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Types of Magnetic States (only 3 shown)
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What are Heavy Fermions?

Kondo Interactions
-Conduction spin screening
-Suppresses magnetic
ordering

Temperature ——

RKKY Interactions 7/ quantum
-Coupled moments Tmﬂg i ’,’ critical point
dependent on distance
-Enhances magnetic
ordering -
.- magnetism

-

N Fermi liquid

Combining Both
-Huge increase in effective Jet D(EF) i

mass. Also, increasing H, P, doping, ect.

-Kondo and RRKY
N NIST

interactions co-exist
-Possible unconventional National Institute of
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What are Heavy Fermions?

Kondo Effect
-Electron spin screening
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CeEYb!RhIn§

QCP

-Kondo and RKKY on equal
footing.

-Material can go
superconducting under
pressyre'. | . - Y quantum
-US.C is similar to High Temp Tmag v /4 critical point
SC in copperates. —

Temperature ——

Fermi liquid

CeRhin; goes superconducting under applied pressure ler
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Ce(,,Yb,RhIng (Heavy Fermion Material)

Tetragonal:
a=b#c
a:B:v:gOo

Space group:

P4/mmm
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Goal: Ce, Yb,RhIn. Magnetic Transitions

Finding the transition
(in terms of T and x)
For change to commensurate structure

CeRhing YbRhIn.

Increasing x ‘ I

Turns antiferromagnetic Finding Metallic Paramagnet 4
k=(%,%,0.297) 3

T=3.8K
(incommensurate structure)

the transition
(in terms of T and x)
For magnetic ordering
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Ce, ,Yb, (Rhing

Actual sample
concentration were not
matching with the
concentrations used to
make these samples.

Needed a way to measure
concentrations.

Made powders and headed
to UMD for SQUID
measurements.
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(su

UID Magnetometry for measuring plog

nerconducting quantum interference device)

SENSITIVE LOW TEMP MAGNETOMETER SQUID AT U MARYLAND COLLEGE PARK

Biasing
current

One period of
voltage variation
corresponds to _
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one flux quantum

Magnetic field

A

Our powder sample
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Sample reported as x=".5’ 0.024 . SQUI.D Cel—%’ﬂ)m Rh.f% X_. 0.09 .
e o SQUID Data
C=0.967 +/- 0.004 [(emu K)/or] 0.022 —— Curie-Weiss Fit
Curie Temp=-43.2 +/- 0.4 [K] ' i
Mg = 2.7814 +/- 0.0009 W,
x= 0.090 +/- 0.001 = 0.020]
(T) _ 5
Ubulk (T C =
T) = — m I
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Sample reported as x=".6’

SQUID Ce, ,Yb, Rhin, X= 0

0.016 . T
C= 0.799 +/- 0.002 [(emu K)/or] ® © SQUID Data
=0.799 +/- 0. emu K)/or _ _ _
Curie Temp=-29.8 +/- 0.4 [K] 0.014} — Curie-Weiss Fit |
Mo = 2.5280 +/-.0009 p, o220
x=-0.0043 +/- 0.0004 |
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X-ray powder diffraction Ce,Yb,RhiIn; (x<1%)
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X-ray powder diffraction Ce 4, Yb ,oRhIn (x=.09)
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Why Neutrons?
The power of neutron scattering

Neutrons have spin and zero

charge (nuclear and magnetic ole | teractions

scattering). Magnetic diF

Large penetration depth (bulk Gﬁudear interactions
probe).

Cross-sections good for low Z .
elements (Nuclear Electron density interaction
interactions). x-rays

(More easily) Controllable
energies.

Energy scale great for dynamic
interactions (inelastic Electron dens
scattering).

ity interaction

: -
Magnetic dipole interaction
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BT4 Triple Axis Spectrometer
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Measuring the Onset of Magnetic Ordering: x<1%
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Measuring the Onset of Magnetic Ordering: x~50%

Mean Field Ordering
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Measuring the Magnetic Structure: x~50%

Nuclear structure factors magnetic structure factors
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Ce, , Yb,Rhin,
k=(%2 %2 %) structure

345 +£.017 0
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0 0
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k=(12 %2 %) structure [commensurate] k=("2 % .297) structure [spiral]
Intermediate Yb concentration Low Yb concentration
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Conclusion of Ce,,Yb,RhiInc

* We measured properties of Ce, ,Yb,RhiIn: using a combination SQUID, XRD, and Neutron Scattering
We found a limited solubility of Yb into CeRhIn5, which needs to be better understood to continue this study.
Results:

1. Atlow Yb concentrations, these compounds have a lower ordering temperature.
2. Atintermediate Yb concentrations, the magnetic structure changes from incommensurate to commensurate.
3. A new magnetic structure was solved for these intermediate concentration.

Future work :

1. Apply pressure and magnetic field at low temperatures to induce new interesting phase transitions.
Better measurements of the concentrations in these samples.
Study why the magnetic structure changes with Yb concentration.

W N

Start to form a complete phase diagram from experiments to make better theories on how unconventional

superconductivity works
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Bragg’s Law for Crystal Diffraction

nA = 2dsin0
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Nuclear vs. Magnetic Unit Cell in Neutron Scattering
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Original Goal: Sm,_ Ce Coln.

SmColng CeColng

Increasing x ‘ I

Turns antiferromagnetic Finding Turns superconducting

the transition
(in terms of T and x)
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Sm,_,CeColng (Heavy Fermion Material)

Tetragonal:
a=b#c
a:B:v:gOo

Space group:

P4/mmm

Sm/Ce site

- @

In2

OE

a (‘x’ dependent)

¢ (‘x’ dependent)

Measured Parameters (x-ray)
(x=0 powder)

a=4.5798 +.0001 A
c=7.4708 +.0002 A
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Laue x-ray diffraction
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No Magnetic Peaks found for SmColn.

HighT and LowT for SmColn,
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4 scans averaged together (powder) E=14.7meV
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Why?

E=35 meV
T Grosssections (baoam)
Element Formula Unit Atomic Wight (g/m) Coherent Incoherent Absorption
Sm 1 105.360 0.422 39.000 5072.236

Co 1 58.933 0.779 4.800 31.845
In 5 114.820 2.080 0.540 165.991

Data from NCNR Scattering and Activation Database
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Determining p¢ and x using the SQUID

Curie-Weiss Law for Paramagnetism sozoy— SQUID Ce, b, Rhin,
Ubulk (T) C 0018/
T) = = —
X( ) Hxmoles T—0,, X0 _ oote
E 0.014}
T - Temperature [K] 2 .
C — Curie Number [(emu K)/or] |
0., - Curie Temp. [K] (+ Ferro, - Anti) S 0010¢
g 0.008 |
Fit using: ~ oooel
uubulk(T) _ a _p C _ Naugff(x) 0.004
H T — Om motar 3kB 0'0020 50 100 150 200 250 300
Temp (K)
a = moles(x) = C(x) Peers = 2.54 p NISI-
2 = xP? 13 + (1 — x)P? Py,+3 = 4.54 : :
b = moles(x) * x, :ueff(x) XPyp+3 X)Ecet+2 Yb KB National Institute of
Standards and Technology

U.S. Department of Commerce

*numbers and equations from Ashcroft Solid State Physics



Crash course in crystallography

=|attice + Atomic Basis = Crystal
; + ‘_Q
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Crash course in crysta\\ograph\{

=|attice + Atomic Basis = Crystal

Wy




L /
Crash course in crystallography

=|attice + Atomic Basis = Crystal

=Unit cell "ﬁ

=Reciprocal space and the Miller
indices

A measure of frequency. (001)

&
Y —
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Crash course in crystallography

=|attice + Atomic Basis = Crystal

/ /

=Reciprocal space and the Miller
indices

(100)
A measure of frequency.

V
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Crash course in crystallography

=Lattice + Atomic Basis = Crystal (110)

=Unit cell

=Reciprocal space and the Miller
indices

A measure of frequency.
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