Multi-Path Protocol for Big Data Transfer

Lotfi Benmohamed
NIST

Team: A. Battou, H. Bilil, O. EI-Mimouni, K. Halba, C. Mahmoudi

QOutline

How can we move data faster by providing multi-path transfer capability through the network
What can an ICN architecture like NDN offer (compared to IP)
Show that it can be done easier and more efficiently with NDN than with IP

Describe our implementation and its performance

Multi-path transfer

Large data volume can come from either

— small number of large data files (such as from scientific big data from previous talks), or
— large number of small data objects (such as from video content distribution),
— even though a large data volume in both cases

To support big science data we’re interested in the problem of maximizing transfer rate
(hence minimizing transfer time) when moving large data files

Multi-path transfer uses multiple paths between two endpoints

— network resources on all paths appear to the endpoints as a single pooled resource
— dynamic scheduling (coordinated congestion control) used to split data traffic across the available paths

Benefits to user
— Higher throughput: due to pooled resources

— Improved resilience to link or node failure (if we lose resources on
one path we still have the resources of other paths)

Multi-path throughput

« With fully disjoint paths,
— we can achieve C = Y-, C; Ci
-)
 With partially disjoint paths

— If Cy = X7, C;, then as if fully disjoint (from throughput point of view)
— Still useful when max(C;) < C, < X.i~, C; , can still get some benefit from multi-path

How can we get multi-path capability

[1] Network-controlled multi-path

— No end-point involvement (end-user with single physical network
connection)

— Network splits end-user traffic into multiple paths
[2] User-controlled multi-path through interface selection
— End-point is multi-homed (with multiple physical access links)
— Number of paths up to number of physical access links
— No network involvement (user splits traffic)
[3] User-controlled multi-path through transit selection
— User selects transit points (topologically diverse) for multi-path

Combinations are also possible
- [1]+[2]

~ [1[3]
- 23])

- [+ ~__

Network-controlled multi-path

In IP networks, forwarding is always along the shortest path
— If multiple such paths exist, equal-cost multi-path (ECMP) routing can be used for load balancing over them
— To avoid IP routing loops only paths with the minimum routing cost can be considered
— Limited number except in some regular & dense topologies (data centers)
ECMP works at the flow level (5-tuple flow granularity)
— but we need to split one big flow into sub-flows
— multiple IP addresses per interface needed for multi-path tcp to work in this case (up to # ECMP paths)

()——’@\/
In NDN networks, multipath is easy and readily available L\/\/»/

— Through Interest-forwarding strategy (can split traffic arbitrarily)
— Built-in loop detection mechanism allows exploring any path (not just shortest paths)

Our approach

Our approach is based on transit node selection and we made an implementation
based on this approach @/\@

Partly due to the fact that we started with the following problem: \/
Given large data object stored at customer location P, transfer it as fast as possible to cloud)
storage

Possible use case:

— Customer logs in to the portal of its cloud service provider (CSP) to initiate transfer of a
data object

— Provides the name of the data object /NIST/MML/archivel

— CSP selects a set of diverse locations and triggers each storage location to start
downloading objects with the given name T2

T1
— wildcard character (/NIST/MML/archivel/*) meaning that it is ready to accept the next % %
data packet without specifying any particular one [“exclude” option can be used instead]

» P will reply with the next non-transmitted data packet
— For reliable delivery, the index of last received packet is appended to names in Interests
— Producer keeps track of lost Data packets for retransmission

I: /NIST/MML/archivel/*/lastBlockiD
D: /NIST/MML/archivel/*/currentBlockiD

Distributed Transfer Protocol (DTP)
— each location will have a subset of the original data object
(not necessarily a contiguous in-order block)
— if needed, can be followed by another protocol to consolidate at location C
— Can be adapted for Hadoop map/reduce application

Next step: Multi-Path Transfer Protocol (MPTP)

— performs end-to-end simultaneous transfers through a selected set of locations
— simpler than DTP as only C needs to keep track of received/lost Data packets (P needs to do this in DTP)

NDN Multi-Path Transfer Protocol
ndnMPTP

« CSP instructs C to initiate simultaneous (parallel) transfers of the data file /NIST/MML/archivel from
producer P through a sclected set of transit nodes T1, T2, ..., Tn (with names denoted /T1 , /T2, ..., /Tn)
— ndnMPTP running at each of the nodes
— All /Ti names are reachable (advertised in routing)

NLSR Repo -

NdnNnMPTP - step0

First Interest generated at C with the name
— INIST/MML/ndnMPTP/archivel

ndnMPTP running at P will return the first data block in a Data
packet with a specification of FinalBlockID as part of the
Metalnfo

Data ::= DATA-TLY TLV-LEMGTH
MName
Metalnto
Content
Signature

MetaInfo ::= META-INFO-TYPE TLV-LENGTH
ContentType?
FreshnessPeriod?
FinalBlockId?

T1

NdNMPTP — Interest

Interests are generated at C for each Ti with the name
— [Ti/ndnMPTP/NIST/MML/ndnMPTP/archivel/BlockID

Consecutive BlockIDs are requested up to FinalBlockID [!

— Subject to retransmission of lost blocks and flow control at C

Interest processing at Ti

— Send new Interest with name /NIST/MML/ndnMPTP/archivel/BlockID
Interest processing at intermediate node

— Standard NDN processing

Ul W -

Tn
e
t/ .

Gl - -

ndnMPTP = Data

T1
For each Interest, deliver corresponding data block
: : —=
Name in Data packet is p / -
— INIST/MML/ndnMPTP/archivel/BlockID -
BN

w

w
\ Tn
-

-—

Data processing at intermediate nodes

— At Ti append /Ti/ndnMPTP to name :
[TiIndnMPTP/NIST/MML/ndnMPTP/archivel/BlockID

— Other nodes: normal NDN processing

. Outstanding/inflight Window Round Trip Time
At Consumer: (per Ti) (per Ti) (per Ti)

On_Data (Rcv) 0i=0i-1 Wi=Wi+AIF/Wi (+1 per RTT i=T sent —T_current
RTT) Compute average/deviation

On_Interest (Send) Oi=0i+1 Set Timeout for Interes
Record T_sent

On_Timeout (no Data 0i=0i-1 Wi=Wi*MDF (1/2) Retransmit Interest
within TOi)

Per Ti :

Initialize TO
subsec. up to 1 sec

When first RTT is measured set:
RTTave=RTT
RTTdev=RTT/2

Whenever a subsequent RTT is collected set:
RTTdev=b*|RTTave-RTT| + (1-b)*RTTdev [1/8]
RTTave= a*RTT + (1-a)*RTTave [1/4]

When sending Interest after first RTT measurement
TO= RTTave + K*RTTdev [4]

Evaluation

« Preliminary simulations using ndnSIM Window T1 - cons2

» Implementation using NDN-Cxx libraries -
« Still ongoing 0
§ 50 /
L4
= 30 I///
20
10
0
0 2 - & 8 10 12

Time (5)

.
=

Window T3 - con2

%0
80
70
&0

50
40
30 &
20 d
10
0
0 2 4 6 8 10

Num of Transit Nodes Time (s)

Window

Download Time (s)
[I R S R L = B N s T =]

12

Next steps

« Did not yet activate multi-path feature in the NDN strategy
— To find out how it will change the dynamics of TC
— Expected to provide more benefit through additional load balancing

« NDN multipath congestion control
— Better understanding (beyond single path)

» Testbed evaluation
— Code on Github
— NIST gateway node on NDN testbed
— Plan to test/collect traces on testbed

