Measuring flow speed in a long-wavelength acoustic flowmeter

Keith A. Gillis

Fluid Metrology Group Sensor Science Division National Institute of Standards and Technology Gaithersburg, MD

Collaborators: JohnPaul Abbott Lee Gorny Aaron Johnson John Wright Michael Moldover

NIST Greenhouse Gas Conference and Workshop Gaithersburg, MD June 28-29, 2017

rad

Technologies for monitoring flow

Ultrasonic meters sample a small portion of the flow field

A long wavelength acoustic flowmeter (LWAF) measures flow with low frequency sound.

Plane wave propagation if λ > 1.7 × diameter

plane wave propagation is not affected by complex flow

Sound propagation in flow

Partial standing waves in a duct with flow

Partial standing waves in a duct with flow

Acoustic measurements of flow

 λ - wavelength is proportional to the speed of sound. $c_0 = 2f_n\Delta l/n$ $\Delta \phi_{meas}$ - phase difference changes inversely with flow. $c_0 + V = 2\pi f_n\Delta l/\Delta \phi_n$

Previously, we assessed the performance and scalability of the NIST 1/100th scale (10 cm diameter) LWAF facility using an active sound source to generate long wavelength sound (frequency < 2 kHz)

Previously, we assessed the performance and scalability of the NIST 1/100th scale (10 cm diameter) LWAF facility using an active sound source to generate long wavelength sound (frequency < 2 kHz)

• $u(V) \approx 0.4\%$ and $u(c_0) \approx 0.01\%$ in symmetric flows up to 25 m/s

Previously, we assessed the performance and scalability of the NIST 1/100th scale (10 cm diameter) LWAF facility using an active sound source to generate long wavelength sound (frequency < 2 kHz)

- $u(V) \approx 0.4\%$ and $u(c_0) \approx 0.01\%$ in symmetric flows up to 25 m/s
- *u*(*V*) ≈ 1 % in distorted flows with swirl, vortices, and recirculation up to 25 m/s

Previously, we assessed the performance and scalability of the NIST 1/100th scale (10 cm diameter) LWAF facility using an active sound source to generate long wavelength sound (frequency < 2 kHz)

- $u(V) \approx 0.4\%$ and $u(c_0) \approx 0.01\%$ in symmetric flows up to 25 m/s
- *u*(*V*) ≈ 1 % in distorted flows with swirl, vortices, and recirculation up to 25 m/s
- scaling to 20 cm diameter: *u*(*V*) ≈ 1 % up to 6 m/s

Previously, we assessed the performance and scalability of the NIST 1/100th scale (10 cm diameter) LWAF facility using an active sound source to generate long wavelength sound (frequency < 2 kHz)

- $u(V) \approx 0.4\%$ and $u(c_0) \approx 0.01\%$ in symmetric flows up to 25 m/s
- $u(V) \approx 1$ % in distorted flows with swirl, vortices, and recirculation up to 25 m/s
- scaling to 20 cm diameter: *u*(*V*) ≈ 1 % up to 6 m/s

It works!!!...

But... generating sound in a smokestack is impractical...

Sound generation in a smokestack

The volume of a typical smokestack is 10^6x larger than the NIST $1/100^{th}$ scale LWAF

- to achieve the same signal-to-noise ratio we need to generate 10⁶x higher sound pressure
- 20 log(10⁶) = 120 dB higher SPL
- smokestacks are noisy environments
- required sound level ~160 180 dB SPL! (that's loud)

Sound generation in a smokestack

The volume of a typical smokestack is 10⁶x larger than the NIST 1/100th scale LWAF

- to achieve the same signal-to-noise ratio we need to generate 10⁶x higher sound pressure
- 20 log(10⁶) = 120 dB higher SPL
- smokestacks are noisy environments
- required sound level ~160 180 dB SPL! (that's loud)

What is an alternative?

Acoustical noise in a power plant smokestack

Measurements at Mirant (GenOn) plant in Dickerson, MD

Smokestack diameter \approx 10 m Plane wave sound for frequency < 20 Hz

Noise caused by blowers or turbulent flow. Passive approach: correlate existing noise at particular frequencies

Velocity and pressure fluctuations due to flow instabilities generate acoustic noise

Acoustic noise generated by flow confined in a duct is complicated by reflections

Correlated noise in 1:100th scale LWAF

Correlated noise in 1:100th scale LWAF at 94 Hz

LWAF diameter \approx 0.10 m Plane wave sound for frequency < 2000 Hz

Preliminary measurements

Filtered Correlations, 94 Hz Center Frequency , 1 Hz bandwidth

Correlations in 1:10th Scale Model Smokestack Simulator

SMSS diameter \approx 1.2 m Plane wave sound for frequency < 170 Hz

Preliminary measurements

Filtered Correlations, 21 Hz Center Frequency , 1 Hz bandwidth

Summary and Future Work

- Active Sound Generation:
 - Success measuring flow to $u(V) \le 1\%$ for 1:100th scale test model
- Passive Sound Generation:
 - 1:100th scale
 - Acoustic model predicts phase change as a function of velocity and frequency
 - Qualitative agreement with model
 - 1:10th scale
 - Measured phase changes with respect to flow velocity

Summary and Future Work

- Develop acoustic model for 1:10th SMSS
 - Theoretical model for correlations
 - Determine relation between flow velocity and measured phase change
 - Demonstrate measurement of V
 - Determine the uncertainty *u*(*V*)
 - Goal: $u(V) \le 1\%$ relative to SMSS calibrated reference section

Thank you Questions?