

Aggressive scaling of Cu/lowk: impact on metrology

Karen Maex

Sywert H. Brongerma, Francesca Iacopi, Kris Vanstreels, Youssef Travaly, Mikhail Baklanov, Jan D'Haen and Gerald Beyer

IMEC, KULeuven, LUC, IMOMEC

© imec 2004

-Performance is important: Speed (RC), Energy (C), noise (C)

-How to measure R and C

-How to characterize Cu and low k in their narrow features

-Relevance of surface and interface characterization

Specifications for 32nm

	65nm	65nm	45nm	45nm	32nm	32nm
	2004	2003	2004	2003	2004	2003
Pitch local (nm)	152	152	108	108	76	76
Pitch intermediate (nm)	195	195	135	135	95	95
Barrier thickness M1 (nm)	5.4	7	4	5	2.8	3.5
Barrier thickness intermediate (nm)	7	7	4.9	5	3.6	3.5
Effective resistivity M1(uOhm.cm)	3.22	2.2	3.62	2.2	4.14	2.2
Effective resitivity intermediate (uOhmcm)	2.92		3.19		3.58	
Erosion local (nm)	13	13	10	10	7	7
Erosion intermediate (nm)	18	18	12	12	9	9
Dishing global (nm)	19	19	14	14	10	10
Jmax-intermediate MA/cm2	1.4	1.0	1.44	2.5	4.3	3.5
keff	2.7-3.0	2.7-3.1	2.3-2.6	2.3-2.6	2.0-2.4	2.0-2.4
k	<2.4	<2.5	<2.1	<2.2	<1.9	< 1.1
Equivalent sidewall damage (nm)						

-Electrical performance on R and C

-Low k dielectrics:

- k value
- pore sealing
- mechanical properties
- -Cu wires
 - -Grain growth
 - -Surface scattering

-Conclusion

Scaling dimensions:SD50

Scaling dimensions: spacings

Motivation

Interconnects are <u>complex</u> structures for which RC is easy to derive ...

Resistivity measurements and model

Low-k = F(k, n, ρ , ρ_{wall} , P, E, H, PS, α)

Low k dielectric: current status

Low k dielectric: current status

Scaling dimensions

Fig.1 Cross-sectional micrograph of 75nm spaced meander-forks.

Fig.3 Scheme of the damage induced at the sidewalls of a dielectric space upon patterning.

Fig.2 Experimental interline capacitance values are compared versus spacing to the ones calculated assuming a k=3.0 for the integrated dielectric.

Scaling dimensions

© imec 2005 F. Iacopi, K. Maex, M. Stucchi, O. Richard, Electrochem. And Solid State Letters 7(4) G79-82, 2004

Scaling dimensions

Scaling dimensions plasma damage

Scaling the k-value: sealing methodology

Absorption of chemicals and moisture

Current sealing method by plasma

-only workable for microporous materials

(k>2.6)

-What to do for mesoporous materials with lower k-values?

Sealing is needed

Surface modification

Deposition of sealing layer

XRR ALD on porous vs. <u>sealed</u> dielectric surface

[©] imec 2005 Karen Maex JAP 97 (2005) in press

Scaling the k-value: sealing methodology

© imec 2005

Scaling the k-value: mechanical strength

Philosophical Transactions, in press

material (confirmed by NMR)

Scaling k-value: mechanical properties

© imec 2005 Karen Maex S.H. Brongersma, D. Degryse, J.souiller, B. Vandevelde K.Maex MRS Proc 812 (2004)

Influence of α -Ta thickness

EBSD: Super Secondary Grain Growth

Narrow wires

© imec 2005 Karen I

© imec 2005 Karen Maex

Z

X

Influence of impurity incorporation on DMR induced by Surface scattering

95x130 nm240x130 nmR0.570.62λ~23 nm~29 nm

*R is calculated by Mayadas-Shatzkes model * λ is estimated by assuming ($\rho\lambda$) as a constant, 0.66 x 10⁻¹⁵ Ω M²

 $\Delta \rho(w,T) = [\rho(w,T) - \rho(\infty,T)] - [\rho(w,293K) - \rho(\infty,293K)]$ $= \Delta \rho(T) - \Delta \rho(293K)$

Reduced $\lambda \&$ SSDMR due to impurity incorporation

W. Zhang. S. Brongersma, K. Maex et al, accepted for Electrochem Solid State Letters 2005

Conclusion

-Aggressive scaling of Cu/ low k wire has implications on metrology

- low k value has to be extracted from the small features

- interfaces and surfaces are as important as bulk values

-super grain growth has been observed in Cu

-Mean free path of Cu has an (indirect) linewidth dependency

Scaling k-vlaue: mechanical properties

Principles

Refractive index of matter for x-rays of wavelength λ :

$$n(z) = 1 - \rho \frac{\lambda^2 r_0}{2\pi} + i \frac{\lambda}{4\pi} \cdot \frac{1}{\mu}$$

Reflectivity from real surface:

 $R(kz) \propto \int \left\langle \frac{d\rho}{dz} \right\rangle e^{2ikz} dz$

Features of XRR spectra

