

> Mk ~ Ber(p,(],l0 20)) is 1 if image k on base i and tip j have
same origin, 0 o/w

(10—20) (10—20) Mijk (10—20)1—my 10—20
f(milpfe ) = P2 (1=pl’ =)=, myc € {0, 1}, p" > € (0,1).
b assumed logistic regression model:

p(10-20)
ijk
T (10-20 = Po + B1¢;

1_ijk

(10 20)

» Mk are independent across bases, tips, and images.
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j Bayesion Logiatic Regression

» Complete separation between matching & non-matching
image pairs may make logistic regression inestimable.
P Gelman et al (2008): Bayesian logistic regression with

default priors on gy and 3.

b scale cl,” > to have mean 0 and SD 0.5

» 5o ~ Cauchy(0,10); (¢ ~ Cauchy(0,2.5)
» fit model by incorporating approximate EM into usual IWLS
(Gelman et al., 2008)

b estimated probability of an image match:

A (10—20 1
P,(jk ) =

1+ exp{—fo — Aicy 2V}
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Bl Conlining Pdiction Frolabilities
-

» Each of 9 base-tip image pairs yields set of probabilities of
match

» combine into single probability of whether base-tip pair are
from same knife.
» image-level probabilities highly correlated with each other,

» global match model needs to account that some images
from matching/non-matching pairs have low/high correlations

» first perform PCA in order to summarize the variability in the
(highly-correlated) predicted match probabilies

b LDA on first PC of predicted match probabilities
> p; ~ N(n1,72) if base-tip (i,j) match w.p. ¢
» pj ~ N(n2,7%) wp. 1 — ¢ if not

b Base i and tip j are match w.p.

CHpylin. 72)
CHpy I, 72) + (1 = O)f(pjl2. 72)

fj =
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4. Recoulls
=

P Training image and surface level models on training set
and predicting match probabilities on test set yields match
probabilities (within < 1019 of 0 or 1.

» Predict match between (i, ) if 7 > 0.5, yields:

Predicted Class
Match Nonmatch
True Class Match 9 0

Nonmatch 0 72
b Reversing roles of training/test set yields similar results.
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4' Comclisions amd Funther. Wk
-

p Fracture mechanics in objectively predicting match of
evidence fragments
P obtained base-tip image pairs
» identified and used correlations between structure in
spectral domain to identify pairs
» used QDA and Bayesian logistic regression to predict
match probability
» perfect accuracy with quantified confidence on test sets.

P Extension to other kinds of materials

» number of image pairs on surfaces?
» effects of aligned/non-aligned image pairs
» non-contiguous surfaces?
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