
Multi-Path Protocol for Big Data Transfer

Lotfi Benmohamed

NIST

Team: A. Battou, H. Bilil, O. El-Mimouni, K. Halba, C. Mahmoudi

Outline

• How can we move data faster by providing multi-path transfer capability through the network

• What can an ICN architecture like NDN offer (compared to IP)

• Show that it can be done easier and more efficiently with NDN than with IP

• Describe our implementation and its performance

Multi-path transfer

• Large data volume can come from either

– small number of large data files (such as from scientific big data from previous talks), or

– large number of small data objects (such as from video content distribution),

– even though a large data volume in both cases

• To support big science data we’re interested in the problem of maximizing transfer rate

(hence minimizing transfer time) when moving large data files

• Multi-path transfer uses multiple paths between two endpoints

– network resources on all paths appear to the endpoints as a single pooled resource

– dynamic scheduling (coordinated congestion control) used to split data traffic across the available paths

• Benefits to user

– Higher throughput: due to pooled resources

– Improved resilience to link or node failure (if we lose resources on

one path we still have the resources of other paths)

Multi-path throughput

• With fully disjoint paths,
– we can achieve 𝐶 = σ𝑖=1

𝑛 𝐶𝑖

• With partially disjoint paths
– If 𝐶0 ≥ σ𝑖=1

𝑛 𝐶𝑖 , then as if fully disjoint (from throughput point of view)

– Still useful when max(𝐶𝑖) < 𝐶0 < σ𝑖=1
𝑛 𝐶𝑖 , can still get some benefit from multi-path

C1
C2
….
Cn

𝐶0
C1
C2
….
Cn

𝐶0

How can we get multi-path capability

• [1] Network-controlled multi-path

– No end-point involvement (end-user with single physical network

connection)

– Network splits end-user traffic into multiple paths

• [2] User-controlled multi-path through interface selection

– End-point is multi-homed (with multiple physical access links)

– Number of paths up to number of physical access links

– No network involvement (user splits traffic)

• [3] User-controlled multi-path through transit selection

– User selects transit points (topologically diverse) for multi-path

• Combinations are also possible

– [1]+[2]

– [1]+[3]

– [2]+[3]

– [1]+[2]+[3]

Network-controlled multi-path

• In IP networks, forwarding is always along the shortest path

– If multiple such paths exist, equal-cost multi-path (ECMP) routing can be used for load balancing over them

– To avoid IP routing loops only paths with the minimum routing cost can be considered

– Limited number except in some regular & dense topologies (data centers)

• ECMP works at the flow level (5-tuple flow granularity)

– but we need to split one big flow into sub-flows

– multiple IP addresses per interface needed for multi-path tcp to work in this case (up to # ECMP paths)

• In NDN networks, multipath is easy and readily available

– Through Interest-forwarding strategy (can split traffic arbitrarily)

– Built-in loop detection mechanism allows exploring any path (not just shortest paths)

Our approach

• Our approach is based on transit node selection and we made an implementation

based on this approach

• Partly due to the fact that we started with the following problem:

• Given large data object stored at customer location P, transfer it as fast as possible to cloud

storage

• Possible use case:

– Customer logs in to the portal of its cloud service provider (CSP) to initiate transfer of a

data object

– Provides the name of the data object /NIST/MML/archive1

– CSP selects a set of diverse locations and triggers each storage location to start

downloading objects with the given name

– wildcard character (/NIST/MML/archive1/*) meaning that it is ready to accept the next

data packet without specifying any particular one [“exclude” option can be used instead]

• P will reply with the next non-transmitted data packet

– For reliable delivery, the index of last received packet is appended to names in Interests

– Producer keeps track of lost Data packets for retransmission

T1
T2

Tn
P

R0

I: /NIST/MML/archive1/*/lastBlockID
D: /NIST/MML/archive1/*/currentBlockID

• Distributed Transfer Protocol (DTP)

– each location will have a subset of the original data object

(not necessarily a contiguous in-order block)

– if needed, can be followed by another protocol to consolidate at location C

– Can be adapted for Hadoop map/reduce application

• Next step: Multi-Path Transfer Protocol (MPTP)

– performs end-to-end simultaneous transfers through a selected set of locations

– simpler than DTP as only C needs to keep track of received/lost Data packets (P needs to do this in DTP)

T1
T2

Tn
P

R0

C

T1 T2

Tn

R0

C

T1 T2

TnP

R0

NDN Multi-Path Transfer Protocol

ndnMPTP

• CSP instructs C to initiate simultaneous (parallel) transfers of the data file /NIST/MML/archive1 from

producer P through a selected set of transit nodes T1, T2, …, Tn (with names denoted /T1 , /T2, …, /Tn)

– ndnMPTP running at each of the nodes

– All /Ti names are reachable (advertised in routing)

T1
T2

Tn
P

R0

C

NFD

Repo MPTPNLSR

ndnMPTP – step0

• First Interest generated at C with the name

– /NIST/MML/ndnMPTP/archive1

• ndnMPTP running at P will return the first data block in a Data

packet with a specification of FinalBlockID as part of the

MetaInfo

T1

T2

Tn

P

C

ndnMPTP – Interest

• Interests are generated at C for each Ti with the name

– /Ti/ndnMPTP/NIST/MML/ndnMPTP/archive1/BlockID

• Consecutive BlockIDs are requested up to FinalBlockID

– Subject to retransmission of lost blocks and flow control at C

T1

T2

Tn

P
C

• Interest processing at Ti

– Send new Interest with name /NIST/MML/ndnMPTP/archive1/BlockID

• Interest processing at intermediate node

– Standard NDN processing

T1

T2

Tn

P
C

ndnMPTP – Data

• For each Interest, deliver corresponding data block

• Name in Data packet is

– /NIST/MML/ndnMPTP/archive1/BlockID

T1

T2

Tn

P
C

• Data processing at intermediate nodes

– At Ti append /Ti/ndnMPTP to name :

/Ti/ndnMPTP/NIST/MML/ndnMPTP/archive1/BlockID

– Other nodes: normal NDN processing

T1

T2

Tn

P
C

Outstanding/inflight
(per Ti)

Window
(per Ti)

Round Trip Time
(per Ti)

On_Data (Rcv) Oi=Oi-1 Wi=Wi+AIF/Wi (+1 per
RTT)

RTT_i=T_sent – T_current
Compute average/deviation

On_Interest (Send) Oi=Oi+1 Set Timeout for Interest
Record T_sent

On_Timeout (no Data
within TOi)

Oi=Oi-1 Wi=Wi*MDF (1/2) Retransmit Interest

Per Ti :
Initialize TO

subsec. up to 1 sec
When first RTT is measured set:

RTTave=RTT
RTTdev=RTT/2

Whenever a subsequent RTT is collected set:
RTTdev=b*|RTTave-RTT| + (1-b)*RTTdev [1/8]
RTTave= a*RTT + (1-a)*RTTave [1/4]

When sending Interest after first RTT measurement
TO= RTTave + K*RTTdev [4]

At Consumer:

Evaluation

• Preliminary simulations using ndnSIM

• Implementation using NDN-Cxx libraries

• Still ongoing

Next steps

• Did not yet activate multi-path feature in the NDN strategy

– To find out how it will change the dynamics of TC

– Expected to provide more benefit through additional load balancing

• NDN multipath congestion control

– Better understanding (beyond single path)

• Testbed evaluation

– Code on Github

– NIST gateway node on NDN testbed

– Plan to test/collect traces on testbed

