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obligatory Moore’s Law plot
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nanoscale MOSFETs
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device simulation

Frank, Laux, and Fischetti, IEDM 
Tech. Digest, p. 553, 1992.

• Monte Carlo simulation
-with quantum corrections

• Drift-diffusion
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molecular electronics
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generic model of a nanodevice

Gate

D(E −U)

S. Datta,  Quantum Transport:  Atom to Transistor, Cambridge, 2005
(“Concepts of Quantum Transport”  nanohub.org)
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Landauer-Datta
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generic model --> NEGF
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S. Datta,  Quantum Transport:  Atom to Transistor, Cambridge, 2005
(“Concepts of Quantum Transport”  nanohub.org)
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limits of MOSFETs

from M. Luisier, ETH Zurich / Purdue

4) 3)

2) 1)



10

spintronics
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Theory:  Datta group Purdue Experiment: Cornell
Sankey et al. Nat. Phys., 4, 67 (2008)
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21st century electronics
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MOSFETs and variability

1997 MOSFET
(Texas Instruments) 

after Takahiro Shinada, et al., 
Nature, 437,1128, 2005 

Random Dopant 
Fluctuations
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nanostructured solar cells (Alam group)
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challenges

1) Transistors
-quantum transport with dissipation
-dealing with randomness and variability

2) Beyond transistors
-from the atomistic/nano scales to the (often
random) micro- and macro scales.

3) Other challenges
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builders (experimentalists) vs. analysts

http://www.endex.com/gf/buildings/bbridge/bbgallery/

Eugene Fergason, in Engineering and the Mind’s Eye, 1994
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why we simulate

Three reasons to simulate:

1) to explore uncharted territory

2) to resolve well-posed questions

3) to make good design choices

-Leo Kadanov, Computing in Science and 
Engineering, 2004
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what we’re after

Two kinds of results:

1) answers, insight, understanding

2)  numbers and software

(after Brian Hayes, on “inquisitive computing” in American Scientist, 2008)
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role cyberinfrastructure

www.nanoHUB.org

signature service:

online simulation to 
connect simulation tool 
developers and users
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cloud computing for science and engineering

CNTbands 2.0
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cyber-enabled research

Arvind Raman
ME, Purdue
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Virtual Environment for Dynamic AFM

• Comprehensive suite of AFM simulation tools
• Includes realistic tip sample interaction models
• Sophisticated cantilever dynamics models
• Liquid/ambient/vacuum conditions
• Soft/hard organic/inorganics samples
• Used by individual researchers…
• and AFM industry (Agilent, Veeco, Asylum)

“I have been using VEDA now for almost a year and have found it to 
be extremely useful. … Finally, I have also been very happy with the 
ability to run these sometimes rather computationally expensive 
calculations remotely. I joked about it last year .. but since then I have 
actually run several calculations on my iPhone while traveling.”
Roger Proksch, CEO and co-founder, Asylum Research
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another view

“The purpose of computing is insight - not numbers.”

-Richard W. Hamming
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“Electronics from the Bottom Up”

19,259 nanoHUB.org EBU students last year.

New partnership with World Scientific.

“Research on molecular and nanoscale electronics is 
providing a new understanding of electronic conduction at the 
smallest scale. The objective of “Electronics from the Bottom-
Up” is to convey these new insights, understanding, and 
conceptual approaches to students and working engineers 
worldwide.”
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nanoHUB.org

>90,000
users/year
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the biggest challenge in computational science

American Scientist, pp.5,6, Jan/Feb 2006.

Gregory V. Wilson

Software Carpentry:
Essential Software Skills for Research Scientists
https://www.nanohub.org/resources/1811
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conclusion

There are plenty of challenges, but
many more opportunities!
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