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Technologies for monitoring flow
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Ultrasonic meters sample a small portion of the flow field

Estimated Uncertainty

Multiple paths required



A long wavelength acoustic flowmeter (LWAF)
measures flow with low frequency sound.

Plane wave propagation if A > 1.7 x diameter

continuous
Plane wave averages 8 0O low-frequency
over cross-section

acoustic source

plane wave propagation is not affected
by complex flow



Sound propagation in flow
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Partial standing waves in a duct with flow

k,L=18.2, M=0.1

direct sound wave

reflected sound wave




Partial standing waves in a duct with flow

k,L=18.2, M=0.1

direct sound wave

reflected sound wave
radiated sound wave combined wave




Acoustic measurements of flow
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of the NIST
1/100t" scale (10 cm diameter) LWAF facility using an active sound source
to generate long wavelength sound (frequency < 2 kHz)

Variable Speed Fan

LFM Flow Standard

Interchangeable Turnaround Section




LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of the NIST

1/100t" scale (10 cm diameter) LWAF facility using an active sound source

to generate long wavelength sound (frequency < 2 kHz)

e U{V)=0.4% and u(c,) = 0.01% in
symmetric flows up to 25 m/s
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LWAF with active sound generation:

performance summary

Previously, we assessed the performance and scalability of the NIST
1/100t" scale (10 cm diameter) LWAF facility using an active sound source
to generate long wavelength sound (frequency < 2 kHz)

« U(V)=~0.4% and u(c, ) ~0.01% in

symmetric flows up to 25 m/s

e U{V)=1% indistorted flows with
swirl, vortices, and recirculation up to

25 mls
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of the NIST
1/100t" scale (10 cm diameter) LWAF facility using an active sound source
to generate long wavelength sound (frequency < 2 kHz)

10
e U{V)=0.4% and u(c,) =~0.01% in
symmetric flows up to 25 m/s

* (V) =~1 % in distorted flows with S Jf} Jﬂ %} 1%
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LWAF with active sound generation:
performance summary

Previously, we assessed the performance and scalability of the NIST
1/100t" scale (10 cm diameter) LWAF facility using an active sound source
to generate long wavelength sound (frequency < 2 kHz)

° U( V) ~ 0.4% and U(Co ) ~0.01% in Variable Speed Fan 58
symmetric flows up to 25 m/s

e U{V)=1% indistorted flows with Flow SRS
swirl, vortices, and recirculation up to LFM Flow Standard | Inlet
25 m/s ~ Optional Muffler Section

» scaling to 20 cm diameter: V) =~1 % A : LWAF
up to 6 m/s (

Interchangeable Turnaround Section

But... generating sound in a smokestack is impractical...



Sound generation in a smokestack

The volume of a typical smokestack is 10x larger than the NIST
1/100t scale LWAF

* to achieve the same signal-to-noise ratio we need to
generate 10%x higher sound pressure

Ticking o= 3 i g:shnl:HEmng-
eadphones
- 100-110 dB mﬁ;,;‘ i
= | -

« 201log(10%) =120 dB higher SPL
[ o 20 40 60 an. L 11&

 smokestacks are noisy environments
* required sound level ~160 - 180 dB SPL!}|(that’s loud)
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Sound generation in a smokestack

The volume of a typical smokestack is 10x larger than the NIST
1/100t scale LWAF

* to achieve the same signal-to-noise ratio we need to
generate 10%x higher sound pressure

e 2010g(10%) =120 dB higher SPL
 smokestacks are noisy environments
* required sound level ~160 - 180 dB SPL!}|(that’s loud)

What is an alternative?



Acoustical noise in a power plant smokestack

Measurements at Mirant (GenOn) plant in Dickerson, MD

Smokestack diameter = 10 m
Plane wave sound for frequency < 20 Hz

Average Power Spectral Density l Ch.1(Ref)
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Noise caused by blowers or turbulent flow.
Passive approach: correlate existing noise at particular frequencies



Velocity and pressure fluctuations due
to flow instabilities generate acoustic noise

fluctuations

|< Al >| hydrodynamic P, ~ ,0\72
acoustic P, ~ /~)C2 ~ pCV
hydrodynamic energy is

Free field converted to acoustic energy
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Acoustic noise generated by flow confined in a
duct is complicated by reflections
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Cross-correlation of low-frequency noise may be
affected by reflections from open ended duct



Correlated noise in 1:100th scale LWAF
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Correlated noise in 1:100th scale LWAF at 94 Hz

LWAF diameter = 0.10 m
Plane wave sound for frequency < 2000 Hz

Preliminary measurements
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Correlations in 1:10th Scale Model Smokestack Simulator

PSD (Pa2/Hz)
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SMSS diameter = 1.2 m
Plane wave sound for frequency < 170 Hz

Preliminary measurements
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Summary and Future Work

 Active Sound Generation:
e Success measuring flow to «( V) < 1% for 1:100t" scale test model
 Passive Sound Generation:

e 1:100th scale

Acoustic model predicts phase change as a function of velocity

and frequency

Qualitative agreement with model

e 1:10th scale

 Measured phase changes with respect to flow velocity



Summary and Future Work

 Develop acoustic model for 1:10th SMSS
» Theoretical model for correlations

 Determine relation between flow velocity and measured phase

change
« Demonstrate measurement of V
 Determine the uncertainty «( V)

o Goal: (V) <1% relative to SMSS calibrated reference

section
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