Presenter: Paul Neves

Mentors: Nicholas Butch & Juscelino Leão NIST Center for Neutron Research Summer Undergraduate Research Fellowship

Outline

- Magnetic Behavior of Cu₂OSeO₃ (Background)
- Sample Synthesis/Characterization
- SANS Measurements
- Conclusions/Future Work

Magnetic Structures

Ferromagnetic Structure

Helical Structure

Higgins, Jeremy M. *et al.* Signature of Helimagnetic Ordering in Single-Crystal MnSi Nanowires. *Nano Letters* **10**, 1605-1610 (2010)

An Interesting Material: Cu₂OSeO₃

Higgins, Jeremy M. *et al.* Signature of Helimagnetic Ordering in Single-Crystal MnSi Nanowires. *Nano Letters* **10**, 1605-1610 (2010)

Janson, O. *et al.* The quantum nature of skyrmions and half-skyrmions in Cu_2OSeO_3 . *Nature Communications* 5, (2014)

An Interesting Material: Cu₂OSeO₃

Seki, S. *et al.* Observation of Skyrmions in a Multiferroic Material. *Science* **336**, 198-201 (2012)

(10 Oe = 1 mT)

Magnetic Skyrmions

- Topological structure
 - Potential data storage applications
 - Robust (stable)
- Result from competing interactions
 - Limited field and temperature range

Kézsmárki, I. *et al.* Neel-type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV₄S₈. *Nature Materials* **14**, 1116-1122 (2015)

Yu, X. Z. *et al.* Real-space observation of a two-dimensional skyrmion crystal. *Nature* **465**, 901-904 (2010)

What Are We Studying?

(10 Oe = 1 mT)

- Chemical substitution affects the skyrmion phase
- Substitute Zn for Cu
 - Magnetization only
 - Structure not directly confirmed

Wu, H. C. *et al.* Unexpected Observation of Splitting of Skyrmion Phase in Zn Doped Cu₂OSeO₃. *Science Reports* **5**, (2015)

Growing Powders

- Mix/grind CuO and SeO₂
- Seal in evacuated quartz tube

DC Susceptibility: Zn Doping

Wu, H. C. *et al.* Unexpected Observation of Splitting of Skyrmion Phase in Zn Doped Cu₂OSeO₃. *Science Reports* **5**, (2015)

Small Angle Neutron Scattering

- Powders
 - Cu₂OSeO₃
 - (Cu_{0.9}Zn_{0.1})₂OSeO₃
- ~0-70 mT Field
 - On axis
 - Transverse axis

https://www.ncnr.nist.gov/programs/sans/index.html

Structural Scattering

SANS: Zn Doped, H On Axis

Higgins, Jeremy M. *et al.* Signature of Helimagnetic Ordering in Single-Crystal MnSi Nanowires. *Nano Letters* **10**, 1605-1610 (2010)

Kézsmárki, I. *et al.* Neel-type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV₄S₈. *Nature Materials* **14**, 1116-1122 (2015)

SANS: Zn Doped, H On Axis

Future: Single Crystals?!?!

Summary

- Interesting results
 - Expanded phase diagram
 - Possible co-existence of skyrmion and helical phases near published phase boundaries
 - Published phase diagram is too discrete
- Ongoing work

Acknowledgements

- Nick Butch, Juscelino Leão
- NIST and the SURF program
- The NCNR and CHRNS
- Julie Borchers and Joe Dura
- Dan Neumann

- Dustin Gilbert, Jeffrey Krzywon, Tanya Dax, Kefeng Wang, I-Lin Liu, Shanta Saha, Mary Ann FitzGerald
- Doug Johnson, Patrick Connelly, Scott Slifer, Colin Wrenn, Andrew Malone

An Interesting Material: Cu₂OSeO₃

Seki, S. *et al.* Observation of Skyrmions in a Multiferroic Material. *Science* **336**, 198-201

Janson, O. *et al.* The quantum nature of skyrmions and halfskyrmions in Cu_2OSeO_3 . *Nature Communications* 5, (2014)

X-Ray Powder Diffraction

Magnetization: Parent

Seki, S. et al. Observation of Skyrmions in a Multiferroic Material. Science 336, 198-201 (2012)

Magnetization: Zn Doped

Wu, H. C. *et al.* Unexpected Observation of Splitting of Skyrmion Phase in Zn Doped Cu₂OSeO₃. *Science Reports* **5**, (2015)

Field (Oe)

Structural Scattering

 $q = \frac{2\pi}{d}$

SANS: Zn Doped, H On Axis

SANS: Zn Doped, Transverse H

SANS: Zn Doped, H On Axis

SANS: Parent, H On Axis, Rotated

Adams, T. *et al.* Long-Wavelength Helimagnetic Order and Skyrmion Lattice Phase in Cu₂OSeO₃. Physical Review Letters 108, (2012)

Future: Single Crystals?!?!

