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Technologies for monitoring flow
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End

Ultrasonic meters sample a small portion of  the flow field

FLOW

Estimated Uncertainty

5-20%
EPRI Target Uncertainty

1%

Multiple paths required



Plane wave propagation if λ > 1.7 × diameter

A long wavelength acoustic flowmeter (LWAF) 
measures flow with low frequency sound.   

continuous 
low-frequency  
acoustic source

plane wave propagation is not affected 
by complex flow

Plane wave averages 
over cross-section



Sound propagation in flow

sound source
frequency f

λright = (c +V )/fλleft = (c –V )/f

sources and detectors 
are stationary in lab

Mach number M = V / c

λleft = (1 – M ) λ0 < λright = (1 + M ) λ0 

p1
microphones

p3
microphones

p2 p4
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λ = wavelength



Partial standing waves in a duct with flow
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Partial standing waves in a duct with flow

V

0 18.2, 0.1k L M= =

direct sound wave

reflected sound wave
radiated sound wave combined wave



Acoustic measurements of  flow

Open End

Acoustic Transducers

Continuous Low f
Acoustic Source∆l

λ
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∆φmeas

λ - wavelength is proportional to the speed of  sound.

∆φmeas - phase difference changes inversely with flow. 0 2π φ+ = ∆ ∆n nc V f l
0 2= ∆nc f l n

p1p2

p2/p1 = | p2/p1 | ei∆φ
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of  the NIST 
1/100th scale (10 cm diameter) LWAF facility using an active sound source 
to generate long wavelength sound (frequency < 2 kHz)
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of  the NIST 
1/100th scale (10 cm diameter) LWAF facility using an active sound source 
to generate long wavelength sound (frequency < 2 kHz)

• u(V ) ≈ 0.4% and u(c0 ) ≈ 0.01% in 
symmetric flows up to 25 m/s

Flow speed

Speed of  sound
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of  the NIST 
1/100th scale (10 cm diameter) LWAF facility using an active sound source 
to generate long wavelength sound (frequency < 2 kHz)

• u(V ) ≈ 0.4% and u(c0 ) ≈ 0.01% in 
symmetric flows up to 25 m/s

u(V ) ≈ 1 % in distorted flows with 
swirl, vortices, and recirculation up to 
25 m/s

•
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of  the NIST 
1/100th scale (10 cm diameter) LWAF facility using an active sound source 
to generate long wavelength sound (frequency < 2 kHz)

• u(V ) ≈ 0.4% and u(c0 ) ≈ 0.01% in 
symmetric flows up to 25 m/s

• u(V ) ≈ 1 % in distorted flows with 
swirl, vortices, and recirculation up to 
25 m/s

• scaling to 20 cm diameter: u(V ) ≈ 1 % 
up to 6 m/s
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of  the NIST 
1/100th scale (10 cm diameter) LWAF facility using an active sound source 
to generate long wavelength sound (frequency < 2 kHz)

• u(V ) ≈ 0.4% and u(c0 ) ≈ 0.01% in 
symmetric flows up to 25 m/s

u(V ) ≈ 1 % in distorted flows with 
swirl, vortices, and recirculation up to 
25 m/s

scaling to 20 cm diameter: u(V ) ≈ 1 % 
up to 6 m/s

•

•

It works!!!...
But…   generating sound in a smokestack is impractical…



Sound generation in a smokestack

The volume of  a typical smokestack is 106x larger than the NIST 
1/100th scale LWAF

• to achieve the same signal-to-noise ratio we need to 
generate 106x higher sound pressure

• 20 log(106) = 120 dB higher SPL

• smokestacks are noisy environments

• required sound level ~160 - 180  dB SPL! (that’s loud)



Sound generation in a smokestack

The volume of  a typical smokestack is 106x larger than the NIST 
1/100th scale LWAF

• to achieve the same signal-to-noise ratio we need to 
generate 106x higher sound pressure

• 20 log(106) = 120 dB higher SPL

• smokestacks are noisy environments

• required sound level ~160 - 180  dB SPL!

What is an alternative?

(that’s loud)



Acoustical noise in a power plant smokestack
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Measurements at Mirant (GenOn) plant in Dickerson, MD

Smokestack diameter ≈ 10 m
Plane wave sound for frequency < 20 Hz

Noise caused by blowers or turbulent flow.
Passive approach: correlate existing noise at particular frequencies
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Velocity and pressure fluctuations due 
to flow instabilities generate acoustic noise

l∆

Free field

Cross-correlation of acoustic pressures
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Acoustic Transducers
Microphones

Open 
End

Axial
Spacing

FLOW

moving
source

stationary
source

Acoustic noise generated by flow confined in a 
duct is complicated by reflections

l∆endl∆

Cross-correlation of  low-frequency noise may be 
affected by reflections from open ended duct



Correlated noise in 1:100th scale LWAF 
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LWAF diameter 0.10 m
Plane wave sound for frequency < 2000 Hz

Preliminary measurements

Correlated noise in 1:100th scale LWAF at 94 Hz 
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Correlations in 1:10th Scale Model Smokestack Simulator

SMSS diameter ≈ 1.2 m
Plane wave sound for frequency < 170 Hz

Preliminary measurements
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Summary and Future Work

• Active Sound Generation:

• Success measuring flow to u(V) ≤ 1% for 1:100th scale test model

• Passive Sound Generation:

• 1:100th scale

• Acoustic model predicts phase change as a function of  velocity 

and frequency

• Qualitative agreement with model

• 1:10th scale

• Measured phase changes with respect to flow velocity



Summary and Future Work

• Develop acoustic model for 1:10th SMSS

• Theoretical model for correlations

• Determine relation between flow velocity and measured phase 

change

• Demonstrate measurement of  V

• Determine the uncertainty u(V)

• Goal: u(V) ≤ 1% relative to SMSS calibrated reference 

section
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