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Introduction

* Advanced computational capabilities at Sandia have been developed to predict
behavior in many complex systems
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Explore and predict with confidence.
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Multi-Scale Models for PV Reliability

* Modeling capabilities to predict stresses at various scales of a PV module:
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Multi-Physics Models

* Modeling capabilities incorporate various physics causing or related to degradation:

Heat Generation (W)
30
23
15
8
0

Mechanical stress
[Hartley, SNL]

Material responses:
- Encapsulant viscoelasticity [Maes, SNL]

- Electrically Conductive Adhesive
viscoelasticity and damage [Bosco, NREL]

Electrical-thermal coupling [SNL] Backsheet aging [Owen-Bellini, NREL;

Schelas, SLAC]

Thermal stress

Hartley, SNL . . . . . .
[ K ] Additional physics could include moisture transport, corrosion chemistry, and many others
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Sensitivity Analysis for Module Deflection

* Modeling capability was
demonstrated for a 60-cell
c-Si module and a large
format glass-glass module,
and validated against

Parametric inputs: Materials,
dimensions
120 total samples

Parameters highly correlated to
module deflection
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parametric uncertainty J. Y. Hartley, etal., PVSC, 2019
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Adding Time and Temperature Dependency of Polymer Materials

* The viscoelastic nature of polymer encapsulants is potentially a key factor

affecting component stress states .
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* The polymeric layers of modules are known to have higher thermal expansion
coefficients than surrounding materials, leading to stress during thermal cycling
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Adding Time and Temperature Dependency of Polymer Materials

* This presentation summarizes the steps taken to populate a material model
for two encapsulant polymers

 EVA s the most common encapsulant * Polyolefin films are a common

material used in PV modules alternative encapsulant with several
improved characteristics that are
especially valued in thin-film PV
modules

* We characterized crosslinked samples
of a fast-curing commercial EVA

* We characterized commercial POE
samples that were heated and pressed
to mimic manufacturing lamination
conditions
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Dynamic Mechanical Analysis (DMA) to Measure Viscoelastic Behavior

* Viscoelastic materials have
mechanical responses between
. . . material
those of elastic solids and viscous S v 7 response
fluids TP 99

* DMA applies an oscillatory stress and | 9.9 ’ M W
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Time-Temperature Superposition: Application

 Measurements of modulus at very low frequencies are time consuming
and at very high frequencies can be unfeasible
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Time-Temperature Superposition: Fit

Master curves of each material consist of
shifted DMA data collected on multiple samples
and smoothed

The number of Prony terms was varied from 10

to 50, with 25 terms selected to minimize L,
(below)

L, Error: POE L, Error: EVA

logiela
o

20 25 30 35 40 20 25 30 35 40
Starting N Prony Terms Starting N Prony Terms

Prony series fits (lines in plots right) capture
both the elastic and viscous material responses
of polymers
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Thermal Expansion Coefficient

* Measure thermal expansion over operating
temperatures with a thermal mechanical I I minimal force 1l force

analyzer (TMA)

A length with AT
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Calibrating Sandia’s Universal Polymer Model

* Viscoleastic properties are captured with parameters from master curve
creation and prony-series fit:

.C1;C2;Tr EOIEM'Ti' '

ef 7 i

* Thermal expansion properties captured with the series fit of TMA data
* T P

* Model is also capable of handling curing kinetics, future work could capture
full lamination conditions
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Validation Experiments: Cantilever Beam Method

* Simple geometry for experimental
validation of encapsulant material
model

s
(4]
e

Elastic

Strain Gauge

Elastoviscoplastic

Average In-Plane Stress
[Dirmensiankess)
L.F. Francis, et al., JMatSci 2002

Viscoelastic | X Y-deflection [m]

|< 0.0040

Time (Dimensionless } 0.0030

e System can also be modeled in an FEM 0.0020
for quick troubleshooting duri 2.0C19
9 g during 0.0000

incorporation of Universal Polymer
Model into SIERRA

NATIONAL RENEWABLE ENERGY LABORATORY + SANDIA NATIONAL LABORATORIES + LAWRENCE BERKELEY NATIONAL LABORATORY + SLAC NATIONAL ACCELERATOR LABORATORY



Ongoing Work: Incorporation of Viscoelastic Model for ECAs

* Several electrically
conductive adhesives (ECAS)
have been characterized at
NREL using similar methods
to capture viscoelastic
parameters

Ongoing effort to
implement these material
models into a 3D module-
relevant geometry with
deformations informed by
full module models
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Future Direction: Cell Cracking

* Will use a probability-based approach to check predicted high stress
regions against experimental data of stress-at-failure.
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Figure 3: Uncertainty in Py given nominal values o = 100 and p = 10 and a sample size n = 30

S. Gutziak et al., SAND 2019-3477 CTF
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Summary

* Multi-scale, multi-physics modeling can be used to:
* determine the sensitivity of module behavior to material or design changes
 identify areas of stress that can lead to failures

* Encapsulant thermal and viscoelastic behavior was characterized for two commercial
materials: EVA and POE

* This work improves our ability to model modules under the wide range of stresses seen
in operation and accelerated tests

Questions?
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