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Abstract

Analyzing spatial-temporal characteristics of traffic in large-scale networks requires
both a suitable analysis method and a means to reduce the amount of data that must
be collected. Of particular interest would be techniques that reduce the amount of
data needed, while simultaneously retaining the ability to monitor spatial-temporal
behavior network-wide. In this paper, we propose such a method, motivated by in-
sights about network dynamics at the macroscopic level. We define a weight vector
to build up information about the influence of local behavior over the whole net-
work. By taking advantage of increased correlations arising in large networks, this
method might require only a few observation points to capture shifting network-
wide patterns over time. This paper explains the principles underlying our proposed
method, and describes the associated analytical process.
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1 Introduction

Most extant research on network traffic analysis focuses on observing tempo-
ral dynamics of traffic and effects from user and protocol behavior [1—4]. In
such analyses, detailed Internet Protocol (IP) packet traces on individual links
reveal the characteristics of network traffic at multiple timescales, e.g., rich
scaling dynamics arising over small timescales [3], and self-similarity and long-
range dependence at large timescales [4]. Recently, graph wavelets have been
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proposed for spatial traffic analysis with knowledge of aggregate traffic mea-
surements over all links [5]. This method can provide a highly summarized view
of traffic load throughout an entire network. Despite these advances, spatial
and temporal traffic analysis still presents difficult challenges, not only because
large-scale distributed networks exhibit high-dimensional traffic data, but also
because current analytical methods require examination of large amounts of
data, which can strain memory and computation resources in even the most
advanced generation of desktop computers.

Despite these inherent difficulties, investigation of spatial-temporal dynamics
in large-scale networks is an important problem because modern society grows
increasingly reliant on the Internet, a network of global reach that supports
many services and clients. Lacking means to predict, monitor, and adjust
spatial-temporal dynamics, Internet Service Providers (ISPs) typically over-
provision network capacity, which leads to under-utilized resources on average
with overloaded hotspots arising from time to time. Further, the Internet
appears increasingly vulnerable to attacks and failures [6,7]. These factors
suggest a crucial requirement to devise and develop promising tools that can
monitor network traffic in space and time to identify shifting traffic patterns.
Such tools can aid in operating and engineering large-scale networks, such as
the Internet. While useful network management tools might focus on either
offline or online monitoring and analysis, the task of network-wide on-line
monitoring presents more stringent requirements for transferring and handling
traffic data in a timely fashion.

To support the development of useful network management tools, the net-
working research community endeavors to devise novel and accurate methods
to interpret measurements, and to derive principles for extracting information
from raw measurement data. For example, a recent work studies correlations
between different network flows in a French scientific network, Renater [8].
The study defines a network flow as a packet flow transferred from a given
starting router to a given destination router. Many such flows simultaneously
transit a large-scale network, leading to underlying interactions among the
flows. Unfortunately, the effects of such interactions are usually not known,
and so cannot contribute to better network engineering and management. The
Renater study uses methods from random matrix theory (RMT) to analyze
cross-correlations between network flows. (RMT methods have been recently
used to study correlations in financial data [9].) In essence, RMT compares
a random correlation matrix–a correlation matrix constructed from mutu-
ally uncorrelated time series–against a correlation matrix for the data under
investigation. Deviations between properties of the cross-correlation matrix
from the investigation data and the correlations in the random data convey
information about “genuine” correlations. In the case of the Renater study,
the most remarkable deviations arise about the largest eigenvalue and its cor-
responding eigenvector. The largest eigenvalue is approximately a hundred
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times larger than the maximum eigenvalue predicted for uncorrelated time se-
ries. The largest eigenvalue appears to be associated with a strong correlation
over the whole network. In addition, the eigenvector component distribution
of the largest eigenvalue deviates significantly from the Gaussian distribution
predicted by RMT. Further, the Renater study reveals that all components
of the eigenvector corresponding to the largest eigenvalue are positive, which
implies their collective contribution to the strong correlation. Since all net-
work flows contribute to the eigenvector, the eigenvector can be viewed as
the signature of a collective behavior for which all flows are correlated. Thus,
the eigenvector might provide an important clue about macroscopic behavior
of the underlying interactions. In other words, the predominant information
about network dynamics at the macroscopic level can be obtained from the
largest eigenvalue and its corresponding eigenvector. This insight might prove
very helpful for analyzing spatial-temporal traffic patterns in large-scale net-
works.

In this paper, we propose a method for spatial-temporal traffic analysis using
the eigenvector corresponding to the largest eigenvalue. As the macroscopic
pattern emerges from all adaptive behaviors of flows in various directions,
hotspots should be exposed, through their correlation information, as the
joining points of significantly correlated flows. Note that the details of the
components of the eigenvector of the largest eigenvalue reveal this informa-
tion, with the larger components corresponding to the more correlated flows.
Thus, our primary insight is to group eigenvector components corresponding
to a destination routing domain (or autonomous system) together to build up
information about the influence of the routing domain over the whole network.
We define a weight vector for this purpose. Contrasting weights against each
other in the weight vector, we not only can summarize a network-wide view
of traffic load, but also locate hot spots, and even observe how spatial traffic
patterns change from one time period to the next.

While our approach builds upon the Renater study, we must solve some special
problems related to scale. The Renater study assumes complete information
from all network connection points, which proves feasible because the Renater
network contains only about 30 interconnected routers. Arranging for complete
coverage of observations in larger networks raises issues of scale, both in gath-
ering data from numerous measurement points and in consuming computation
time and memory when analyzing data. In particular, some heavily utilized
routers may fail to collect and transfer measurement data. Usually, it is impos-
sible to monitor areas of interest without corresponding measurements from
those areas. To extend our ability to monitor network-wide behavior, we ex-
ploit correlation increases arising from collective response of the entire network
to changes in traffic. This effect has already been observed in the framework of
stock correlations, where cross-correlations become more pronounced during
volatile periods as compared to calm periods [9]. Indeed, higher values of the
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largest eigenvalue occur during periods of high market volatility, which sug-
gests strong collective behavior accompanies high volatility. This connection
should have value in our analysis because Internet traffic behavior appears to
be nonstationary [10]. An increase in cross-correlation allows us to infer a shift
in the spatial-temporal traffic pattern of large areas of interest outside those
few areas where measurements are made. This approach could significantly
reduce requirements for data, perhaps to the point where monitoring may be
performed in real time.

In this paper, we use simulation results to show how our proposed technique
might work in a real large-scale network. Our results derive from a simple
simulation model we developed recently to study space-time characteristics of
congestion in large networks, and to analyze system behavior as a coherent
whole [11]. While capturing essential time details of individual packets and
connections, the model accommodates spatial correlations arising from inter-
actions among adaptive transport connections and from variations in user
demands. Though simulating an abstract network, which exhibits a regular
structure and homogeneous behavior, our model offers a clear-cut framework
to analyze spatial-temporal traffic patterns, e.g., where will hotspots develop
and how long will they persist? Coupling our new measurement and analysis
technique with our existing abstract simulation model allows us to compare
weight vectors at different timescales. Using this approach, we explain the
timescale of interest, and show macroscopic patterns at that timescale, al-
lowing us to observe that network-wide hotspots become more prominent as
increased correlation emerges. First, we try our method assuming complete
measurement data, and then we further try our method with only a few ob-
servation points. The rest of this paper is structured as four sections. Section
2 describes our adaptation of the RMT cross-correlation method. In Section 3,
we present our simulation model and discuss experiment results. We remark
about future work in Section 4, before concluding in Section 5.

2 The Cross-correlation Based Method

In this section, we first discuss some important aspects associated with the Re-
nater study, and then outline the cross-correlation based analysis method that
we derived from the study. We describe how we represent network flow data
and how we apply cross-correlation analysis to the data. Then, we explain our
application of RMT (random matrix theory) to investigate cross-correlation
throughout a network.
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2.1 The Renater study

The French network Renater 1 comprises a nation-wide infrastructure to en-
able most French research, technological, educational, and cultural institutions
to communicate with each other, and to connect to the global Internet. Re-
nater has about 2 million users, supported by about 30 interconnected routers.
Barthelemy and colleagues [8] studied traffic characteristics based on data col-
lected from 26 of 30 Renater routers. The collected data consisted of traffic
flows exchanged among routers for every sampling interval, τ = 5 minutes,
during a two-week period. The measured data encompass a total of N q =
26 × 25 = 650 different connections (i.e., source-destination pairs). The study
considered only data for daytime traffic, which covers Lq = 12 sample intervals
× 10 hours × 14 days = 1680 time counts, and analyzed correlation matrices
using Random-Matrix Theory (RMT).

RMT describes generic behavior of different classes of systems, while devia-
tions from its universal predictions allow the identification of system-specific
properties. To apply RMT, one compares a random correlation matrix–a cor-
relation matrix constructed from mutually uncorrelated time series–against
a correlation matrix for the data under investigation. Deviations between the
statistical properties of the cross-correlation matrix from investigation data
and the correlations in random data convey information about “genuine” cor-
relations. One first computes the eigenvalues λk (k =1, 2, . . . , N q) and the
eigenvalue distribution from the investigation data, and then compares the
distribution against an analytical result predicted for a corresponding random
correlation matrix. Eigenvalues and eigenvectors of random matrices exhibit
known statistical properties [8,9]. Particularly, in the limit N q → ∞, Lq →
∞, where Q ≡ Lq/Nq(> 1) is fixed, the probability density function P rm(λ)of
engenvalues of a random correlation matrix is given by

Prm(λ) =
Q

2π

q
(λ+ − λ)(λ− λ−)

λ
, (1)

for λ within the bounds λ− ≤ λ ≤ λ+, where λ− and λ+ are the minimum
and maximum eigenvalues, respectively given by

λ± = 1 +
1

Q
± 2

s
1

Q
. (2)

In the Renater study, the most remarkable deviation from P rm(λ) arises about
the largest eigenvalue, which is found to be approximately a hundred times

1 For more details on this network, see the web page http://www.renater.fr, which
can be translated from French to English using a web-based translation service.
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larger than the maximum eigenvalue predicted for uncorrelated time series.
This suggests that the largest eigenvalue appears to be associated with a
strong correlation in the network.

Deviation in the largest eigenvalue implies that deviation should also be dis-
played in the statistics of the corresponding eigenvector components. The dis-
tribution of the components {wkl ; l = 1, . . . , N q} of eigenvectorw k of a random
correlation matrix should conform to a Gaussian distribution with mean zero
and unit variance,

ρrm(w) =
1√
2π
e−w

2/2. (3)

The Renater study found that, while the eigenvectors corresponding to most
eigenvalues follow the predictions of RMT, the eigenvector corresponding to
the largest eigenvalue λ1 deviates significantly from the predicted Gaussian
distribution. In particular, its components are nonzero and positive, which
indicates correlations throughout the whole network. Since all network flows
contribute to the eigenvector, the eigenvector can be viewed as the signature
of a collective behavior for which all flows are correlated.

While the Renater study gives some inspiring results on understanding collec-
tive behavior in network flows, further studies are needed into spatial-temporal
characteristics at multiple timescales and in larger networks. In addition, other
issues must be considered as data is collected in larger networks. First, we
may need to collect finer-grain flows in order to explore characteristics at
timescales smaller than 5 minutes, and to explain temporal dynamics aris-
ing from relationships between small-scale fluctuations and long-range depen-
dence [4]. Second, we may need to analyze collective properties over different
time periods (e.g., from hour to hour) to characterize fluctuations in cross-
correlation. The data used in the Renater study is discontinuous in the time
axis, including no data for nighttime traffic. Third, to apply RMT to networks
larger than Renater, we have to face some special problems related to scale.
The Renater study assumes complete information from all network connection
points, which proves feasible because the Renater network contains only about
30 interconnected routers. Arranging for complete coverage of observations in
larger networks raises issues of scale, both in gathering data from numerous
measurement points and in consuming computation time and memory when
analyzing data. Finally, we should further identify and exploit the practical
implications arising from network-wide traffic studies in order to help improve
network engineering and management. A wide range of statistical techniques
[19] might be explored in an effort to address these pending issues. Inspired
by the Renater study, we derived and investigated an analysis method based
on cross-correlation and deviations from RMT predictions. Next, we explain
our method.
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2.2 Representing network flow data

Our method requires us to represent packets flowing between distinct source-
destination pairs at each sampling interval. Let x = (x 1 , x 2 , . . . , xN )

T denote
the flow vector of corresponding packet counts among all N routing domains,
observed in starting domains during a given time interval in a large network.
(Here T indicates transpose.) Each element of this flow vector is itself a vector
defining the number of packets flowing into the corresponding domain from
each of the other (starting) domains in the network. The method to obtain all
flow variables in this vector is to first enumerate all the destination domains
and then the starting domains by 1 to N, and group these indices by routing
domain: the domains sending to the first domain in the first block, x 1 , and
those sending to the second domain in the second block, x 2 , and so forth.
Thus, we form x with blocks in the order x 1 = (x 21 , x 31 , . . . , xN1 )

T , x 2 =
(x 12 , x 32 , . . . , xN2 )

T , x 3 = (x 13 , x 23 , x 43 ,. . . , xN3 )
T ,. . . , xN = (x 1N , x 2N ,

. . . , x (N−1 )N )T , where x ij (i 6= j) represents packet flow from the ith domain
to the j th domain. Each flow variable x ij is normalized as f ij by its mean m ij

and standard deviation σij ,

fij = (xij −mij)/σij. (4)

Then, the normalized flow vector f , corresponding to x , comprises N normal-
ized subvectors, f k (k =1, 2, . . . , N ), where each subvector is formed from
normalized flow variables f ik (i 6= k and i ≤ N). If M is the number of ob-
served samples over the observation period ofM×T , then f is a N(N−1)×M
matrix.

2.3 Cross-correlation analysis

Cross-correlation analysis is a tool commonly used to analyze multiple time
series. We can compute the equal-time cross-correlation matrix C with ele-
ments

C(ij)(kl) = hfij(t)fkl(t)i , (5)

which measures the correlation between fij and fkl, where h· · ·i denotes a
time average over the period studied. The cross-correlation matrix is real and
symmetric, with each element falling between —1 and 1. Positive values indicate
positive correlation, while negative values indicate an inverse correlation. A
zero value denotes lack of correlation.
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We can further analyze the correlation matrix C through eigenanalysis [12].
The equation

Cw =λw (6)

defines eigenvalues and eigenvectors, where λ is a scalar, called the eigenvalue.
If C is a square K-by-K matrix, e.g., K = N(N − 1) in the case of com-
plete coverage, then w is the eigenvector, a nonzero K by 1 vector (a column
vector). Eigenvalues and eigenvectors always come in pairs that correspond
to each other. This eigenvalue problem has K real eigenvalues, some of which
may repeat. An eigenvector is a special kind of vector for the matrix it is
associated with, because the action of the underlying operator represented by
the matrix takes a particularly simple form on the eigenvector input: namely,
simple rescaling by a real number multiple. The eigenvector w 1 corresponding
to the largest eigenvalue λ1 often has special significance for many applica-
tions. There are various algorithms for the computation of eigenvalues and
eigenvectors [12]. Here, we exploit the MATLAB eig command, which uses
the QR algorithm to obtain solutions [13].

2.4 Defining the weight vector

Much of the traffic flowing through the Internet must traverse multiple rout-
ing domains. Adaptive behaviors of flows in different directions play a crucial
role in forming macroscopic patterns, mostly in a self-organized manner. The
cross-correlation matrix contains within itself information about underlying
interactions among various flows. In a study of cross-correlations in stock price
changes, influence strength is defined as the sum of the cross-correlation coef-
ficients associated with one company [14]. In that study, influence strength is
used to represent the degree to which changes in a company’s stock price affect
the entire stock market. Similarly, we can measure the congestion level of the
j th domain by summing all cross-correlation coefficients (ignoring autocorre-
lation) associated with the j th block, i.e.,

P
i

P
k,l
C(ij)(kl), (i 6= j, k 6= l). Using

this approach in our simulations yielded findings similar to those reported for
stock markets [9] and for the Renater network [8]. That is, the majority of
the properties of the correlation matrix C conformed to the results predicted
by RMT 2 ; thus, the correlation coefficients included substantial noise mixed
with the information about macroscopic patterns. We found this to hold even
when observing network traffic flows in all nodes, and to hold more strongly
in cases where we observed network traffic in only a sparse number of nodes.

2 In the Renater study, the eigenvalues’ distribution and their spacing distribution
follow approximately the predictions of RMT. And, the eigenvectors corresponding
to most eigenvalues are in agreement with the results of RMT.
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From this, we infer that we are more likely to find less noise (and more in-
formation) in cases that deviate from the RMT predictions. Such cases can
be found by filtering the information about structural correlations through
eigenanalysis.

The components of the eigenvector w 1 of the largest eigenvalue λ1 represent
the corresponding flows’ influences on macroscopic behavior, abstracted from
the matrix C into the pair (λ1 , w

1 ). The eigenvector w 1 comprises N sub-
vectors, i.e., w 1 = (w1

1 , w
1
2 , . . .w

1
N )

T . The kth subvector, corresponding
to the kth domain, is formed from components w1 ik (i 6= k and i ≤ N) rep-
resenting the ith domain’s contribution to the kth domain. We consider the
square of each component, (w1 ik)

2, instead of w1 ik itself because
P
i,k
(w1ik)

2 = 1

[15]. We define the weight S k (k = 1, 2, . . . , N ) to be the sum of all (w1 ik)
2

in the kth subvector w1
k .

Sk =
NX

i(6=k)
(w1ik)

2. (7)

In the case of complete observations in all routing domains, S k represents
the relative strength of the contributions of the flows towards the kth routing
domain. Thus, the knowledge of weight vector S = (S 1 , S 2 , . . . , SN ) across
varying k constitutes one summary view of network-wide traffic load.

When analyzing the spatial-temporal traffic pattern of a large-scale network,
the cross-correlation matrix C can be a very large object. Usually, floating-
point operations on the order of K 3 are required to find eigenvalues and eigen-
vectors [12]. Thus, even if such analysis yields informative results, it appears
impractical to monitor the spatial-temporal pattern of large-scale networks
using this method with complete coverage of observations. We exploit the
property of the increased correlation in order to reduce data requirements,
filling the flow vector x just with traffic measured in a few domains. This
insight might allow us to infer traffic-pattern shifts in real time for large areas
of interest from observations in only a few distant locations.

3 Experimental Analysis

In this section, we show some experimental results after a brief description of
our simulation model. Assuming complete coverage of observations, we first
discuss the timescale of interest, and also consider qualitatively the increased
correlation arising at that timescale. We then demonstrate our method ap-
plied in a larger (simulated) network structure. Subsequently, we consider our
method with various reductions in the number of observation points, showing
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how increased correlation helps to reduce the scale of measurements necessary
to capture shifting network-wide traffic patterns over time. As the number of
observation points decreases, there comes inevitably a level where the perfor-
mance of our method degrades. We also investigate the ability of our method
to reveal network-wide behavior when we divide the network into sub-areas.
By focusing separately on each sub-area and performing the necessary compu-
tations in parallel, we can reduce the overall time required for analysis. Finally,
we compare computation requirements among our various experiments to show
that reducing data set size might permit us to support real-time monitoring
and analysis.

3.1 Simulation model

Network simulation plays a key role in building an understanding of net-
work behavior. Choosing a proper level of abstraction for a model depends
very much on the objective. Studying large-scale characteristics and collective
phenomena seems to require simulating networks at large scale. Appropriate
models for these purposes should also include substantial detail representing
protocol mechanisms across several layers (e.g., application, transport, net-
work, and link) of functionality, yet must be restricted in space and time in
order to prove computationally tractable. We propose a modeling approach
that maintains the individual identity of packets to produce the full-duplex
“ripple effect” at the packet level, and that can also accommodate spatial
correlations in a regular network structure. The regular and homogeneous
topology of our network model and accompanying routing simplifications, ex-
hibit significant deviation from real networks. Further, our model characterizes
user behavior in a highly abstract form, and depicts only the most elemental
details of transport algorithms. Despite these abstractions and simplifications,
our model has been tested successfully against current understanding of the
timescale dynamics of network traffic, and has been used to show a signifi-
cant influence of spatial span on correlation structure [11,16]. These previous
experiences indicate that our simulation model, while unlikely to yield quan-
titative fidelity with real networks, should prove suitable as a vehicle to test
our proposed analysis method.

The topology of our model comprises a variable number of interconnected
domains. Figure 1, for example, shows a network of 25 domains. Each do-
main has two tiers: an upper tier for routers and a lower tier for hosts. Each
router is attached to an equal number of sources (100 in this paper), and to
a variable number of hosts (< 500 in this paper) acting as receivers. Each
source models traffic generation as an ON/OFF process, which alternates be-
tween wake and sleep periods with average durations λon and λoff , and with
the same shape parameter α of the Pareto distribution [11] for both ON and
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Fig. 1. The network structure with 25 routing domains.

OFF processes. This traffic-generation process mimics the heavy-tailed distri-
bution of transferred file sizes observed from empirical measurements on the
Internet [2]. When a source initiates a connection (ON period), a destination
routing domain (differing from the source domain) is chosen randomly and uni-
formly. Our model generates and routes individual messages, called packets.
To store and forward packets, which travel a constant, shortest path between
a source-destination pair for each flow, routers maintain a queue of limited
length (160 packets/router here), where arriving packets are stored until they
can be processed: first-in, first-out. For convenience, in this paper we assume
that every discrete simulation time-step is 1 millisecond. If a source is in an
ON period, the source can create one packet every millisecond, subject to the
control of TCP (Transmission-Control Protocol) constraints, and forward it
to the buffer of its directly attached router. However, each router can forward
multiple packets (10 here) during one millisecond. This simulates the differ-
ence between access links and backbone links in a hierarchically structured
network.

With our model, we can simulate spatial and temporal traffic dynamics through
high user variability (α = 1.5, λon = 50 and λoff = 3000), and through adaptive
transport (TCP) connections. We first model a network with N = 25 domains
(Figure 1). Note that there is no structural bottleneck in our model because
routing assumes a periodic boundary condition, which allows the edges of our
grid topology to form a closed structure [11]. Given homogeneous variation
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Fig. 2. The most congested domain changes over time.

of traffic demand in space and time, heavily congested subnets are induced
only infrequently. To deliberately induce congestion, we let one domain have
an additional two percent probability for selection as the destination domain.
This is a natural way to change the network-wide traffic demand at longer
timescale. We measure the most congested domain, i.e., the domain serving as
destination for the greatest number of connections. Figure 2 shows the address,
yA (= 1, 2, . . . , 25), of the most congested domain changing over time. During
the first period, the 19th domain is the most congested. Then, at t = 800 s,
the 7th domain is selected as a new location to induce the next congestion,
but the second period of congestion actually starts from t = 1232.9 s. At t =
1600 s, the 19th domain is again selected as the hotspot, but the third period
of congestion arises 542.2 s into the second period. This congestion-induction
technique offers an easily interpreted framework to analyze spatial-temporal
pattern shifts driven by varying traffic demand.

3.2 Timescale of interest

When focusing on network-wide behavior, the timescale of interest should not
be fine-grained. The microscopic fluctuations observed at shorter timescales
usually reflect local details, while the driving force of traffic demand seems to
vary over much longer timescales. The timescale of interest in our experiments
appears at a middle range, similar to the concept of a critical timescale beyond
which traffic fluctuation is supposed to exhibit greater influence [17]. At this
middle timescale, macroscopic behavior forms a connecting link between mi-
croscopic fluctuations and the longer-range driving force of variations in traffic
demand. This expected coherence emerges as a result of adaptive behaviors of
flows in different directions, but continues to shift its spatial-temporal pattern
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Fig. 3. Two weight vectors at T = 0.3 s (a) and T = 2 s (b), and (c) the sum of
S19 and S7 changing at different timescales.

under the force of traffic demand.

In our simulation, we observe at granularity of 100 ms (i.e., each 100 model
time steps) every fine-grain flow between all domain pairs, filling the flow
vector x with 600 variables (24 destination domains for each of the 25 source
domains). Such complete coverage of observation allows us to analyze cross-
correlations of all flows aggregated at various time granularities, denoted by
T.

We first calculate the weight vector S with M data points (M = 200 in this
paper), which span a first period (M/2 points) and a second period (M/2
points). We calculate two weight vectors at the aggregated levels T = 0.3 s
and T = 2 s, shown respectively in Figure 3(a) and 3(b). The weight vector
with T = 2 s shows two prominent weights at the 7th and 19th domains (S 7
and S 19 ), revealing the network-wide pattern of congestion arising in these two
domains. However, the pattern does not appear when T = 0.3 s. To clarify the
role of timescale here, we further show in Figure 3(c) the sum of S 7 and S 19
at different aggregated levels. We find that the sum of S 7 and S19 gradually
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Fig. 4. The spatial-temporal pattern evolving with T = 2 s.

Fig. 5. (a) S7 (dashed line), S19 (dotted line), and the sum of S7 and S19 (solid
line), and (b) the largest eigenvalue λ1 with T = 1.5 s.

increases as T increases, but levels off from about T = 2 s. To show how the
spatial traffic pattern changes, we calculate the weight vector S using M data
points within a moving time window MT from one time period to the next.
Figure 4 shows the weight vector S evolving with T = 2 s and with the time
window MT (= 200 × 2 s = 400 s) sliding ahead every 40 s. The time axis
indicates the end of the moving time window. This technique provides a useful
way to observe network-wide congestion patterns shifting over time.
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Fig. 6. (a) S7 (dashed line), S19 (dotted line), and the sum of S7 and S19 (solid
line), and (b) the largest eigenvalue λ1 with T = 3 s.

3.3 Increased correlation

Figure 5(a) shows S 7 (dashed line), S 19 (dotted line), and the sum of S 7
and S 19 (solid line), which are calculated with T = 1.5 s and with the time
window MT (= 200 × 1.5 s = 300 s) sliding ahead every 30 s. Figure 5(b)
shows the corresponding λ1 . While S7 and S 19 are distinguishable in three
periods, both become enhanced during periods of pattern shifting. The sum of
S 7 and S19 , and the largest eigenvalue λ1 undulate in the same way, and reach
higher values during periods of pattern shifting than during calm periods. The
increased correlation in the simulation data suggests a collective response over
the entire network to changes in traffic demand. During transient periods,
flows in different directions have to adapt their behaviors to the changing
impulse of the driving force, and continue to react to each other until they
reach collectively a new coherent pattern. With the measurement and analysis
method, as outlined above, applied at the appropriate timescale, as cross-
correlations become more pronounced, traffic patterns over the whole system
become more visible.

One might hypothesize that system-wide visibility depends on choosing an
appropriate timescale. For example, observe the system at a coarser timescale
of T = 3 s, as shown in Figure 6. We show S 7 (dashed line), S 19 (dotted line),
and the sum of S 7 and S 19 (solid line) in Figure 6(a), and the corresponding
λ1 in Figure 6(b). As T increases, doubling from Figure 5 to Figure 6, we find
that two transient processes seem to converge gradually, and that the second
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period (seen in Figure 5) becomes indistinct (in Figure 6), as if a hotspot
appears in the 7th domain for some time. When T is above 4 s (not shown),
congestion in the 19th domain never appears to diminish.

3.4 Sparse observation posts

While our proposed data analysis method provides substantial visibility into
network-wide behavior at the critical timescale, it appears impractical to col-
lect fine-grain traces for every source-destination pair over a large network.
Even if complete observations could be arranged, challenges remain: such
as, obtaining reliable data transfer to the analysis point and implementing
processing power sufficient to analyze the data within a meaningful time. In
particular, some heavily utilized routers may fail to collect and transfer data,
but often happen to be the parts of interest to monitor (due to their con-
gested nature). Given these real constraints, it would be appealing to reduce
the amount of data to transfer and process, while retaining our ability to
monitor network-wide behavior.

It could prove feasible to design sample-based techniques suitable to identify
network-wide patterns that remain invariant for a long time. When traffic
demands vary over a large dynamic space-time range, these same techniques
might fail to detect more quickly changing patterns. However, by exploiting the
increased correlation arising during volatile periods, we might be able to use
a sample-based version of our proposed method to identify shifting network-
wide congestion patterns. In the following, we provide some preliminary results
regarding this idea.

Figure 7 shows a larger simulated network with 81 domains and L (= 16)
observation points (shaded). For each source, we use the following traffic-
generation parameters: α = 1.5, λon = 50 and λoff = 5000. We record traffic
flowing out from each observation point to all other domains with T = 2.1 s,
and we fill the flow vector x with L× (N − 1) (= 16 × 80 = 1280) variables,
representing a substantial reduction from the 6480 variables that would be
needed for complete monitoring. We select a total of four domains as hotspots,
and increase congestion in two of the domains in each of two different time
periods. Figure 8(a) shows how the most congested domains, yA (= 1, 2, . . . ,
81), change over time. In the first period (up to about 1830 s), we arrange
for the 21st and 61st domains to be most congested. In the second period
(after 1830 s), we arrange for the 25th and 57th domains to be most congested.
We then calculate the weight vector S with 200 data points spanning the
two periods. In Figure 8(b), the weight vector shows four prominent weights
at the 21st, 25th, 57th and 61st domains (S 21 , S 25 , S57 and S61 ), and thus
reveals the network-wide pattern that we stimulated. From this, we infer that
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Fig. 7. The larger network with 81 domains and 16 selected observation points
(gray).

such patterns can be detected even without complete observations. Note also,
that this technique managed to find the congestion pattern without sampling
packets flowing out of the congested domains.

What if we further reduce the number of sample points? Select L = 8 as the
number of observation points (i.e., the 13th, 15th, 29th, 35th, 47th, 53rd, 67th,
and 69th domains here). Thus, the flow vector x has L × (N − 1) = 8 × 80
= 640 variables. The related weight vector S , calculated with 200 data points
spanning two periods, is shown in Figure 8(c), which is almost the same as
Figure 8(b). Next, with the observed data from only these eight sample points,
we calculate the weight vector S using M data points within a moving time
window MT from one time period to the next. Figure 9 shows the weight
vector S evolving with T = 2.1 s and the time window MT (= 200 × 2.1
s = 420 s) sliding ahead every 42 s. With a few observation points visibility
into time-varying network congestion appears indistinguishable during non-
transient periods; however, we find that the effect of transient periods is very
helpful for capturing the network-wide pattern shifting over time.

Can the proposed method succeed with still further reduction in the number of
sample points? We finally select L= 4 as the number of observation points (i.e.,
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Fig. 8. (a) The most congested domains changing over time, and two weight vectors
with L = 16 (b) and L = 8 (c).

the 31st, 33rd, 49th, and 51st domains here). The flow vector x has L× (N −1)
= 4 × 80 = 320 variables. The weight vector S , again calculated with 200 data
points spanning two periods, is shown in Figure 10(a). Here, the performance
of the method appears to degrade. While Figure 10(a) reveals the network-
wide pattern to some extent, it also exhibits differences with Figure 8(b) and
Figure 8(c). We attribute these differences to local effects being amplified in
the weight vector, but not appearing in the global pattern of Figure 8(b)
and Figure 8(c). For example, S 12 is very prominent in Figure 10(a), but not
in Figure 8. This occurs because traffic from our four sampling domains to
the 12th domain appears jammed because the routing algorithm in our model
[11] forwards packets through the congested 21st domain. Despite degraded
performance, the weight plot in Figure 10(a), though derived from only four
sample points, is still helpful for inferring the network-wide pattern.

Can we derive further insight by decomposing the network into parts with
regard to the data analysis? We divide the network into three parts (i.e., 1st

∼ 27th, 28th ∼ 54th, and 55th ∼ 81st), and analyze each separately. Since
all hotspots exist in the first and third parts, Figure 10(b) and 10(c) show
respectively their weight vectors, each of which is calculated with the flow
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Fig. 9. The spatial-temporal pattern observed with T =2.1 s at eight observation
posts.

vector of 4 × 27 = 108 variables. Notice that the weights of the domains are
enhanced in these local maps. Figure 10(d) shows distinctly S 57 (dotted line)
and S61 (solid line) within the third part, which change with the time window
MT (= 200 × 2.1 s = 420 s) moving ahead every 21 s (recall Figure 9).

Our experiments suggest that we can gain network-wide knowledge of chang-
ing congestion patterns with substantially reduced data sets, but what effect
does this reduced data have on computation requirements? Might we perform
data analysis to support real-time monitoring? To produce Figure 10(c) re-
quires just 0.06 s for computing the correlation matrix, all eigenvalues and
eigenvectors with MATLAB on a 1 GHz computer. Our other analyses re-
quired more computation: 1.10 s for Figure 10(a), 9.98 s for Figure 8(c), and
82.92 s for Figure 8(b).
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Fig. 10. (a) a weight vector with L =4, (b) (c) two weight vectors for the first (1st

∼ 27th) and third parts (55th ∼ 81st), and (d) S57 (dotted line) and S61 (solid line)
of the third part.

4 Future work

The preliminary results we presented here encourage further investigation.
We can conceive future work along two dimensions: scientific and engineer-
ing. Along the scientific dimension, we plan to investigate the applicability
of our proposed cross-correlation based method to observe complex phenom-
ena using a more realistic simulation model of a large-scale network. Such
investigation should further test the utility of our analysis method. We also
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need to understand differences between our simulation results and the cross-
correlations reported in the Renater study, which appear much stronger than
those we found from our simulation model. For example, the largest eigenvalue
reported in the Renater study is at least four times larger than the eigenvalues
estimated from our simulations. This might imply that actual traffic demand
varies much more violently than the simulated “square wave” used in our ex-
periments. If this implication proves valid, then our proposed method might
be quite well suited for use in network operation and engineering. We can
further investigate this question as suitable data becomes available from In-
ternet measurements. At the same time, we could consider insights provided
by other statistical techniques [19], such as process control methods for mul-
tivariate correlated data.

Along the engineering dimension, we plan to investigate a range of applications
for our proposed analysis method. For example, using a more realistic network
simulation, we plan to explore the ability of cross-correlation based analysis to
reveal the macroscopic effect of distributed denial of service (DDoS) attacks.
Can our method reveal the dynamics of various attack types, such as constant
rate, increasing rate, natural-network-like-congestion, subgroup, and pulsing
attacks? Can our method distinguish the existence of multiple attack targets
and the location of attack sources? Simulation might also allow us to examine
the utility of our method to guide real-time traffic engineering in response to
shifting network demands. If such simulation experiments yield encouraging
results, then we could use real Internet data, once available, to test the applica-
bility of our analysis method to a large operational network. Simulation could
also help us evaluate appropriate values for various parameters, e.g., the num-
ber of data points to collect (M ), the time granularity to observe (T ), and the
number (L) and location of observation points, associated with our proposed
analysis method. After we understand better theoretical parameters to use, we
can consider practical engineering methods associated with deployment and
application. Though we can imagine data recorded, possibly by NetFlow [18],
and transmitted frequently to a collection server, significant practical ques-
tions remain. For example, could such data collection induce measurement
artifact into the cross-correlation eigenvalue depiction of the network? How
many observation points can be deployed in the Internet, and where? Should
a central site manage data collection and analysis, or could decentralized sites
collaborate to exchange subsets of data collected and analyzed independently?
Further, can network-wide traffic monitoring be deployed as a real-time service
to support scientific research, to aid traffic engineering, to inform end users
about network conditions, and to provide early warning of possible DDoS
attacks? If such a service proves feasible, then how can network-wide shifts
in traffic patterns be used to trigger more detailed monitoring activities, for
example, to verify that a hotspot really exists or that a DDoS attack is un-
derway?
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5 Conclusions

Operating and engineering large-scale networks could benefit from develop-
ment of promising tools to monitor network-wide traffic in space and time.
In this paper, we investigated spatial-temporal traffic analysis using a cross-
correlation method, based on the eigenvector of the largest eigenvalue. To
illustrate the method, and reveal its promise, we reported simulation results
from some experiments using a rather simple network model. Through a de-
fined weight vector, we could identify macroscopic traffic patterns within the
simulated network at the critical timescale, which allowed us to observe the
more prominent weights of congested domains as increased correlation arises.
We evaluated our method with various reductions in the number of obser-
vation points, and suggested that we could still capture the network-wide
pattern shifting over time. We identified some degradation in the performance
of our proposed method as the number of sample points passed below a thresh-
old; however, we also suggested that we could compensate for this degrada-
tion somewhat by dividing the network into sub-areas, and then focusing on
each smaller area separately. Our experiments suggest a possibility to observe
network-wide shifts in congestion patterns with substantially reduced data
sets and lower computation requirements, which might enable data analysis
in support of real-time monitoring.
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