

Multi-scale, multi-physics modeling capabilities towards improving PV reliability

Ashley M. Maes, James Y. Hartley, Christine C. Roberts

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525

SAND2019-15132 C

Introduction

 Advanced computational capabilities at Sandia have been developed to predict behavior in many complex systems

Multi-Scale Models for PV Reliability

• Modeling capabilities to predict stresses at various scales of a PV module:

Full Modules [Hartley; SNL]

Combined-Accelerated Stress Testing Chamber (C-AST)

Mini-Modules [SNL with Owen-Bellini, Hacke; NREL]

Interconnect damage [Bosco; NREL]

```
Tabbed cells[SNL with Bertoni; ASU]
```

Multi-Physics Models

• Modeling capabilities incorporate various physics causing or related to degradation:

Mechanical stress [Hartley, SNL]

Thermal stress [Hartley, SNL]

Electrical-thermal coupling [SNL]

Material responses:

- Encapsulant viscoelasticity [Maes, SNL]
- Electrically Conductive Adhesive viscoelasticity and damage [Bosco, NREL]
- Backsheet aging [Owen-Bellini, NREL; Schelas, SLAC]

Additional physics could include moisture transport, corrosion chemistry, and many others

Sensitivity Analysis for Module Deflection

- Modeling capability was demonstrated for a 60-cell c-Si module and a large format glass-glass module, and validated against experimental deflection vs. load data at room temperature
- Input parameters (materials properties & dimensions) were varied parametrically to generate uncertainty estimates and analyze sensitivities

Parameters highly correlated to module deflection

1.0 kPa		2.4 kPa	
Parameter	R	Parameter	R
Edge tape modulus	0.630	Glass modulus	0.561
Glass modulus	0.532	Edge tape modulus	0.553
Edge tape Poisson's	0.336	Edge tape Poisson's	0.361
Glass thickness	0.286	Glass thickness	0.321
Encap. thickness	0.132	Encap. thickness	0.111

Predicted deflection vs. load with parametric uncertainty

Parametric inputs: Materials,

dimensions

J. Y. Hartley, et al., PVSC, 2019

Adding Time and Temperature Dependency of Polymer Materials

 The viscoelastic nature of polymer encapsulants is potentially a key factor affecting component stress states

• The polymeric layers of modules are known to have higher thermal expansion coefficients than surrounding materials, leading to stress during thermal cycling

Adding Time and Temperature Dependency of Polymer Materials

 This presentation summarizes the steps taken to populate a material model for two encapsulant polymers

- EVA is the most common encapsulant material used in PV modules
- We characterized crosslinked samples of a fast-curing commercial EVA

- Polyolefin films are a common alternative encapsulant with several improved characteristics that are especially valued in thin-film PV modules
- We characterized commercial POE samples that were heated and pressed to mimic manufacturing lamination conditions

Dynamic Mechanical Analysis (DMA) to Measure Viscoelastic Behavior

- Viscoelastic materials have mechanical responses between those of elastic solids and viscous fluids
 Cyclic load Cyclic load Material sample
- DMA applies an oscillatory stress and measures the material response

美DuraMAT

Time

Modulus v. T: EVA

Modulus v. T: POE

Time-Temperature Superposition: Application

Frequency Sweeps: EVA

• Measurements of modulus at very low frequencies are time consuming and at very high frequencies can be unfeasible

Storage Modulus

Master Curve: EVA

Time-Temperature Superposition: Fit

- Master curves of each material consist of shifted DMA data collected on multiple samples and smoothed
- The number of Prony terms was varied from 10 to 50, with 25 terms selected to minimize L₂ (below)

 Prony series fits (lines in plots right) capture both the elastic and viscous material responses of polymers

Modulus Fit: POE

Thermal Expansion Coefficient

 Measure thermal expansion over operating temperatures with a thermal mechanical analyzer (TMA)

Calibrating Sandia's Universal Polymer Model

- Viscoleastic properties are captured with parameters from master curve creation and prony-series fit:
 - C_1 , C_2 , T_{ref} , E_o , E_{∞} , τ_i , f_i
- Thermal expansion properties captured with the series fit of TMA data
 - τ_i, β_i
- Model is also capable of handling curing kinetics, future work could capture full lamination conditions

Validation Experiments: Cantilever Beam Method

Simple geometry for experimental • validation of encapsulant material model

(a)

Average In-Plane Stress

(Dimensionless)

Ongoing Work: Incorporation of Viscoelastic Model for ECAs

- Several electrically conductive adhesives (ECAs) have been characterized at NREL using similar methods to capture viscoelastic parameters
- Ongoing effort to implement these material models into a 3D modulerelevant geometry with deformations informed by full module models

Future Direction: Cell Cracking

• Will use a probability-based approach to check predicted high stress regions against experimental data of stress-at-failure.

Figure 3: Uncertainty in P_f given nominal values $\sigma_0 = 100$ and $\rho = 10$ and a sample size n = 30

S. Gutziak et al., SAND 2019-3477 CTF

Summary

- Multi-scale, multi-physics modeling can be used to:
 - determine the sensitivity of module behavior to material or design changes
 - identify areas of stress that can lead to failures
- Encapsulant thermal and viscoelastic behavior was characterized for two commercial materials: EVA and POE
- This work improves our ability to model modules under the wide range of stresses seen in operation and accelerated tests

Questions?